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Abstract 
The advent of deep learning has paved way for more efficient computer vision applications. In agricultural crop mon-
itoring with technology driven approaches, it is indispensable to have plant disease identification. Recent research 
reveals that Convolutional Neural Network (CNN) is most suitable deep learning method to process leaf images for de-
tecting diseases. As symptoms of leaf disease appear in specific area, considering entire leaf for processing incurs more 
computational cost and time besides deteriorating performance due to inadequate quality of training. To overcome this 
problem, we proposed a framework that considers extraction of ROI using deep CNN prior to prediction of pre-trained 
deep learning models such as VGG13, ResNet34, DenseNet19, AlexNet, Sqeezenet1_1 and Inception_v3. An algorithm 
named ROI Feature Map Creation (ROI-FMC) is defined to extract ROI for given input image. This will be given as 
input to another algorithm proposed namely ROI based Deep CNN with Transfer Learning for Leaf Disease Prediction 
(ROIDCNN-LDP). The latter is used to predict leaf diseases. PlantVillage dataset is used for empirical study. The ex-
perimental results revealed that with ROI awareness, all models could perform well. However, Inception_v3 is the deep 
CNN model that outperforms other models. 
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Introduction 
Agriculture is very crucial domain across the globe as it takes care 
of human survival process from time immemorial. In fact, in India, 
it is very crucial domain as majority of population depend on ag-
riculture or its related industries. The advent of deep learning has 
paved way for more efficient computer vision applications. In ag-
ricultural crop monitoring with technology driven approaches, it is 
indispensable to have plant disease identification. Recent research 
reveals that Convolutional Neural Network (CNN) is most suitable 
deep learning method to process leaf images for detecting diseas-
es. As symptoms of leaf disease appear in specific area, consider-
ing entire leaf for processing incurs more computational cost and 
time besides deteriorating performance due to inadequate quality 
of training.Deep learning models have been around for improv-
ing image processing based leaf disease detection. As explored in 
many CNN based models in it is observed that CNN models are 
most appropriate for disease detection in agricultural crops [1, 5, 
8, 10]. 

Proposed a Region of Interest (ROI) based approach along with 

ResNet-50 CNN for identification of plant leaf diseases. Proposed 
an improved faster RCNN model for object detection towards to-
mato disease detection [35, 39]. They also make use of ROI to-
wards improving performance. From the literature, it is understood 
that there are different approaches in deep learning models and 
pre-trained CNN models found. However, there is little research 
on ROI based approach with CNN. It is the motivation behind the 
work in this paper. Our contributions in this paper are as follows.
1. Proposed a methodology for plant disease detection using ad-
vanced convolutional neural networks with region of interest 
awareness. 
2. An algorithm named ROI Feature Map Creation (ROI-FMC) is 
proposed and implemented to create ROI feature map that plays 
crucial role in leaf disease detection with ROI awareness. 
3. Another algorithm known as ROI based Deep CNN with Trans-
fer Learning for Leaf Disease Prediction (ROIDCNN-LDP) is pro-
posed to realize the methodology for leaf disease detection. 
4. A prototype application is built using Python data science plat-
form to evaluate the proposed methodology and the underlying 
algorithms. 
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The remainder of the paper is structured as follows. Section 2 re-
views literature on deep learning methods for leaf disease detec-
tion. Section 3 covers the methodology used for the plant disease 
detection using advanced convolutional neural networks with re-
gion of interest awareness. Section 4 presents experimental results 
and Section 5 concludes the paper and gives directions for future 
scope of the research. 

Related Work
This section reviews literature on deep learning models for leaf 
disease identification. It focuses on neural network models, deep 
CNN models and pre-trained deep CNN models. 

Neural Network (NN) Models
Neural network models are good for processing hyper spectral 
data. Made a review of different models such as Back-Propagation 
Neural Network (BPNN), Feed-Forward Neural Network (FFNN) 
and Generalized Regression Neural Network (GRNN) and their 
role in early detection of leaf diseases in agriculture [4]. 

Deep CNN Models
Deep CNN models are widely used for image processing based 
approach for leaf disease identification. Proposed a methodolo-
gy based on deep CNN for identification of rice diseases [3]. The 
CNN architecture is made up of different layers appropriately con-
figured in order to have better performance. In future, they intend 
to extend their model for fault detection focused on DenseNet-121 
for apple leaf disease identification [7]. Multi-label classification 
approach is used to have more flexible identification of diseases. 
The diseases thus identified include “Healthy Apple, General Ap-
ple Scab, Serious Apple Scab, Apple Gray Spot, General Cedar 
Apple Rust and Serious Cedar Apple Rust”. Proposed a deep CNN 
model by modifying LeNet for maize leaf disease classification 
[8]. The convolutional layers, pooling layers and fully connect-
ed layers are configured in such way that their method could im-
prove performance. proposed CNN based deep learning model for 
sugarcane disease identification [9]. Their methodology includes 
pre-processing, feature extraction and classification. In future, 
they intend to apply different learning rates to evaluate their meth-
od further. Proposed apple leaf disease prediction model based on 
improved deep CNN [10]. Their real time approach has both dis-
ease localization and classification. They also experimented with 
GoogleNet inception structure along with Rainbow concatenation 
for disease detection. 

Exploited Learning Vector Quantization (LVQ) and deep CNN 
model for plant leaf disease detection [11]. The usage of LVQ as 
part of the CNN architecture could leverage classification accura-
cy. They intend to improve it with different size of convolutions 
and different filters. Proposed a deep CNN model with nine lay-
ers and six kinds of data augmentation methods are employed in-
cluding Principal Component Analysis (PCA) [12]. They intend 
to improve it to the study of disease using flowers and stem also 
in future. Used CNN model such as LeNet for leaf disease pre-

diction in Tomato crop [14]. Their methodology includes data ac-
quisition, data pre-processing and classification. Studied different 
deep learning models in the usage of plant disease prediction [21]. 
They could different factors that affect deep learning models. They 
include disorders with same symptoms, simultaneous disorders, 
symptom variations, symptom segmentation, conditions of image 
capture, image background, covariate shift and symptom represen-
tations [21.] studied on deep CNN models for leaf image classifi-
cation. Focused on deep learning models for disease identification 
in terms of severity estimation [24]. Francis and investigated on 
different operations involved in deep CNN based model for leaf 
disease detection [25]. They classified them into two phases such 
as feature extraction phase and classification phase. 

Proposed an automatic approach for leaf image capture and iden-
tification of disease based on CNN models [27]. They built a tool 
named automaton with GUI for visualization of the detection pro-
cess. Used CNN and Conditional Random Field (CRF) approach 
towards plant disease detection [29]. Proposed an attention em-
bedded residual CNN for tomato leaf disease detection [30]. They 
also proposed a method known as Residual Progressive Feature 
Extraction (RPFE) for improving quality of training and result 
in higher level of accuracy. Proposed an improved CNN for real 
time detection of plant diseases [32]. Their model is named as DR-
IACNN which has better feature extraction capability to influence 
accuracy. 

Investigated on deep CNN model for disease detection in plants 
[5]. Focused on real time plant disease detection using deep learn-
ing models [15]. Focused on improved deep CNN models for 
maize leaf disease detection [16]. proposed a deep learning archi-
tecture known as EfficientNet for plant leaf disease classicisation 
[34]. Explored deep learning and machine learning methods for 
plant species classification [17]. They found that deep learning 
models could perform well comparatively. Proposed CNN mod-
els for plant disease identification while reviewed CNN models 
for different plant disease detection [18, 19]. Focused on Apple 
diseases using multi-scale feature fusion and sub-class categoriza-
tion using ResNet model. Singh and proposed CNN based model 
for crop disease identification [26, 31]. Proposed a deep learning 
based model known as R-CNN comprising of joint segmentation 
and leaf skeleton identification [33]. Proposed discriminative 
CNNs for image classification for plant disease diagnosis [20]. 

Pre-Trained Deep Learning Models
Pre-trained deep learning models help in reusing knowledge mod-
els in leaf disease detection. Explored two pre-trained deep models 
such as VGG16 net and AlexNet [1]. They used PlantVillege data-
set for tomato crop disease prediction. VGG16 net showed bet-
ter performance over AlexNet in terms of accuracy. However, in 
terms of computational load AlexNet showed better performance. 
Investigated on deep learning models such as ResNet, Inception 
V4 and VGG16 [2]. The models are evaluated with different layers 
and also DenseNets. It is observed that the usage of DenseNets 
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consistently increased performance. However, they took more 
computational time. Studied VGG16 along with SVM model for 
detection of tomato diseases based on leaf images [6]. With fine-
tuned experiments, they could achieve better performance. Used 
deep learning models such as VGG and AlexNetOWTBn for plant 
disease detection. They found the potential of such models in the 
research carried out [13]. 

Investigated on CNN based deep learning models like VGG16, 
VGG19 and Inception V3 for leaf disease detection [28]. VGG16 
showed highest accuracy when compared with other deep models 
and also ML models like RF, SVM and SGD. Proposed a Region 
of Interest (ROI) based approach along with ResNet-50 CNN for 
identification of plant leaf diseases [35]. Hernández and Lopez 
[36] focused on Bayesian deep learning models to know and un-
certainty and quantify the same. Proposed a CNN based approach 
is known as self-attention CNN for crop leaf disease identification 
to leverage robustness in the process [38]. Proposed an improved 
faster RCNN model for object detection towards tomato disease 
detection [39]. They also make use of ROI towards improving per-
formance. Used CNN model to have a strategy in Cassava disease 
detection [39]. However, they intend to improve their method to 

diagnose multiple co-occurring diseases. Used different deep mod-
els like AlexNet, ZFNet, VGG16, and VGG19 for automatic iden-
tification of Abaca Bunchy Top disease [22]. From the literature it 
is understood that there are different approaches in deep learning 
models and pre-trained CNN models found. However, there is lit-
tle research on ROI based approach with CNN. It is the motivation 
behind the work in this paper. 

Proposed Methodology
This section presents the proposed methodology of detecting leaf 
diseases using advanced CNN with region of interest awareness. 

The Framework
The methodology for effective leaf disease detection is based on 
deep learning models and extraction of ROIs. Deep CNN model is 
configured along with an algorithm for extracting region of inter-
est. It results in the realization of plan leaf disease prediction mod-
el. With transfer learning, the framework is optimized in training 
and testing phases. PlantVillege dataset is used in order to evaluate 
the proposed model. The framework is as presented in Figure 1. 

Figure 1: Overview of the proposed methodology
As deep CNN model is found suitable for processing image based 
inputs like plant leaves, it is used along with the algorithm known 
as ROI Feature Map Creation (ROI-FMC). This algorithm is re-
used in the deep learning process in order to improve the accuracy 
of prediction. 

Algorithm to Extract ROI
ROI Feature Map Creation (ROI-FMC) is the algorithm defined to 
facilitate quality in disease prediction. 
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algorithm is reused in the deep learning process in order to improve the accuracy of 

prediction.  

 

Algorithm to Extract ROI 

ROI Feature Map Creation (ROI-FMC) is the algorithm defined to facilitate quality in disease 

prediction.  

 

Algorithm: ROI Feature Map Creation (ROI-FMC) 

Input: Leaf image I, Training Set T (ROI maps) 

Output: ROI Feature Map F 

1. Start 

2. Initialize a model M 

3. Add convolutional layers 

4. Add max pooling layers 

5. Add cropping layers 

6. Add full connected layers 

7. Configure dropout 

8. M TrainModel(T) 

9. For each Epoch e in n 

10.    For each batch b in m 

11.       Update M  

12.    End For 

13. End For 

14. FPredict(M, I) 

15. Return F 

 

Algorithm 1: ROI Feature Map Creation 

 

The algorithm ROI-FMC takes a leaf image and ROI maps training set as input and produces 

ROI feature map for given image. The ROI feature map contains background information, 

leaf area information and spot area information. The extraction of ROI feature map is based 

on training ROI maps. It is done by a deep CNN model. The output of ROI-FMC is used as 

input in the leaf disease prediction algorithm provided in the next slide. 

 

Algorithm 1: ROI Feature Map Creation

The algorithm ROI-FMC takes a leaf image and ROI maps train-
ing set as input and produces ROI feature map for given image. 
The ROI feature map contains background information, leaf area 
information and spot area information. The extraction of ROI fea-
ture map is based on training ROI maps. It is done by a deep CNN 
model. The output of ROI-FMC is used as input in the leaf disease 
prediction algorithm provided in the next slide.

Algorithm for Leaf Disease Prediction 
ROI based Deep CNN with Transfer Learning for Leaf Disease 
Prediction (ROIDCNN-LDP) is the mail algorithm used towards 
leaf disease prediction. 
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Algorithm for Leaf Disease Prediction  

ROI based Deep CNN with Transfer Learning for Leaf Disease Prediction (ROIDCNN-LDP) 

is the mail algorithm used towards leaf disease prediction.  

 

Algorithm: ROI based Deep CNN with Transfer 

Learning for Leaf Disease Prediction (ROIDCNN-

LDP) 

Inputs:  

Leaf test image I 

Training Set T (ROI maps) 

pre-trained models P 

(P includes AlexNet, DenseNet19, Inception_v3, 

ResNet34, Sqeezenet1_1 and VGG13) 

Output: Leaf disease prediction results R  

1. Start 

2. Initialize ROI feature map F 

3. F ROI-FMC(I)       //reusing the Algorithm 

1 here 

4. For each pre-trained model p in P 

5. M TrainModel(F, p) 

6. For each Epoch e in n 

7. For each batch b in m 

8. Update M  

9. End For 

10. End For 

11. M‟ FitModel(M) 

12. M‟UpdateModelWithTransferLearning(M‟) 

13. R PredictionOfDiseases(M‟, I) 

14. Print R 

15. End For 

16. Stop 

Algorithm 2: ROI based Deep CNN with Transfer Learning for Leaf Disease Prediction 

Algorithm 2 takes leaf test image, ROI maps as training set and pre-trained deep CNN 

models such as AlexNet, DenseNet19, Inception_v3, ResNet34, Sqeezenet1_1 and VGG13 as 

Algorithm 2: ROI based Deep CNN with Transfer Learning for Leaf Disease Prediction

Algorithm 2 takes leaf test image, ROI maps as training set and 
pre-trained deep CNN models such as AlexNet, DenseNet19, In-
ception_v3, ResNet34, Sqeezenet1_1 and VGG13 as input. This 
algorithm reuses ROI-FMC algorithm to extract feature map from 
given test image. Then it is subjected to testing with all pre-trained 
models with transfer learning. The deep learning models could 
perform well with the proposed methodology

Experimental Results
The proposed framework is implemented and the results of ex-
periments are provided in this section. The results include visual 
inputs, outputs in terms of heatmap and disease detection. Besides, 
this section evaluates the proposed deep learning based model and 
compares with the state of the art. 
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input. This algorithm reuses ROI-FMC algorithm to extract feature map from given test 

image. Then it is subjected to testing with all pre-trained models with transfer learning. The 

deep learning models could perform well with the proposed methodology 
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Figure 2: Detection of early blight disease 

 

As presented in Figure 2, the input leaf and the detection of early blight disease is visualized. 

The results also include heatmap in different dimensions.  

Figure 2: Detection of early blight disease

As presented in Figure 2, the input leaf and the detection of early blight disease is visualized. The results also include heatmap in dif-
ferent dimensions.
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Figure 3: Detection of late blight disease 

As presented in Figure 3, the input leaf and the detection of late blight disease is visualized. 

The results also include heatmap in different dimensions.  
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As presented in Figure 3, the input leaf and the detection of late blight disease is visualized. The results also include heatmap in different 
dimensions.
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As presented in Figure 3, the input leaf and the detection of late blight disease is visualized. 

The results also include heatmap in different dimensions.  
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Figure 4: Detection of early blight disease 

As presented in Figure 4, the input leaf and the detection of early blight disease is visualized. 

The results also include heatmap in different dimensions.  

 

Table 1: Deep learning models and their performance in leaf disease detection 

Deep 

Learning 

Model 

Evaluation Time 

(Without 

Retraining) 

Accuracy 

(Without 

Retraining) 

Evaluation Time 

(With Retraining) 

Accuracy 

(With 

Retraining) 

alexnet 56.440 95.747 56.477 99.245 

densenet169 93.009 98.664 93.622 99.727 

inception_v3 140.008 97.437 244.491 99.763 

resnet34 74.923 98.482 73.176 99.672 

squeezenet1_1 56.995 92.493 57.213 99.200 

vgg13 95.137 97.955 95.122 99.491 

 

 

Figure 4: Detection of early blight disease
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As presented in Figure 4, the input leaf and the detection of early blight disease is visualized. The results also include heatmap in dif-
ferent dimensions.

Table 1: Deep learning models and their performance in leaf disease detection

Deep Learning Model Evaluation Time 
(Without Retraining)

Accuracy (Without 
Retraining)

Evaluation Time (With 
Retraining)

Accuracy (With Re-
training)

alexnet 56.440 95.747 56.477 99.245
densenet169 93.009 98.664 93.622 99.727
inception_v3 140.008 97.437 244.491 99.763
resnet34 74.923 98.482 73.176 99.672
squeezenet1_1 56.995 92.493 57.213 99.200
vgg13 95.137 97.955 95.122 99.491

Figure 5: Evaluation time comparison of deep learning models 

 

As presented in Figure 5, the leaf disease detection models are shown in horizontal axis while 

the vertical axis shows the evaluation time in seconds. The evaluation time is measured with 

and without retraining. With retraining, it is observed that there is performance enhancement 

as it could reduce time taken for evaluation.  
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Figure 5: Evaluation time comparison of deep learning models

As presented in Figure 5, the leaf disease detection models are 
shown in horizontal axis while the vertical axis shows the evalu-
ation time in seconds. The evaluation time is measured with and 

without retraining. With retraining, it is observed that there is per-
formance enhancement as it could reduce time taken for evalua-
tion.
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Figure 6: Accuracy comparison of deep learning models

As presented in Figure 6, the leaf disease detection models are 
shown in horizontal axis while the vertical axis shows the accuracy 
percentage. The accuracy is measured with and without retraining. 
With retraining, it is observed that there is performance enhance-
ment as it could improve accuracy. With the proposed methodol-
ogy Inception_V3 with transfer learning showed highest perfor-
mance with 0.997637223.

Conclusion and Future Work
We proposed a framework that considers extraction of ROI using 
deep CNN prior to prediction of pre-trained deep learning models 
such as VGG13, ResNet34, DenseNet19, AlexNet, Sqeezenet1_1 
and Inception_v3. An algorithm named ROI Feature Map Creation 
(ROI-FMC) is defined to extract ROI for given input image. This 
will be given as input to another algorithm proposed namely ROI 
based Deep CNN with Transfer Learning for Leaf Disease Predic-
tion (ROIDCNN-LDP). The latter is used to predict leaf diseases. 
PlantVillage dataset is used for empirical study. Deep CNN models 
could perform well with the proposed methodology.ROI aware-
ness included in the architecture led to performance improvement. 
Particularly accuracy of the models has been improved. With 
the proposed methodology Inception_V3 with transfer learning 
showed highest performance with 0.997637223.Therefore, deep 
CNN models with transfer learning and ROI awareness are found 
to be suitable for leaf disease detection. However, Inception_v3 
is found better among the other models. In future, we intend to 
investigate further on the deep learning models other than CNN.
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