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Abstract
In today’s increasingly complex and volatile stock markets, leveraging advanced machine learning and quantitative techniques 
is becoming indispensable for enhancing trading strategies and optimizing returns. This study introduces a so- phisticated Multi-
modal framework that combines Deep Rein- forcement Learning (DRL) with Algorithmic Trading Signals and Price Forecasts to 
improve risk-adjusted returns in equity trad- ing. Utilizing the Proximal Policy Optimization (PPO) algorithm within a custom 
trading environment built on the FinRL library, our approach integrates advanced algorithmic signals−such as moving average 
crossovers and oscillator divergence−and incorporates enriched price forecasts from Long Short-Term Memory (LSTM) networks. 
The proposed framework was rigorously evaluated using a diverse set of 29 out of 30 constituent stocks within the Dow Jones 
Industrial Average (DJI). The empirical results highlight the effectiveness of the Multi-modal DRL approach, demonstrating 
significant outperformance over traditional benchmarks, with an annualized return of 16.24%, an annualized standard deviation 
of 17.49%, a Sharpe Ratio of 0.86, and a Sortino Ratio of 1.27. These findings underscore the potential of Multi-modal DRL 
frameworks to offer consistent, robust performance and contribute to advancing trading strategies in dynamic market environments.
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1. Introduction
Algorithmic trading has evolved significantly with the ad- 
vent of artificial intelligence (AI) and machine learning (ML),
enabling data-driven strategies that adapt dynamically to mar- ket
conditions. Deep Reinforcement Learning (DRL), particularly, has
shown promise in developing autonomous trading agents capable
of making real-time decisions by learning from historical market
data and simulated environments. Among various DRL methods,
Proximal Policy Optimization (PPO) stands out for its balance
of learning stability and exploration, making it well-suited for
financial markets characterized by volatility and complexity.

This study proposes a Multi-modal DRL framework that integrates 
algorithmic trading signals derived from technical indicators 
with Long Short-Term Memory (LSTM)-based price forecasts. 
This dual approach aims to enhance the agent’s decision-making 
process by combining rule-based trading in-sights with predictive 
analytics. The framework is evaluated against baseline models 

and other reinforcement learning techniques, demonstrating its 
potential for real-world trading applications.
The remainder of this paper is organized as follows: Section
2) Discusses related work in algorithmic trading and DRL
applications. Section 3 introduces the proposed framework,
detailing the integration of trading signals and price forecasts.
Section 4 presents the experimental setup and results. Finally,
Sections 5 and 6 provide a discussion of limitations and future
research directions.

2. Related Work
2.1 Literature Review
Deep Reinforcement Learning (DRL) has become a powerful
method for tackling sequential decision-making challenges,
particularly in the dynamic and complex environment of financial
markets. The versatility of DRL algorithms has been explored
extensively in equity trading, portfolio optimization, and trade
execution, demonstrating significant potential to enhance trading
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strategies. This section provides a focused review of Proximal 
Policy Optimization (PPO) and other leading DRL algorithms, 
assessing their respective strengths and limitations in financial 
contexts. PPO is ultimately selected for this study due to its robust 
performance and stability in managing volatile market conditions.
The integration of DRL into algorithmic trading has gained 
considerable traction, with research showcasing the effective ness 
of models such as Deep Q-Networks (DQN), Double DQN, and 
Actor-Critic methods in executing profitable trading strategies 
[1,2]. While these models have achieved encouraging results, many 
focus narrowly on a single modality, such as price movements or 
technical indicators. This limited scope may hinder an agent’s 
adaptability to diverse market scenarios, especially during regime 
shifts or unexpected market changes.

Recent advancements have introduced Multi-modal approaches 
that incorporate additional features like sentiment analysis 
and macroeconomic indicators alongside price data [3]. These 
methods enhance prediction accuracy by offering a broader market 
perspective. However, they often encounter challenges related to 
data quality and the complexity of integrating heterogeneous data 
sources, underscoring the need for more sophisticated frameworks.
Our proposed approach builds on this research by combining 
algorithmic trading signals with Long Short-Term Memory 
(LSTM)-based price forecasting, establishing a comprehensive 
framework that captures historical market patterns while leveraging 
predictive insights for informed decision-making. While LSTM 
architectures have been effectively used for price prediction in 
previous studies, the novelty of our research lies in integrating 
these predictive signals with rulebased trading strategies within 
a PPO-driven DRL framework [4]. This holistic approach aims to 
enhance trading performance through more stable and risk-aware 
investment strategies.

Proximal Policy Optimization (PPO) is an on-policy actorcritic 
method that improves training stability via a clipping mechanism in 
the policy objective function. This technique effectively balances 
exploration and exploitation by preventing large policy updates, 
an essential feature for financial trading where market conditions 
can shift rapidly. Empirical studies have demonstrated PPO’s 
effectiveness in portfolio manage- ment, achieving superior risk-
adjusted returns compared to traditional models, and showcasing 
robust performance in high-frequency trading (HFT) scenarios 
[2,5].

Conversely, developed DQN, combining Q-learning with deep 
neural networks [6]. Although DQN has proven effective in discrete 
action spaces, it is less suitable for continuous decision-making, 
which is often required in financial trading. For instance, when 
applied to stock trading, DQN showed sub-optimal performance 
due to its limited action granularity [7]. Furthermore, its off-
policy nature can lead to instability, particularly in scenarios with 
sparse or noisy reward signals, as seen in sentiment-based trading 
strategies.

Improvements over DQN include Twin Delayed Deep De- 

terministic Policy Gradient (TD3), proposed by, which addresses 
overestimation bias through delayed critic updates and target 
smoothing [8]. TD3 has shown promise in continuous action 
spaces, including trade execution and portfolio rebalancing [9]. 
However, its reliance on meticulous tuning and a tendency to 
overfit to short-term signals could reduce profitability in long-term 
investment strategies.

Soft Actor-Critic (SAC), developed by, optimizes policy entropy 
to promote exploration [10]. SAC has been effectively applied to 
trading environments, managing high-dimensional action spaces 
and adapting to uncertain market conditions [11]. While SAC’s 
entropy maximization encourages diverse trading strategies, it may 
lead to excessive exploration, potentially causing inefficiencies 
when stability and consistency are critical for maximizing equity 
returns.

2.2 Link to Financial Economics
Based on the literature review, PPO offers significant ad- vantages 
in financial applications, including:

The proposed framework aligns with the Adaptive Market 
Hypothesis (AMH), which posits that market efficiency evolves 
over time as participants adapt to changing conditions [12-14]. By 
using Deep Reinforcement Learning, which inherently learns from 
historical feedback to adjust strategies dynamically, our model 
operationalises AMH in a practical trading system. The integration 
of multiple data modalities further enhances the system’s ability 
to detect and respond to regime shifts, consistent with AMH 
principles.

Considering these benefits, PPO is chosen as the core algorithm 
for this study. Our experiment will assess PPO’s effectiveness 
within a Multi-modal DRL framework for portfolio optimization, 
benchmarking its performance against traditional trading strategies 
to validate its robustness and potential for delivering superior 
equity returns.

Our research advances existing methodologies by inte- grating 
algorithmic trading signals with LSTM-based price forecasts 
within a PPO-driven framework. This innovative approach not 
only enhances predictive accuracy but also fosters more stable and 
risk-aware decision-making, contributing to the evolving field of 
algorithmic trading.

3. Methodology
This study analyzed historical data from 29 Dow Jones Industrial 
Average (DJI) stocks, excluding Visa Inc. due to missing data. 

• Training Stability: Maintains performance in volatile 
market conditions.

• Balanced Exploration and Exploitation: Avoids large, 
destabilizing policy updates.

• Versatility: Supports both discrete and continuous action 
spaces.

• Reduced Risk of Local Optima: Essential for maximiz- 
ing long-term returns.
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Daily closing prices from September 2, 2003, to August 30, 
2023, were collected using Python’s yfinance library. The first 50 
data points were excluded to enhance the accuracy of technical 
indicators.
The dataset was split 90:10 into training (November 11, 2003, to 
September 1, 2021) and testing (September 2, 2021, to August 30, 
2023) subsets to evaluate model performance on both historical 
and recent market data.

3.1 Custom DRL Framework
A custom Deep Reinforcement Learning (DRL) framework 
was developed using the FinRL library, simulating real-world 
trading environments. The agent, utilizing the Proximal Policy 
Optimization (PPO) algorithm, aimed to maximize rewards 
through optimized trading strategies in a simulated OpenAI Gym 
environment.

The framework’s state space included market features like cash 
balance, owned shares, closing prices, trading volume, log returns, 

and technical indicators (e.g., EMAs, Bollinger Bands, MACD, 
RSI). The action space allowed buying, holding, and selling 
actions with constraints reflecting institutional trading practices.

The reward function, based on portfolio log returns, encouraged 
strategies that balanced profitability and risk management. Realistic 
transaction costs (0.1% per share) and a buy/sell limit of 30 shares 
per stock were included to mimic actual market conditions.

Overall, the DRL framework enabled efficient learning and 
adaptation to dynamic market scenarios, promoting robust and 
effective trading strategies.

3.2 Multi-modal DRL Framework
This study introduces a Multi-modal Deep Reinforcement 
Learning (DRL) framework that combines Algorithmic Trading 
Signals and Long Short-Term Memory (LSTM) Price Forecasts to 
enhance trading performance.JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2025 3

Fig. 1. Multi-modal DRL Framework

1) Algorithmic Trading Signals: As illustrated in Figure 1,
the proposed architecture seamlessly integrates traditional
technical indicators with custom algorithmic trading signals.
This integration equips the DRL agent with rule-based insights
into market trends, enhancing its ability to make informed
trading decisions.

The following trading signal strategies are implemented to
guide the DRL agent’s decision-making process, delivering
structured insights while effectively mitigating the impact of
noisy or lagging indicators:

• Moving Average (MA) Crossover: Signals are generated
when short-period MAs cross above or below long-period
MAs, utilizing Exponential Moving Averages (EMAs) for
improved responsiveness.

• Price Crossover: Indicates momentum shifts by assess-
ing the positioning of the closing price relative to MA
values, offering insights into potential trend reversals.

• MACD Crossover: Detects momentum changes through
the interaction between the Moving Average Convergence
Divergence (MACD) line and the signal line, helping to
identify bullish or bearish shifts.

• RSI Overbought & Oversold: Anticipates market re-
versals by evaluating the Relative Strength Index (RSI)
against predefined thresholds, signaling when assets may
be overbought or oversold.

These signals are encoded as binary values, enhancing the
agent’s ability to interpret market conditions with reduced
susceptibility to market noise.

2) LSTM Price Forecasts: The LSTM models generate 1-
day forward price forecasts using a 20-day historical sequence.
Each stock in the dataset has a dedicated LSTM model trained
with consistent training and testing sets to maintain evaluation
integrity.

The architecture includes two LSTM layers (80 units each)
and uses the Adam optimizer with a 0.01 learning rate for
effective convergence. As shown in Figure 2, the predicted
AAPL price trend closely aligns with historical market data.

The train scores for most stocks range from 0.79% to
2.19%, indicating relatively low error during training. The test
scores show greater variability, with some stocks exhibiting
much higher errors, such as CVX (7.79%) and XOM (7.53%),

Fig. 2. AAPL Price Prediction

while others remain stable, like JNJ (0.81%) and KO (1.58%).
Stocks such as IBM (0.96%), JNJ (0.79%), and PFE (1.07%)
performed well with low error in both phases, while others,
such as XOM (7.53%) and MCD (2.75%), demonstrated a
significant gap between training and testing, indicating chal-
lenges with generalization. This suggests that the LSTM model
performs consistently for certain stocks, but shows difficulty
in generalizing for others. Stocks with larger discrepancies
between training and testing errors may require further model
refinement.

The average MAPE scores highlight the overall model
performance during both phases. The higher average test error
(1.91%) compared to the train error (1.25%) may suggest
potential overfitting or issues with generalizing the model to
new data.

C. Deep Reinforcement Learning (DRL) Algorithm

The proposed Deep Reinforcement Learning (DRL) frame-
work leverages the Proximal Policy Optimization (PPO) al-
gorithm, renowned for its stability and efficiency in dynamic
trading environments. The PPO agent was meticulously trained
to formulate optimal trading strategies by maximizing cumu-
lative rewards within a simulated OpenAI Gym environment.

The PPO algorithm employs a clipped objective function
to ensure controlled policy updates, thereby enhancing the
stability and reliability of the training process. The neural
network architecture incorporates two hidden layers, each with
64 units, and utilizes the Adam optimizer with a learning rate
of 0.003 alongside a discount factor of 0.99.

These carefully considered architectural choices enable the
model to seamlessly adapt to both stable and volatile mar-
ket conditions, delivering consistent and robust performance
across diverse trading scenarios. The sophisticated integration
of algorithmic trading signals and LSTM-based predictive in-
sights within the PPO framework further amplifies its efficacy
in executing advanced trading strategies.

In conclusion, the deployment of the PPO algorithm within
this Multi-modal DRL framework exemplifies a methodologi-
cally sound approach to quantitative trading. It demonstrates a

Figure 1: Multi-modal DRL Framework

1) Algorithmic Trading Signals: As illustrated in Figure 1, the 
proposed architecture seamlessly integrates traditional technical 
indicators with custom algorithmic trading signals. This integration 
equips the DRL agent with rule-based insights into market trends, 
enhancing its ability to make informed trading decisions.
The following trading signal strategies are implemented to guide 
the DRL agent’s decision-making process, delivering structured 
insights while effectively mitigating the impact of noisy or lagging 
indicators:

These signals are encoded as binary values, enhancing the agent’s 
ability to interpret market conditions with reduced susceptibility 
to market noise.

2) LSTM Price Forecasts: The LSTM models generate 1-day 
forward price forecasts using a 20-day historical sequence. Each 
stock in the dataset has a dedicated LSTM model trained with 
consistent training and testing sets to maintain evaluation integrity.

The architecture includes two LSTM layers (80 units each) and 
uses the Adam optimizer with a 0.01 learning rate for effective 
convergence. As shown in Figure 2, the predicted AAPL price 
trend closely aligns with historical market data.

• Moving Average (MA) Crossover: Signals are generated 
when short-period MAs cross above or below long-
period MAs, utilizing Exponential Moving Averages 
(EMAs) for improved responsiveness.

• Price Crossover: Indicates momentum shifts by assess- 
ing the positioning of the closing price relative to MA 
values, offering insights into potential trend reversals.

• MACD Crossover: Detects momentum changes through 
the interaction between the Moving Average Convergence 
Divergence (MACD) line and the signal line, helping to 
identify bullish or bearish shifts.

• RSI Overbought & Oversold: Anticipates market re- 
versals by evaluating the Relative Strength Index (RSI) 
against predefined thresholds, signaling when assets may 
be overbought or oversold.
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The train scores for most stocks range from 0.79% to 2.19%, 
indicating relatively low error during training. The test scores 

show greater variability, with some stocks exhibiting much higher 
errors, such as CVX (7.79%) and XOM (7.53%),
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technical indicators with custom algorithmic trading signals.
This integration equips the DRL agent with rule-based insights
into market trends, enhancing its ability to make informed
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The following trading signal strategies are implemented to
guide the DRL agent’s decision-making process, delivering
structured insights while effectively mitigating the impact of
noisy or lagging indicators:

• Moving Average (MA) Crossover: Signals are generated
when short-period MAs cross above or below long-period
MAs, utilizing Exponential Moving Averages (EMAs) for
improved responsiveness.
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values, offering insights into potential trend reversals.
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These signals are encoded as binary values, enhancing the
agent’s ability to interpret market conditions with reduced
susceptibility to market noise.

2) LSTM Price Forecasts: The LSTM models generate 1-
day forward price forecasts using a 20-day historical sequence.
Each stock in the dataset has a dedicated LSTM model trained
with consistent training and testing sets to maintain evaluation
integrity.
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and uses the Adam optimizer with a 0.01 learning rate for
effective convergence. As shown in Figure 2, the predicted
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Fig. 2. AAPL Price Prediction

while others remain stable, like JNJ (0.81%) and KO (1.58%).
Stocks such as IBM (0.96%), JNJ (0.79%), and PFE (1.07%)
performed well with low error in both phases, while others,
such as XOM (7.53%) and MCD (2.75%), demonstrated a
significant gap between training and testing, indicating chal-
lenges with generalization. This suggests that the LSTM model
performs consistently for certain stocks, but shows difficulty
in generalizing for others. Stocks with larger discrepancies
between training and testing errors may require further model
refinement.

The average MAPE scores highlight the overall model
performance during both phases. The higher average test error
(1.91%) compared to the train error (1.25%) may suggest
potential overfitting or issues with generalizing the model to
new data.

C. Deep Reinforcement Learning (DRL) Algorithm

The proposed Deep Reinforcement Learning (DRL) frame-
work leverages the Proximal Policy Optimization (PPO) al-
gorithm, renowned for its stability and efficiency in dynamic
trading environments. The PPO agent was meticulously trained
to formulate optimal trading strategies by maximizing cumu-
lative rewards within a simulated OpenAI Gym environment.

The PPO algorithm employs a clipped objective function
to ensure controlled policy updates, thereby enhancing the
stability and reliability of the training process. The neural
network architecture incorporates two hidden layers, each with
64 units, and utilizes the Adam optimizer with a learning rate
of 0.003 alongside a discount factor of 0.99.

These carefully considered architectural choices enable the
model to seamlessly adapt to both stable and volatile mar-
ket conditions, delivering consistent and robust performance
across diverse trading scenarios. The sophisticated integration
of algorithmic trading signals and LSTM-based predictive in-
sights within the PPO framework further amplifies its efficacy
in executing advanced trading strategies.

In conclusion, the deployment of the PPO algorithm within
this Multi-modal DRL framework exemplifies a methodologi-
cally sound approach to quantitative trading. It demonstrates a
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while others remain stable, like JNJ (0.81%) and KO (1.58%). 
Stocks such as IBM (0.96%), JNJ (0.79%), and PFE (1.07%) 
performed well with low error in both phases, while others, such 
as XOM (7.53%) and MCD (2.75%), demonstrated a significant 
gap between training and testing, indicating challenges with 
generalization. This suggests that the LSTM model performs 
consistently for certain stocks, but shows difficulty in generalizing 
for others. Stocks with larger discrepancies between training and 
testing errors may require further model refinement.

The average MAPE scores highlight the overall model 
performance during both phases. The higher average test error 
(1.91%) compared to the train error (1.25%) may suggest potential 
overfitting or issues with generalizing the model to new data.

3.3 Deep Reinforcement Learning (DRL) Algorithm
The proposed Deep Reinforcement Learning (DRL) frame-work 
leverages the Proximal Policy Optimization (PPO) algorithm, 
renowned for its stability and efficiency in dynamic trading 
environments. The PPO agent was meticulously trained to 
formulate optimal trading strategies by maximizing cumulative 
rewards within a simulated OpenAI Gym environment.

The PPO algorithm employs a clipped objective function to ensure 
controlled policy updates, thereby enhancing the stability and 
reliability of the training process. The neural network architecture 
incorporates two hidden layers, each with 64 units, and utilizes the 
Adam optimizer with a learning rate of 0.003 alongside a discount 
factor of 0.99.

These carefully considered architectural choices enable the model 
to seamlessly adapt to both stable and volatile market conditions, 
delivering consistent and robust performance across diverse 
trading scenarios. The sophisticated integration of algorithmic 
trading signals and LSTM-based predictive in-sights within 
the PPO framework further amplifies its efficacy in executing 

advanced trading strategies.

In conclusion, the deployment of the PPO algorithm within this 
Multi-modal DRL framework exemplifies a methodologically 
sound approach to quantitative trading. It demonstrates a balanced 
blend of profitability and risk management, contributing to 
enhanced data-driven decision-making and superior portfolio 
optimization.

1) Reward Function Rationale: The reward function is a 
critical component of the Deep Reinforcement Learning (DRL) 
framework, designed to guide the trading agent towards optimal 
strategies by quantitatively evaluating its actions. In this study, 
the reward function is formulated as the logarithmic return of 
the portfolio value when transitioning from state St to state St+1 
following action At:

where Vt and Vt+1 represent the portfolio values at the
current and subsequent timesteps, respectively.
The choice of the logarithmic return as the reward metric is 
underpinned by several key considerations:
1) Stabilizing Learning: The logarithmic function compresses 
the range of potential rewards, effectively mitigating the impact 
of extreme portfolio fluctuations. This stabilization contributes 
to a smoother learning curve and prevents the agent from being 
disproportionately influenced by isolated, high-return trades.
2) Risk Sensitivity: By naturally penalizing negative returns and 
enhancing sensitivity to drawdowns, the log return aligns with 
risk-adjusted performance metrics commonly used in quantitative 
finance, such as the Sortino and Sharpe ratios. This feature 
encourages the agent to adopt strategies that balance profitability 
with risk management.
3) Compounding Effects: The additive property of log returns 
simplifies the computation of multi-period returns, supporting the 
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balanced blend of profitability and risk management, contribut-
ing to enhanced data-driven decision-making and superior
portfolio optimization.

1) Reward Function Rationale: The reward function is
a critical component of the Deep Reinforcement Learning
(DRL) framework, designed to guide the trading agent towards
optimal strategies by quantitatively evaluating its actions. In
this study, the reward function is formulated as the logarithmic
return of the portfolio value when transitioning from state St

to state St+1 following action At:

r(St, At, St+1) = ln

(
Vt+1

Vt

)
(1)

where Vt and Vt+1 represent the portfolio values at the
current and subsequent timesteps, respectively.

The choice of the logarithmic return as the reward metric
is underpinned by several key considerations:

1) Stabilizing Learning: The logarithmic function com-
presses the range of potential rewards, effectively miti-
gating the impact of extreme portfolio fluctuations. This
stabilization contributes to a smoother learning curve
and prevents the agent from being disproportionately
influenced by isolated, high-return trades.

2) Risk Sensitivity: By naturally penalizing negative re-
turns and enhancing sensitivity to drawdowns, the log
return aligns with risk-adjusted performance metrics
commonly used in quantitative finance, such as the
Sortino and Sharpe ratios. This feature encourages the
agent to adopt strategies that balance profitability with
risk management.

3) Compounding Effects: The additive property of log
returns simplifies the computation of multi-period re-
turns, supporting the agent’s capacity to model the
compounding nature of investment growth accurately.
This approach is particularly advantageous for evaluat-
ing strategies over extended trading horizons.

4) Handling Negative Portfolio Values: Unlike linear
returns, logarithmic returns are not defined for non-
positive portfolio values, inherently preventing the agent
from strategies that could lead to complete portfolio
depletion. This built-in safeguard promotes more con-
servative and sustainable trading behaviors.

5) Robustness Against Market Volatility: The log trans-
formation reduces the skewness of returns distribution,
enhancing the agent’s robustness in volatile market con-
ditions. This property enables the DRL model to main-
tain stable performance across diverse trading scenarios.

Overall, the adoption of a log-based reward function not
only aligns with best practices in financial modeling but
also ensures that the DRL agent’s decision-making process is
both rational and aligned with real-world trading objectives.
This approach fosters a more strategic, risk-aware trading
behavior, contributing to the achievement of superior risk-
adjusted returns in our experimental evaluations.

2) Hyperparameter Selection Rationale: The hyperparam-
eters for A2C, DDPG, and PPO were primarily adopted

from the FinRL framework [15], which provides empirically
validated defaults for financial applications. PPO’s learning
rate (0.0003) and step size (2048) were selected to balance
sample efficiency and training stability. The discount factor
γ = 0.99 ensures future rewards are sufficiently weighted.
All models used the Adam optimizer for its robustness to
noisy gradients. These settings were tuned minimally to avoid
overfitting and maintain generalisability.

IV. EXPERIMENTS

The experimental framework was meticulously designed
to evaluate the performance and robustness of the proposed
Multi-modal Deep Reinforcement Learning (DRL) model, uti-
lizing Proximal Policy Optimization (PPO). The experiments
were conducted in a controlled trading simulation environ-
ment, leveraging historical market data from 29 Dow Jones
Industrial Average (DJI) stocks over a 20-year span (2003-
2023). This extensive timeframe captured diverse market con-
ditions, including bullish trends, bearish downturns, economic
crises, and high volatility periods.

A. Experimental Setup

The trading environment was developed using the FinRL li-
brary within the OpenAI Gym framework. This setup provided
realistic market simulations, feeding the agent with market
observations and assessing the impact of trading decisions.
The model utilized daily closing prices, technical indicators
(e.g., EMAs, Bollinger Bands, MACD, RSI), and predictive
signals from Long Short-Term Memory (LSTM) models to
enhance trend forecasting.

The dataset was divided into training (90%) and testing
(10%) sets, with the training phase spanning 2003 to 2021
and testing from 2021 to 2023. The testing period included
market disruptions like the COVID-19 pandemic, offering a
robust scenario for assessing model resilience.

B. Technical Signal Encoding Rationale

Technical indicators such as moving average crossovers,
RSI, MACD, and Bollinger Bands were selected for their
widespread use in quantitative trading literature. Signals were
encoded as binary features (e.g., bullish/bearish crossover =
1/-1, otherwise 0), which were then combined with price
features and normalized to ensure compatibility with the
DRL agent’s input space. This encoding scheme preserves
signal interpretability while facilitating integration into neural
architectures.

C. Model Training

The PPO model was trained over 50,000 timesteps using
the Adam optimizer (learning rate 0.003). The architecture
included two hidden layers (64 units each) and employed
Generalized Advantage Estimation (GAE) for improved stabil-
ity. To ensure consistency, the experiments used 10 different
random seeds, reducing the impact of stochastic elements on
model performance.
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agent’s capacity to model the compounding nature of investment 
growth accurately. This approach is particularly advantageous for 
evaluating strategies over extended trading horizons.
4) Handling Negative Portfolio Values: Unlike linear returns, 
logarithmic returns are not defined for non-positive portfolio 
values, inherently preventing the agent from strategies that could 
lead to complete portfolio depletion. This built-in safeguard 
promotes more conservative and sustainable trading behaviors.
5) Robustness Against Market Volatility: The log transformation 
reduces the skewness of returns distribution, enhancing the agent’s 
robustness in volatile market conditions. This property enables the 
DRL model to main-tain stable performance across diverse trading 
scenarios.

Overall, the adoption of a log-based reward function not only 
aligns with best practices in financial modeling but also ensures 
that the DRL agent’s decision-making process is both rational and 
aligned with real-world trading objectives. This approach fosters 
a more strategic, risk-aware trading behavior, contributing to the 
achievement of superior risk- adjusted returns in our experimental 
evaluations.

2) Hyperparameter Selection Rationale: The hyperparameters for 
A2C, DDPG, and PPO were primarily adopted from the FinRL 
framework, which provides empirically validated defaults for 
financial applications [15]. PPO’s learning rate (0.0003) and step 
size (2048) were selected to balance sample efficiency and training 
stability. The discount factor γ = 0.99 ensures future rewards are 
sufficiently weighted. All models used the Adam optimizer for its 
robustness to noisy gradients. These settings were tuned minimally 
to avoid overfitting and maintain generalisability.

4. Experiments
The experimental framework was meticulously designed to evaluate 
the performance and robustness of the proposed Multi-modal 
Deep Reinforcement Learning (DRL) model, uti- lizing Proximal 
Policy Optimization (PPO). The experiments were conducted in 
a controlled trading simulation environment, leveraging historical 
market data from 29 Dow Jones Industrial Average (DJI) stocks 
over a 20-year span (2003-2023). This extensive timeframe 
captured diverse market conditions, including bullish trends, 
bearish downturns, economic crises, and high volatility periods.

4.1 Experimental Setup
The trading environment was developed using the FinRL library 
within the OpenAI Gym framework. This setup provided realistic 
market simulations, feeding the agent with market observations 
and assessing the impact of trading decisions. The model utilized 
daily closing prices, technical indicators (e.g., EMAs, Bollinger 
Bands, MACD, RSI), and predictive signals from Long Short-
Term Memory (LSTM) models to enhance trend forecasting.

The dataset was divided into training (90%) and testing (10%) sets, 
with the training phase spanning 2003 to 2021 and testing from 
2021 to 2023. The testing period included market disruptions like 
the COVID-19 pandemic, offering a robust scenario for assessing 

model resilience.

4.2 Technical Signal Encoding Rationale
Technical indicators such as moving average crossovers, RSI, 
MACD, and Bollinger Bands were selected for their widespread 
use in quantitative trading literature. Signals were encoded as 
binary features (e.g., bullish/bearish crossover = 1/-1, otherwise 
0), which were then combined with price features and normalized 
to ensure compatibility with the DRL agent’s input space. This 
encoding scheme preserves signal interpretability while facilitating 
integration into neural architectures.

4.3 Model Training
The PPO model was trained over 50,000 timesteps using the 
Adam optimizer (learning rate 0.003). The architecture included 
two hidden layers (64 units each) and employed Generalized 
Advantage Estimation (GAE) for improved stability. To ensure 
consistency, the experiments used 10 different random seeds, 
reducing the impact of stochastic elements on model performance.

4.4 Evaluation Metrics
Model performance was assessed using key quantitative finance 
metrics:

4.5 Transaction Cost
In real-world markets, executing trades incurs transaction costs. 
To mirror actual market conditions, a transaction cost of 0.1% per 
share is applied. For example, buying 5 shares of a particular stock 
at a price of $100 a share will incur a transaction cost of $0.50.

5. Results
5.1 Performance of the Multi-modal DRL Solution
All experimental evaluations were conducted on a personal laptop 
equipped with a 13th Gen Intel® Core™ i9-13900H Processor, 
NVIDIA GeForce RTX 3050 4GB Laptop GPU, and 16GB RAM. 
Each experimental run required approx-imately 30 to 60 minutes, 
ensuring robust testing across multiple scenarios.

• Annualized Return: Calculates the compounded growth 
rate of an investment over the evaluation period, provid- 
ing a standardized measure of performance.

• Sharpe Ratio: Measures risk-adjusted returns by com- 
paring the excess returns of a strategy to its annualized 
volatility, helping to evaluate the reward per unit of risk.

• Sortino Ratio: Similar to the Sharpe Ratio, but focuses 
on downside risk by comparing excess returns to the 
annualized downside standard deviation, offering a more 
nuanced view of risk-adjusted performance.

• Maximum Drawdown (MDD): Represents the maxi- 
mum observed loss from a portfolio’s peak to its trough 
during the evaluation period, highlighting the potential 
for significant losses.

• Volatility (Annualized Standard Deviation): Analyzes 
the variability of returns by calculating the annualized 
standard deviation of returns, providing insights into the 
stability and risk associated with the investment strategy.
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TABLE I
PERFORMANCE OF MULTI-MODAL SOLUTION

Metric PPO
PPO

(with Trading
Signals only)

PPO
(with Price

Forecasts only)

PPO
(with Trading Signals

& Price Forecasts)
Number of

Trades 1609 1385 1792 1402

Initial
Portfolio Value $100,000 $100,000 $100,000 $100,000

Final
Portfolio Value $117,257 $123,977 $114,250 $134,790

Annualised
Returns 8.35% 11.44% 6.94% 16.24%

Annualised
Std 16.95% 15.81% 15.49% 17.49%

Sharpe
Ratio 0.47 0.69 0.43 0.86

Sortino
Ratio 0.67 1.04 0.62 1.27

Max
Drawdown 20.80% 23.97% 21.32% 28.00%

model. However, when only Price Forecasts were utilized,
model performance declined. This discrepancy may be at-
tributed to the limited availability of compatible information
and patterns within the state space when solely relying on
Price Forecasts, constraining the model’s learning capacity.

As shown in Table I, the Multi-modal DRL solution demon-
strates superior performance in risk-adjusted returns.

B. Comparative Performance Against Benchmarks

The performance of the Multi-modal DRL solution was
benchmarked against traditional investment strategies, includ-
ing:

• DJI Index: Represents a buy-and-hold strategy using in-
dex funds or ETFs that replicate the Dow Jones Industrial
Average (DJI) performance.

• Equal Weightage: Allocates investments evenly across
all portfolio stocks, promoting diversification.

• Min-Variance: Employs the mean-variance optimiza-
tion technique, leveraging the Sequential Least Squares
Programming (SLSQP) algorithm to minimize portfolio
variance using the past 252 days’ prices.

• Best Stock: Involves buying and holding the best-
performing stock during the training period, identified as
Apple Inc. (AAPL).

As illustrated in Figure 4, the DRL PPO model—enhanced
with Algorithmic Trading Signals and LSTM-based Price Fore-
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model. However, when only Price Forecasts were utilized, model 
performance declined. This discrepancy may be attributed to the 
limited availability of compatible information and patterns within 
the state space when solely relying on Price Forecasts, constraining 
the model’s learning capacity.

As shown in Table I, the Multi-modal DRL solution demon- strates 
superior performance in risk-adjusted returns.

5.2 Comparative Performance Against Benchmarks
The performance of the Multi-modal DRL solution was 
benchmarked against traditional investment strategies, including:

As illustrated in Figure 4, the DRL PPO model−enhanced with 
Algorithmic Trading Signals and LSTM-based Price Fore- casts−
demonstrates a clear and consistent outperformance overall 
benchmark strategies. Table 2 further substantiates this by showing 
that our model achieves the highest Sharpe Ratio and Sortino 
Ratio, underscoring its exceptional capacity to optimize returns 
while effectively managing risk.

• DJI Index: Represents a buy-and-hold strategy using in- 
dex funds or ETFs that replicate the Dow Jones Industrial 
Average (DJI) performance.

• Equal Weightage: Allocates investments evenly across 
all portfolio stocks, promoting diversification.
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Programming (SLSQP) algorithm to minimize portfolio 
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Fig. 4. Portfolio Value of Multi-modal DRL Solution Against Benchmarks

TABLE II
PERFORMANCE OF MULTI-MODAL SOLUTION AGAINST BENCHMARKS

Metric DJI Index Equal
Weightage

Min-
Variance

Best
Stock

PPO (with
Trading Signals &

Price Forecasts)
Number of

Trades 1 29 19 1 1402

Initial
Portfolio Value $100,000 $100,000 $100,000 $100,000 $100,000

Final
Portfolio Value $98,438 $106,194 $106,625 $123,541 $134,790

Annualised
Returns -0.79% 3.08% 3.29% 11.24% 16.24%

Annualised
Std 16.60% 15.80% 13.36% 29.78% 17.49%

Sharpe
Ratio -0.05 0.19 0.24 0.36 0.86

Sortino
Ratio -0.07 0.28 0.34 0.54 1.27

Max
Drawdown 21.94% 19.34% 17.09% 36.55% 28.00%

casts—demonstrates a clear and consistent outperformance
overall benchmark strategies. Table II further substantiates this
by showing that our model achieves the highest Sharpe Ratio
and Sortino Ratio, underscoring its exceptional capacity to
optimize returns while effectively managing risk.

In terms of annualized returns, the Best Stock bench-
mark approached the performance of our model but did so
with markedly higher volatility and a significantly greater
annualized standard deviation, highlighting the inherent
risks of concentrated, single-stock strategies. On the other
hand, risk-averse approaches such as Equal Weightage and
Minimum Variance yielded lower volatility, yet at the cost of
substantially diminished returns.

The proposed multi-modal framework—combining deep
reinforcement learning with algorithmic trading signals and
LSTM-based price forecasts—demonstrates a well-calibrated
trade-off between return and risk. Its consistently superior
Sharpe and Sortino Ratios validate its effectiveness in opti-
mizing risk-adjusted returns under dynamic market conditions.
These results confirm the model’s robustness in achieving
strong risk-adjusted performance, reliably outperforming
conventional benchmarks in both return efficiency and risk
control.

C. Market Regime Stress Testing

The model was evaluated across distinct market regimes,
including the 2008 Global Financial Crisis, the 2020 COVID-

19 crash, and the 2022 geopolitical tensions. The multimodal
framework maintained positive Sharpe and Sortino Ratios,
demonstrating adaptability to both bullish and bearish con-
ditions. The use of LSTM forecasts and technical signals
contributed to this robustness.

VI. CONCLUSION

This study introduced a Multi-modal Deep Reinforcement
Learning (DRL) solution that integrates Algorithmic Trading
Signals and LSTM-based Price Forecasts, demonstrating sub-
stantial improvements over traditional benchmarks in terms
of risk-adjusted returns. Key results, such as a 16.24%
annualized return, 17.49% annualized standard deviation,
Sharpe ratio of 0.86, and Sortino ratio of 1.27, highlight the
model’s effectiveness in delivering strong profitability while
managing risk.

The framework was evaluated in a multi-stock trading
environment using 29 out of 30 constituent stocks of the
Dow Jones Industrial Average (DJI), showcasing its scalability
and adaptability to diverse market conditions. However, it is
essential to recognize the non-deterministic nature of DRL
models, which may produce variable outcomes depending
on different configurations. To ensure model robustness and
statistical validity, future work should focus on multiple
simulations across various scenarios before deployment in
real-world environments.

While the performance results are promising, several lim-
itations remain, including the potential for overfitting due
to reliance on historical data, the binary nature of trading
signals, and the limited action space that restricts more
complex trading strategies. Addressing these challenges, along
with incorporating alternative data sources and real-world
trading constraints, could further improve the framework’s
robustness and adaptability.

This research lays a solid foundation for enhancing algorith-
mic trading strategies and setting new benchmarks for risk-
adjusted performance in financial markets. Moving forward,
future research will focus on fine-tuning model parameters,
expanding input modalities, and exploring hybrid architectures
to further elevate trading performance and mitigate market
risks.
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Table 2: Performance of Multi-Modal Solution Against Benchmarks

In terms of annualized returns, the Best Stock bench-mark 
approached the performance of our model but did so with markedly 
higher volatility and a significantly greater annualized standard 
deviation, highlighting the inherent risks of concentrated, single-
stock strategies. On the other hand, risk-averse approaches such as 
Equal Weightage and Minimum Variance yielded lower volatility, 
yet at the cost of substantially diminished returns.

The proposed multi-modal framework−combining deep 
reinforcement learning with algorithmic trading signals and 
LSTM-based price forecasts−demonstrates a well-calibrated 
trade-off between return and risk. Its consistently superior Sharpe 
and Sortino Ratios validate its effectiveness in optimizing risk-
adjusted returns under dynamic market conditions. These results 
confirm the model’s robustness in achieving strong risk-adjusted 
performance, reliably outperforming conventional benchmarks in 
both return efficiency and risk control.

5.3 Market Regime Stress Testing
The model was evaluated across distinct market regimes, including 
the 2008 Global Financial Crisis, the 2020 COVID-19 crash, and the 
2022 geopolitical tensions. The multimodal framework maintained 
positive Sharpe and Sortino Ratios, demonstrating adaptability to 

both bullish and bearish conditions. The use of LSTM forecasts 
and technical signals contributed to this robustness.

6. Conclusion
This study introduced a Multi-modal Deep Reinforcement 
Learning (DRL) solution that integrates Algorithmic Trading 
Signals and LSTM-based Price Forecasts, demonstrating sub- 
stantial improvements over traditional benchmarks in terms of 
risk-adjusted returns. Key results, such as a 16.24% annualized 
return, 17.49% annualized standard deviation, Sharpe ratio of 
0.86, and Sortino ratio of 1.27, highlight the model’s effectiveness 
in delivering strong profitability while managing risk.

The framework was evaluated in a multi-stock trading environment 
using 29 out of 30 constituent stocks of the Dow Jones Industrial 
Average (DJI), showcasing its scalability and adaptability to diverse 
market conditions. However, it is essential to recognize the non-
deterministic nature of DRL models, which may produce variable 
outcomes depending on different configurations. To ensure model 
robustness and statistical validity, future work should focus on 
multiple simulations across various scenarios before deployment 
in real-world environments.
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While the performance results are promising, several limitations 
remain, including the potential for overfitting due to reliance 
on historical data, the binary nature of trading signals, and the 
limited action space that restricts more complex trading strategies. 
Addressing these challenges, along with incorporating alternative 
data sources and real-world trading constraints, could further 
improve the framework’s robustness and adaptability.

This research lays a solid foundation for enhancing algorithmic 
trading strategies and setting new benchmarks for risk-adjusted 
performance in financial markets. Moving forward, future research 
will focus on fine-tuning model parameters, expanding input 
modalities, and exploring hybrid architectures to further elevate 
trading performance and mitigate market risks [16-29].
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