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Abstract 
The periodic table of elements includes 92 elements with many unknown properties like melting point, boiling point, heat of 
vaporization, and molar heat capacity of some specific elements such as Curium, Berkelium, Californium, and Einsteinium. 
Physicists, chemists, and other scientists have done many successful experiments to predict these mysterious features using 
the first principal methods. But still many properties have been unclear. 

In this project we apply Machine Learning models such as linear and logistic regression to predict this unknow values. The 
known values split to train and test data to find and confirm the model. Then the model will be run over unknown variables. 
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1. Introduction
In recent past, there have been several applications of 
machine learning to the furthering of scientific understanding. 
Specifically, there is interest in using the predictive power of 
machine learning toward predicting qualities of elements in 
the periodic table. Mainly, these studies attempt to predict the 
stability of various elements or identify and utilize the trends 
that define the structuring of the elements in the periodic table to 
reconstruct the table using machine learning. 

Dr. Zhang and his research group predicted the structure of the 
periodic table using convolutional neural networks to forecast 
chemical information [1].  Other researchers recreated the 
periodic table and prediction of elemental stability using an 
unsupervised machine learning algorithm or a SOAP kernel 
[2,3]. Dr. Shayue investigated the potential energy surfaces of 
atoms using a graph neural network [4]. On the other project, 
Dr. Tavazza and his research group analyzed the crystal 
structures using unified atomistic line graph neural network-
based force fields [5]. All of which have important applications 
to the scientific community in the development of chemical 
reaction efficiency and yield, materials discovery, and catalyst 
improvement [6]. 

Predicting chemical information can be extremely valuable to 
scientists in laboratory research attempting to create compounds 
for pharmaceuticals, efficient fuels, or any number of applications. 
Knowing the stability and properties of elements can better 
inform decisions and directions of scientific inquiry. And, as 
stated above, while such things as stability and some properties 
have been assessed using machine learning techniques, what has 
yet to be well studied or modeled is the use of periodic table 

trends to predict the magnetic properties of elements.  

Magnetism is a categorical property where elements are 
diamagnetic (no magnetic moments in atoms), Paramagnetic 
(Random magnetic moment orientation), ferromagnetic 
(parallel and aligned magnetic moments), or anti-ferromagnetic 
(antiparallel and aligned magnetic moments). But this property 
has generally only been tested in laboratory settings which limits 
the availability or usability of such a property to elements that are 
easily handled or stable enough to be tested. Such requirements 
become unreachable in newer elements that are unstable. So, 
to predict the magnetic properties of elements using machine 
learning models, other known characteristics can be used based 
on their predictive value such as melting point, boiling point, 
density at standard temperature and pressure, triple point, heat 
of fusion and vaporization, and molar heat capacity.

Dr. Wang and his research group applied ML-guided framework 
to explore magnetic properties of P-table elements [7]. In 
another study, Dr. Kioseoglou, et all, applied machine learning 
methods to Density Functional Theory simulation data to find 
the relationship between elements’ structure and magnetization 
[8]. Mohanty, et all, used regression and neural networks to find 
magnetic elements of elements from microstructures [9].

In this paper, more accessible techniques of machine learning 
such as linear regression and logistic modeling have been used 
to fill in the missing values of periodic table characteristics and 
predict the magnetic properties of elements. 

2. Data Description
This data from GitHub (https://gist.github.com/
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GoodmanSciences/c2dd862cd38f21b0ad36b8f96b4bf1ee) is the 
most fundamental information about the elements. It includes 
atomic numbers, element’s name, symbol, the number of 
protons and electrons in a neutral atom. The number of neutrons 
is for the most abundant isotope, and the number of naturally 
occurring isotopes is also noted.

The elements are further classified in this data by position on the 
periodic table. The three general categories
of elements are metals, nonmetals, and metalloids. Metals have 
high melting and boiling points. They are malleable, ductile 
and conduct electricity and heat. Nonmetals with low melting 
and boiling points, are brittle and do not conduct electricity 
and heat. Metalloids are a transition between the two. Elements 
are classified by their position on the periodic table. The alkali 
metals are the first column, the alkaline earth metals are the 
second column. The Noble gases are the last (18th) column, and 
the halogens are in column 17. Elements in the same column 
have similar properties. For example, alkali metals and halogens 
are known to have a high reactivity and are never found free 
in nature. By contrast, Noble gases characteristically do not 
react with other elements. These reactivity patterns relate to the 
date of discovery that is also noted in the table. The elements 
found in prehistory tend to be low reacting elements, such as 
transition metals, which are often found to be pure elements. 
The noble gases were among the last elements to be found, due 
to their inability to react. Most were found in the 18th and 19th 
centuries, when active searches for elements were common. The 
artificial elements were created starting in the atomic era and 
this experimentation is on-going, with the latest elements being 
synthesized early in the 21st century.

It is well known that the data in a periodic table have patterns. 
The atomic radius, electronegativity and first ionization energy 
vary periodically with atomic number. Atomic radius refers to 
the size of the atom. The size decreases across a period and 
increases down a group due to the increasing number of protons 
in the nucleus and the increasing number of rings of electrons. 
Electronegativity is a measure of how easy it is for an atom 
to gain an electron from another element. It increases across 
a period from a more positive nucleus, and decreases down a 
group, due to the atomic radius. First ionization energy takes 
to pull a valence electron from a neutral atom. First ionization 
energy also increases across a period, due to increasing positive 
charge from the nucleus, and decreases down a group due to 
the increasing distance between the valence electrons and the 
positive charge of the nucleus.

The number of valence electrons is the number of electrons in the 

outermost shell of the atom and varies from 1 to 8. The number 
of valence electrons is also a periodic property. It increases 
from 1 to 8 across a period, then repeats for each one. It is not 
listed for transition metals, lanthanides, or actinides because the 
valence electrons for those elements are variable. The “number 
of shells” column refers to the number of “rings” of electrons in 
the solar system model of the atom and corresponds to the period 
of the element.

3. Methodology and Results
We apply 2 regression models to predict the unknown magnetic 
field of elements. For this aim, we must fill in the blanks in 
our dataset. We split the known variables to train and test data. 
Linear regression finds the model of train set. Then we apply the 
model over test data to confirm the high accuracy of model.  We 
apply Logistic Regression model over completed data to predict 
unknown magnetic properties of element. 

3.1 Linear Regression
In this section we try to fill in missing values in each dataset 
using a regression model, specifically a Linear Regression 
model. Regression is a statistical method used in machine 
learning that attempts to predict a dependent variable based on 
the values of one or more independent variables. In other words, 
it is used to understand the relationship between variables. 
Linear Regression aims to model the relationship between two 
variables by fitting a linear equation to observed data.

The model separates the data with existing values and fits a 
linear regression model on it. The trained model is then used to 
predict the missing values. These predicted values are rounded 
to three decimal places for precision and are used to replace 
the null values in the original data. Unknown values of melting 
point, boiling point, heat of vaporization, molar heat capacity 
and so on will be predicted with this method. 

In summary, this script uses a linear regression model to predict 
and fill missing values for specific columns in a dataset of 
element properties. This allows for a complete and more useful 
dataset, as missing values can often lead to inaccuracies or 
difficulties in further analysis or machine learning tasks. Figure 
1 shows the variation of predicted values.

3.2 Logistic Regression
The features mentioned in Fig 1 to be used for training and 
prediction of unknown magnetic properties of elements. We split 
the data into training and test sets. The training set consists of 
rows where the 'magnetic' column has non-null values, while the 
test set contains rows with null 'magnetic' values.
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Figure 1: Predicted Values for Different Features 

 

The data is preprocessed using a StandardScaler to standardize the features. Afterward, we predict the missing values in the 

'magnetic' attribute using the trained. Table 1 shows the predicted values of some unknown variables using logistic regression.  

Figure 2 shows the number of predicted magnetic properties. The magnetic properties of all elements have been shown in table 1.  

 
Figure 2: Number of Predicted Magnetism Values 

 

0 10 20 30 40 50 60 70 80

Antiferromagnetic
Diamagnetic

Ferromagnetic
Paramagnetic

3 
 

In summary, this script uses a linear regression model to predict and fill missing values for specific columns in a dataset of element 

properties. This allows for a complete and more useful dataset, as missing values can often lead to inaccuracies or difficulties in 

further analysis or machine learning tasks. Figure 1 shows the variation of predicted values. 

 

3.2 LOGISTIC REGRESSION 

The features mentioned in Fig 1 to be used for training and prediction of unknown magnetic properties of elements. We split the data 

into training and test sets. The training set consists of rows where the 'magnetic' column has non-null values, while the test set 

contains rows with null 'magnetic' values. 

 

 

 

 

 

 

 

 

 

Figure 1: Predicted Values for Different Features 

 

The data is preprocessed using a StandardScaler to standardize the features. Afterward, we predict the missing values in the 

'magnetic' attribute using the trained. Table 1 shows the predicted values of some unknown variables using logistic regression.  

Figure 2 shows the number of predicted magnetic properties. The magnetic properties of all elements have been shown in table 1.  

 
Figure 2: Number of Predicted Magnetism Values 

 

0 10 20 30 40 50 60 70 80

Antiferromagnetic
Diamagnetic

Ferromagnetic
Paramagnetic

Figure 1: Predicted Values for Different Features

The data is preprocessed using a StandardScaler to standardize 
the features. Afterward, we predict the missing values in the 
'magnetic' attribute using the trained. Table 1 shows the predicted 
values of some unknown variables using logistic regression.  

Figure 2 shows the number of predicted magnetic properties. 
The magnetic properties of all elements have been shown in 
table 1.
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