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Abstract
Phenotyping involves the quantitative assessment of the anatomical, biochemical, and physiological plant traits. 
Natural plant growth cycles can be extremely slow, hindering the experimental processes of phenotyping. Deep 
learning offers a great deal of support for automating and addressing key plant phenotyping research issues. 
Machine learning-based high- throughput phenotyping is a potential solution to the phenotyping bottleneck, 
promising to accelerate the experimental cycles within phenomic research. The influence of climate change, and 
due to its unpredictable nature, majority of agricultural crops have been affected in terms of production and 
maintenance. Hybrid and cost-effective crops are making their way into the market, but monitoring factors that 
affect the increase in yield of these crops, and conditions favorable for growth have to be manually monitored 
and structured to yield high throughput. Farmers are showing transition from traditional means to hydroponic 
systems for growing annual and perennial crops. These crop arrays possess growth patterns, which depend 
on environmental growth conditions in the hydroponic units. Semi-autonomous systems, which monitor these 
growths, may prove to be beneficial, reduce costs and maintenance efforts, and predict future yield beforehand 
to get an idea on how the crop would perform. These systems are also effective in understanding crop drools 
and wilt/diseases from visual systems and traits of plants. Forecasting or predicting the crop yield well ahead 
of its harvest time would assist the strategists and farmers for taking suitable measures for selling and storage. 
Accurate prediction of crop development stages plays an important role in crop production management. Such 
predictions will also support the allied industries for strategizing the logistics of their business. Several means 
and approaches of predicting and demonstrating crop yields have been developed earlier with changing rate of 
success, as these do not take into considerations the weather and its characteristics and are mostly empirical. 
Crop yield estimation is also affected by taking into account a few other factors. Plant diseases enormously affect 
the agricultural crop production and quality with huge economic losses to the farmers and the country. This in 
turn increases the market price of crops and food, which increase the purchase burden of customers. Therefore, 
early identification and diagnosis of plant diseases at every stage of plant life cycle is a very critical approach 
to protect and increase the crop yield. In this article, I propose an Embedded Machine Learning approach to 
predicting crop yield and biomass estimation of crops using an Image based Regression approach using edge 
Impulse that runs on Edge system, Sony Spresense, in real time. This utilizes few of the six Cortex M4F cores 
provided in the Sony Spresense board for Image processing, inferencing and predicting a regression output in 
real time. This system uses Image processing to analyze the plant in a semi-autonomous environment and predict 
the numerical serial of the biomass allocated to the plant growth.

This numerical serial contains a threshold of biomass, which is then predicted for the plant. The biomass output 
is then also processed through a linear regression model to analyze efficacy and compared with the ground truth 
to identify pattern of growth. The image Regression and linear regression model contribute to an algorithm, 
which is finally used to test and predict biomass for each plant semi-autonomously.
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Introduction
Advancements in computer vision and machine learning tech-
nologies have transformed plant scientist’s ability to in- corpo-
rate high-throughput phenotyping into plant breeding. Detailed 
phenotypic profiles of individual plants can be used to under-

stand plant growth under different growing conditions. As a 
result, breeders can make rapid progress in plant trait analysis 
and selection under controlled and semi-controlled conditions, 
thus accelerating crop improvements. In contrast to existing 
invasive methods for accurate biomass calculation that rely on 
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plant deconstruction, this system used non-invasive alternative 
are in commercial applications that leaves the crops intact. Un-
fortunately, current commercially available platforms are large 
and very expensive. The upfront investment limits breeders’ use 
of high-throughput phenotyping in modern breeding programs.

For agricultural applications, the biomass is a powerful index 
due to its immediate connection with the crops health condition 
and growth state. Predicting sequential biomass of plants may 
serve as important indices to co-relate environ- mental growth 
with crop biomass. This approach presents using economi-
cal and cost-effective methods to approximate biomass using 
a Regression approach in Computer Vision DNN models. The 
regression model uses two Dimensional Convolutional Layers. 

Vision based Regression models help not only not only in cal-
culating mean difference and increase in biomass but also un-
derstand visual cues in plants and predict the biomass evolution 
based on such cues. The objective of such an approach is to en-
able temporal analysis of biomass from frames to allow adapt-
ing to the planned environment and factors objectively. To take 
into consideration, wilting leaves observed progressively over 
frames suggests a decrease in biomass of plant over time, and 
can be monitored semi autonomously in farms. While existing 
approaches involve implementable algorithms or intensive com-
putation, costly hardware or offline or batch processing, which is 
delayed calculation, this approach attempts to be implementable 
and not stress on inefficacious data from plants or inference.

Taking One Step Further To Fulfill Un Sustainable Development Goals

Figure 1: Explaining UN’s SDG has and how this project is bringing it one-step closer to life

This project aims to expand scope of UN’s second SDG and 
entail few of the Goal Targets by bringing in semi-autonomous 
monitoring systems for food production monitoring and yield 
production methodology to "increase productivity and produc-
tion by implementing resilient agricultural practice." as high-
lighted in second UN SDG goal target.

Material and Methods
Data Accumulation: Most of the dataset used to train this mod-
el was adopted from the Paper "Growth monitoring of green-
house lettuce" by Lingxian Zhang et al. There were three kinds 
of datasets offered in this paper, one of them being the raw data-
set curated under unmonitored sunlight conditions. The other 
dataset was an augmented version of the raw dataset synthesized 
and generated with all images having similar light, illuminance 
and saturation. The third dataset contains spatial and depth infor-
mation of these plants under the same environment and observed 
growth patterns. In this approach, we will be using the augment-
ed data set to increase efficacy of model and couple images in a 
similar visual pattern.

Figure 2: (Left) Lettuce Flandria Cultivar. (Right) Lettuce Tibe-
rius Cultivar. source - [Growth monitoring of greenhouse lettuce 
paper]

Greenhouse lettuce image collection and preprocess-
ing:- The experiment was conducted at the experimental green-
house of the Institute of Environment and Sustainable Develop-
ment in Agriculture, Chinese Academy of Agricultural Sciences, 
Beijing, China (N39◦57J, E116◦19J). Three cultivars of green-
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house lettuce, i.e., Flandria, Tiberius, and Locarno, were grown 
under con- trolled climate conditions with 29/24 ◦C day/night 
tempera- tures and an average relative humidity of 58%. During 
the experiment, natural light was used for illumination, and a 
nutrient solution was circulated twice a day. The experiment 
was performed from April 22, 2019, to June 1, 2019. Six shelves 
were adopted in the experiment. Each shelf had a size of 3.48 0.6 
m, and each lettuce cultivar occupied two shelves. [4]

The number of plants for each lettuce cultivar was 96, which 
were sequentially labeled. Image collection was performed us-
ing a low-cost Kinect 2.0 depth sensor. During the image col-
lection, the sensor was mounted on a tripod at a distance of 78 
cm to the ground and was oriented vertically downwards over 
the lettuce canopy to capture digital images and depth images. 
The original pixel resolutions of the digital images and depth 
images were 1920   1080 and 512   424, respectively. The digital 

images were stored in JPG format, while the depth images were 
stored in PNG format. The image collection was performed sev-
en times 1 week after transplanting between 9:00 a.m. and 12:00 
a.m. Finally, two image datasets were constructed, i.e., a digital 
image dataset containing 286 digital images and a depth image 
dataset containing 286 depth images. The number of digital im-
ages for Flandria, Tiberius, and Locarno was 96, 94 (two plants 
did not survive), and 96, respectively, and the number of depth 
images for the 3 cultivars was the same.

Since the original digital images of greenhouse lettuce contained 
an excess of background pixels, this study manually cropped im-
ages to eliminate the extra background pixels, after which im-
ages were uniformly adjusted to 900 900-pixel resolution.The 
Figure below shows examples of the cropped digital images for 
the three cultivars.

Figure 3: source - [Growth Monitoring of Greenhouse Lettuce] Lingxian Zhang et al.
Prior to the construction of the CNN model, the original digital 
image dataset was divided into two datasets in a ratio of 8:2, 
i.e., a training dataset and a test dataset. The two datasets both 
covered all three cultivars and sampling intervals. The number 
of images for the training dataset was 229, where 20% of the im-
ages were randomly selected for the validation dataset. The test 
dataset contained 57 digital images. To enhance data diversity 
and prevent overfitting, a data augmentation method was used to 
enlarge the training dataset.. The augmentations were as follows: 
first, the im- ages were rotated by 90◦, 180◦, and 270◦, and then 
flipped horizontally and vertically. To adapt the CNN model to 
the changing illumination of the greenhouse, the images in the 

training dataset were converted to the HSV color space, and the 
brightness of the images was adjusted by changing the V chan-
nel. The brightness of the images was adjusted to 0.8, 0.9, 1.1, 
and 1.2 times that of the original images to simulate the change 
in daylight. [4]

The raw dataset acquired was thus augmented and opti- mized 
to be fed into the Convolutional Neural Network for Regressio-
nal analysis. These aligned image pairs serve as input dataset 
in EdgeImpulse Studio. The below Figure illustrates how raw 
images perform as compared to Augmented ones with equalized 
lighting and saturation throughout the images. (Lettuce Flandria)
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Figure 4: Illustrates how raw images show varying illuminance, which might be a major drawback for the neural network.

Figure given below Illustrates Lettuce Tiberius Dataset- The 
above figure demonstrates Synthesized Images for Neural Net-
work possessing equalized illuminance, RGB Channels and sat-
uration to maintain consistent Data input for CNNs. The syn-
thesized images were further augmented and a translational blur 
parameter of 0.01 was added to the images to be able to predict 
the biomass of lettuce even while the source from which the im-

age is being captured is in motion. An example of translational 
motion blur are noticed on motorized plates or Machine Motion 
Drivers illustrated below -The figure shown below demonstrates 
how the data for the Lettuce variants are captured and ingested. 
The camera angles were placed vertically perpendicular with re-
spect to the ground

Figure 5:  Fig - Synthesized Images for Neural Network possessing equalized illuminance, RGB Channels and saturation to main-
tain consistent Data input for Neural Network.
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Figure 6: Lettuce Tiberius dataset used for training model specific to test on Tiberius plant subtype.

Figure 7: A translational motion blur of 0.01 added to synthesized dataset.
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Figure 8: Translational Data Collection from motorized plates. 
Source - Paula Ramos Et Al. Precision Sustainable Agriculture

plane and the distance between ground plane was adjusted to 
78cm or 0.78m for each plant to ensure standardized images and 
ensure deviation in biomass increase and Leaf growth is in con-
stant incrementation. The approximate image area covered by 
each cultivar is 4.176 meter squared and the approximate im-
age area covered by each lettuce shoot is 0.0435 meter squared. 
The images captured are standardized to 128*128 pixels to make 
it easier for DNNs to scale and process. This implies that each 
128*128 pixel image occupies 0.0435 meter squared or 435 cm 
squared area. Each pixel would hence occupy 2.65 x 10^-2 cm 
squared area. This conversion to ground scale is essential for 
computing not only relative but also absolute Leaf Area Index 
and Biomass for each plant predicted and verify it with ground 
truth. The process below has to be imitated while capturing test 
images or if the laboratory conditions vary, then adjust Field of 
Object in the image frame and either zoom in or zoom out corre-
sponding to distance between/ depth of camera and plant.

Figure 9: Field of Object in Image frame and image capturing 
process illustrated

Embedded Inference Board used for Real time processing:
The Sony Spresense Neural Inference board, main board 
and Camera system:
The Sony Spresense is a suite of embedded systems mainly suit-
ed and widely used for Vision based solutions consisting image 
classification, inferencing and regression based predic- tion. It is 
ideally suited for low power, real time inferencing applications, 
suited for this system. The Sony Spresense comes with on-board 
1536 kB RAM and 8192 kB ROM for Inference. The system 

allows processing multiple pipelines and DNNs/CNNs within 
the data range. The main board itself is compact enough to be 
dropped into many production-grade systems without much 
fuss, and from a software standpoint, there are several options 
available, from using C/C++ SDK or Python API, whichev-
er goes best with the system. This appli- cation features using 
pre-compiled C++ binaries for the system from Edge Impulse 
Studio, leaving compilation headaches to the Edge Impulse 
compiling studio.

Figure 10: The Sony Spresense suite featuring a main board, 
camera shield and neural processing board

The proceeding diagram demonstrates test data accumula- tion 
and live classification setup using Sony Spresense, which will be 
elaborated in the latter part.

Figure 11: Live Classification and data accumulation process 
for the regression model

Pre-Processing and Feature Extraction
A. Ingesting the Cultivar Dataset to Edge Impulse Studio for 
pre-processing and Feature Extraction:
For starters, Edge Impulse has provided more details on how 
to get started with Edge Impulse in their docs section - Getting 
Started There are two methods of data upload on the Edge Im-
pulse Studio, one of them including the Edge Impulse Inges-
tion up- loader API - https://docs.edgeimpulse.com/referenceu-
ploader API and the other being the visual uploader which in 
most Cases is more preferred, for ease and simplicity. The figure 
demonstrates visual data ingestion process.
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Figure 12: Edge Impulse Dashboard Data ingestion process

Here, the infer from filename selection is used for creating a 
regression dataset. Regression dataset classes are numerically 
named in progression of images to be fed in the CNN. The CNN 
uses numerical class interpolation instead of class name to train 
the regression model.

The dashboard sorts and orders data and is displayed with num-
ber of classes, image signature and label and a few filters to sort 
dataset.

Figure 13: Edge Impulse Dashboard after the dataset is ingested.

Thereafter, an impulse is created in the impulse design tab with the necessary input block, processing block, learning block and 
output features.



     Volume 5 | Issue 1 | 19J Agri Horti Res, 2022 www.opastonline.com

Figure 14:   Creating and Impulse, designing CNN pipeline.

The parameters block takes in pixel-by-pixel input features and 
converts them to scalar raw features, which can be interpreted 
by the CNN.

For each image processed, it consists of a feature and Edge Im-
pulse Studio projects a plot of these features in terms of 3 Visu-
alization layers. A local visualization of the learned

Figure 15:   Processing Raw features as processed features

Features is plotted which explains the pixels important for classification.
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Figure 16:  Features Extracted for Lettuce Tiberius Dataset Figure 17:  Pre-processing and Feature Extraction of Lettuce 
Flandria Dataset

Construction of the CNN and Performance Evalua-
tion:
The above image illustrates the Architecture of the CNN Model. 
It consists of two 2D Convolutional Layers, 2 pooling layers and 

one Fully Connected Layer (FCN).
The CNN took pre-processed, 3 Channel images of Green- 
house Lettuce of size 128x128 after the feature-extraction was 
completed. Each convolution layers was capped with Kernels of 
size 3x3, which were used to extract the features. The Max

Figure 18: Representation of the CNN Architecture used for Training the Regression Model

Figure 19: Netron Neural Network Render of the CNN Architecture
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Pooling Layers in the CNN were adapted with Kernels of size 
2x2 and stride of two, which is set to default in most CNNs. The 
CNNs were equipped with Max Pooling Function instead of an 
average polling function. A Dropout of rate 0.25 was used in the 
CNN to stabilize the rate of Dropout and not exceed to a higher 
rate of 0.5. A constant Learning Rate of 0.002 was  set in the 
model, and the Batch Size was reduced to 16, which performed 
marginally better in comparison to 32. The Neural Network was 
trained and capped at 225 epochs, after which the loss function 
started peaking again. Mean Squared Error function was used to 
evaluate the loss function in the model. A few other hyperactive 
parameters were adjusted and evaluated to increase the model 
efficacy.

Edge Impulse Studio provides default CNN Architectures se-
lected for the Regression Model, which are smaller and allow 
real time performance. If you wish to edit few of the Architectur-
al layers, you can do so in the edge Impulse Studio.

Figure 20: Flexible Functionality to alter the architecture of the 
CNN model in EI Studio.

Loss Rates and Accuracy
Two models were subsequently trained to compare perfor- 
mance and loss rates between change in parameters used for 
Labels. For the first model, the actual Leaf Area Index (LAI) 
(Ground Truth) Calculated via segmentation of the plant was 
used as labels. These are rational, decimal numbers like 77.8135, 
90.4532 in cm2 units.

Figure 21: Comparing Change in model performance with labels set as biomass values, in comparison with (down) Day wise labels 
of growth stage of plant
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The second model included Day-wise labels corresponding to 
growth stages of the plant. Eg- for data captured on Day 1

- Label 1 was used (unitless integral vales). The second model 
did not show complete consistency in plant growth progression 
and hence the model performed poor and had larger weights and 
features to learn from.

To my surprise, the model which contained labels in terms of 
LAI achieved near stellar accuracy of 0.51(MSE - Mean Squared 
Error), and the second model was much heavier, slow in infer-
ence and also had a high loss function of 14.71.

The Regression model performed significantly better as com-
pared to usual Regression models which peak at a loss rate of 
100. The loss function is calculated using Mean Squared Error 
gradient. The Epochs were set to 130 for training, while the 
learning rate to 0.005, which allowed faster learning and better 
results. The model loss stabilized after 35 epochs after which 
it continuously converged to a plateau descent, and remained 
stable for the rest. Comparing the int8-quantised model, which 
edges at 0.51 loss rate at par with unoptimised float32 model, 
the quantized model performs much better when deployed on 
the Sony Spresense. The float32 model carries an inference time 
of 7.268s per frame, which is definitely not suited for real time 
classification. Comparatively, the int8 model outweighs with 
1.544s per frame, 362.5K memory usage and 38.2K Flash.

For the following research, a lot of data analysis and feature 
engineering has been done for the data ingested into the Edge 
Impulse Studio. The following plot is an example of this. While 
comparing the model performance, this is the relation between 
the labels of model 1 (x-axis) to labels of model 2 (y-axis). The 
linear plot is not linear, and hence there is a deviation in results. 
Data analysis of the segmented LAI helped in finding out model 
efficacy in this example.

Data Analysis and Adaptive Thresholding
The Leaf Area Index or Biomass for each plant was calculat-
ed using image segmentation which was achieved by Using the 
adaptive threshold method for the color information, specifi-
cally the Otsu Threshold, followed by a floodfill algo- rithm in 
OpenCV and finally using pixel-by-pixel segmented area calcu-
lation methods. This pipeline is illustrated below:

Figure 22: Relplot using Seaborn to analyze inter-relation be-
tween LAI labels and Day-wise progression labels

Figure 23:   Pipeline created to estimate Ground Truth LAI

The above figure demonstrates the pipeline created by me to pro-
cess and output Ground Truth LAI using Thresholding method 
for segmentation. The LAI (Leaf Area Index) calculated corre-
sponding to the raw image is later used as label for the image 
and ingested to the Edge Impulse Studio. The pipeline used 
in the above process is as follows. An adaptive thresholding 
mechanism known as Otsu’s threshold is used to segment the 
image from the contrastive background. This is comparatively 
easy due to the color contrast between the object i.e the plant 
and the background. However, for instances where the LAI is 
less than 10cm2, the Otsu threshold segments the image leaving 
some noise at the periphery of the confined region. This hampers 
the overall LAI estimation. Hence, for these images where the 
plant area is <<< average area, a  Flood fill algorithm is used 
to binaries the noise or holes in image and allow smoother LAI 
calculation.

This is the defined pipeline for all the samples in the cultivar 
accumulated, and the process of calculation of LAI for Ground 
Truth Samples. Post flood fill algorithm being applied, a pix-
el-by-pixel area calculation function is applied

Figure 24:  Comparing Otsu’s threshold in Samples with LAI 
< or > 10cm2

On binarized images using numpy. The area is calculated in pix-
els, and using a transformation formula mentioned in the data 
collection topic, the area in pixels is transformed to LAI.
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Figure 25:   formulating LAI Index measure caclulation per pix-
el

The formula can be reduced to 2.605 x 10−2 x Area in pixels 
cm2. This formula is only confined when the distance between 
the lettuce cultivar and camera i.e sony spresense is 78cm.

The final results for Otsu segmentation for all plants in cultivar 
is as follows

Figure 26: Adaptive Thresholding segmentation conducted on 
cultivar of 77 samples

The Adaptive Thresholding procedure was conducted on a cul-
tivar of Lettuce Flandria plants and used as Ground Truth labels 
for ingesting the Dataset. A more elaborate view of segmented 
images per 20 samples is given below:

The python script used for segmentation procedure and adaptive 
thresholding will be provided in the GitHub repository attached 
with the code. The analysis of this data in a sea born plot had 
been performed above comparing the label numerical

Figure 27: Thresholded Cultivars from Day 1 to 20

Figure 28:  Thresholded Cultivars from Day 21 to 40

Figure 29: Thresholded Cultivars from Day 41 to 60

Value extracted using LAI adaptive thresholding with Day-wise 
progression. Refer that plot to see complete data analysis of the 
above segmented pixel-by-pixel LAI values.

Model Testing and Evaluation
After the model training and data analysis of the segmented 
labels has been completed, the values predicted from the Re-
gression model trained in Edge Impulse Studio can be tested to 
evaluate efficacy on unseen test data. The model 

Figure 30: Thresholded Cultivars from Day 61 to 80

Performs with near stellar accuracy on testing data evaluation in 
EdgeImpulse Studio. A test dataset of 19 samples with unique 
values from 5cm2 to 90cm2. LAI is fed to the model. The model 
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evaluates the image data without the input of labels and pro-
poses its predictions. The predictions within a mean deviation 
of around 5cm2. The maximum deviation or error rate witch-
ing limited cluster where it has predicted accurate is - 4.78. On 
an average Lettuce Flandria observed much better performance 
than Lettuce Tiberius. The RMSE calculated for Lettuce Flan-
dria was found out to be 1.185954306 cm2. The RMSE is calcu-
lated using the metrices described below:

Figure 31: Formula used to calculate LAI RMSE on predicted 
outcome

Figure 32: RMSE Compared to Ground LAI (Left) and Predict-
ed LAI (Right)

The above plot, plotted using seaborn demonstrates a com-para-
tive analysis between Ground Truth LAI and RMSE and Predict-
ed LAI and RMSE. The plot explains how the RMSE increases 
with increase in LAI, and a few anomalies are found in that vari-
ation. Overall, its a graph with decreasing slope, and exponen-
tially increasing RMSE with increasing LAI.

Figure 33:  Prediction summary of over 19 samples in test data-
set.

The above images are captured from Testing tab in Edge Im 
pulse Studio. The ingested Test Dataset achieve 100-percentage 
accuracy, which might seem superficial, but it is evaluated on 19 

samples with loss of 0.51 which makes is obvious that the model 
performs exceptionally well! The input Ground Truth Data and 
predicted Data of LAI by Edge Impulse Regression model is 
summarized in the plot following the paragraph:

Figure 34: Plot comparing Ground Truth and predicted LAI val-
ues from Edge Impulse Studio Model Testing section.

The plot compares how Predicted LAI performs as com- pared 
to Ground Truth LAI for a confined segmented sample. The re-
gression model trained in EI Studio performs and produces ac-
curate predictions for almost all samples. There is an increased 
error rate in the region between 15-20 cm2 LAI Ground Truth 
labels, which indicates the increase in noise in data segmentation 
in Otsu’s segmented images. The Regression model, predicts 
LAI lower than expected, due to noise in threshold samples, 
which results in an increase in LAI than expected. The Average 
RMSE was found to be 1.859 cm2, which is an indicative factor 
of accurate predictions. In RMSE, the function, Xo - Xi which 
is a difference between observed and predicted data. This index 
was also found out among the data samples predicted and it av-
eraged at -0.2351 cm2, indicating that the predicted data is on an 
average 0.235 cm2 less than Ground Truth.

Figure 35: LAI of segmented images.

Above figure represents LAI of segmented images used as test 
data set to test efficacy. As observed above, the results showed 
strong correlations between Ground Truth Segmented data and 
from those predicted by the CNN model. These correlations are 
measurements concluded from input test im- ages rather than 
scalar/numerical input data, which makes a huge difference in 
how effectively CNNs for computer vision models have devel-
oped, and become light-weight with increased efficacy without 
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straining on model performance. The quantization of these mod-
els done by EdgeImpulse Studio is a massive plus point in Em-
bedded Machine Learning systems most importantly with low 
power, real time inference in Computer Vision systems.

Deploying Model to Sony Spresense and Real World 
Data Testing
EdgeImpulse offers a unique compilation system for Em- bed-
ded ML models, which help in quantization of models for upto 
55% less RAM! and 35% less ROM! While main- taining con-
sistent accuracy and loss scores. This is a feature I adore about 
the EdgeImpulse Studio. In the deployment section of EdgeIm-
pulse Studio, there are a list of pre-compiles binaries for support-
ed boards or libraries, which can be self-compiled. This project, 
utilizes the Sony Spresense Pre- Compiled Binary, which can be 
directly deployed on the board for real time inference.

With the EON compiler, there is a significant reduction in RAM 
usage on-board as well as the ROM usage. The RAM usage de-
creases from 435.6K to 362.5K, nearly 17% reduction in RAM 
usage, and from 53.5K to 38.2K decrease in ROM/Flash usage, 
29% reduction in ROM usage. With the EON Compiler enabled, 
build the model and flash it over Sony Spresense board.

A complete log of compilation and build process can be found 
at "Build output". Sony Spresense observes real time inference 
and result estimation on board in under 1s, to be precise, nearly 
922ms!

Conclusion
Demonstrating Low Power Consumption and battery oper-
ated remote system

Figure 36: Compiled quantized binary for Regression model on 
Sony’s Spresense.

Figure 37: Demonstrating various components used in the hard-
ware system for Test Data Acquisition.

Figure 38: Demonstrates distance between Camera and Plant 
for the model to work.

Figure 39: Various images of live classification and on-board 
processing algorithms

The preceding images demonstrate the live classification system 
and real time inference on the Sony Spresense board. The board 
acquired images from over the plant, inferences the data, pro-
cesses it and predicts a suitable LAI outcome in real time. The 
illustrations in images explain the structure of the system, ap-
proximate distance and data acquisition procedure for real time 
on-board inference. The approximate power usage on board is 
0.35A per hour, which is easily powered by a battery system, 
here as a power bank. The tested system lasts for 20.5hours ef-
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fortlessly over a single charged power bank. If the clock fre-
quency of the board is set to 32MHz, the average power con-
sumption reduces significantly. The complete sys- tem, while in 
production is expected to be completely battery operated over a 
suitable voltage power bank, more preferably 1A, which I have 
used here

Figure 40: Battery Operated Telemetry system using SD card to 
store LAI predicted data.

The SD card storage on the Sony Spresense can store results 
of all LAI acquired from over plants in remote laboratories or 
semi-autonomous/autonomous hydroponic system. The built 
system is stationary, but a mobile solution can be designed to ac-
quire images corresponding to GPS information tagged with the 
plant through Sony Spresense. This mobile autonomous system 
can use and store LAI information per plant collected at specific 
GPS co-ordinates. There are differentially plenty applications in 
the field of autonomous monitoring and growth estimation sys-
tems fulfilling UN’s SDG’s.

Data Availability
All Raw Image Datasets are available at Dataset Dashboard 
All Code and model used for LAI and Biomass estimation is 
available at - GitHub Edge Impulse Public Dashboard - Studio 
1 Studio 2
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