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Abstract
Continuous physiological monitoring integrated with time series analysis and multi-step forecasting is vital when encountering 
postoperative cases either hospitalized in intensive care units (ICU) or given home health care will experience adverse 
cardiac events. The low-cost common vital signs, i.e., heart rate and arterial blood pressure are captured and predicted 
with adjustable horizons up to 30 minutes in advance to achieve punctual clinical decision-making to prevent the events 
of bradycardia, tachycardia, hypo-tension, and hypertension. Scaling properties of physiological stationary/non-stationary 
signals are necessarily determined and drastically affected by the selection and architecture design of time series forecasting 
models. In contrast to integer-order difference that achieves stationary memory-erased series, fractional order difference 
ensures the stationary of the data while preserving as much memory as possible. The deep learning architecture for multi-
step forecasting is the combination of two direct and iterative methods which utilizes the convolutional neural networks with 
skip connections inspired by the concepts of U-Net convolutional networks and multi-layer bi-directional long short-term 
memories (Bi-LSTMs). Various scenarios of observe-target windows e.g. (20, 30, 60, or 120) - (7, 15, 20, or 30) minutes are 
trained using hyper-parameter tuning and evaluated by mean absolute percentage error (MAPE). The results of the proposed 
method indicate that crucial vital signs such as heart rate, systolic blood pressure and mean arterial blood pressure will be 
predictable in an adjustable observe-target window size from 20-7 to 120-30 minutes with narrow ranges of MAPE values 
between [2.78%, 4.17%], [4.69%, 6.47%] and [4.45%, 6.86%], respectively. 
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1. Introduction
Continuous physiological monitoring, crucial for preventing 
postoperative complications, has spurred biomedical research 
interest [1-3]. Despite advancements in prediction through clas-
sification algorithms, accurately forecasting vital signs remains a 
challenge, necessitating exploration into deep learning methods 
[4-6]. Such forecasts enable early intervention, enhancing patient 
care and informing the design of intelligent alarm systems [7]. 
Advanced deep learning models have shown promise in prog-
nostic prediction for patients in intensive care units (ICUs) [3,8]. 

Bontempi et. al. and Masum et. al. described and compared five 
different forecast strategies including the Recursive strategy, 
Direct strategy, Direct-Recursive (DirRec) strategy, Multi-In-
put Multi-Output (MIMO) strategy, and Direct Multi-Output 
(DIRMO) strategy [7,9]. All strategies utilized the combination 
of long short-term memory (LSTM), Bidirectional-LSTMs (Bi-
LSTM), and Convolutional Neural Networks (CNN). In 2019, 
Liu et. al. proposed a new approach called generative boosting 
that includes two parts of the predictive and generative models 
[10]. Generative boosting utilizes LSTM for both parts leading 
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to a scheme called generative LSTM (GLSTM). The first mod-
el consists try to generate synthetic data for the next few time 
steps, and the second models, try to make long-range predictions 
based on observed and generated data. Generative boosting miti-
gates the error propagation in the generative models and reduces 
the effective prediction horizon in the predictive models. They 
showed that GLSTM outperforms efficient benchmark models, 
in such a way that the mean absolute percentage errors (MAPE) 
of 7.41% and 6.17% were achieved to predict heart rate (HR) and 
systolic blood pressure (SBP) 20 minutes in advance, respec-
tively [10]. In 2020, Youssef et. al. proposed a hybrid machine 
learning algorithm of KNN-LS-SVM instead of LSTM-based 
models for real-time early warning scores (EWS) estimation and 
vital signs time-series prediction [11]. They preserved at least 
one-hour statistical attributes of the different vital signs (i.e., 
minimum, mean) as input data to forecast statistical attributes 
one, two, and three hours in advance [11]. They achieved the 
MAPE of predicting a one-hour average heart rate are 4.1, 4.5, 
and 5% for the next one, two, and three hours, respectively, for 
cardiology patients.

In general, the development of intelligent monitoring systems 
faces two notable challenges. Firstly, the relative scarcity of 
adverse events, particularly during the early postoperative 
phase, poses a significant obstacle [12,13]. Secondly, ensuring 
stationarity in time series data is imperative for effective modeling 
strategies [14]. The rarity of adverse events, particularly in the 
early postoperative period, poses a significant challenge to 
the clinical precision of intelligent monitoring systems. Late 
detection of clinical instability often leads to delayed recognition 
and reduced successful clinical intervention, as evidenced by 
investigations into patterns of in-hospital deaths [15]. To address 
this challenge, ElMoaqet et al. (2016) developed a framework for 
multi-step ahead prediction models, introducing a performance 
metric tailored to compensate for and resolve issues in intelligent 
monitoring systems. This metric evaluates near-term predictions 
of critical levels of anomaly in physiological time series [1]. 
The second challenge involves ensuring stationarity in time 
series data, which is crucial for effective analysis. Stationary 
and non-stationary time series determine not only the form of 
auto-correlations and moments but also impact the selection 
of estimators and models [16]. A time series is considered 
stationary when its key properties, such as mean, variance, and 
auto-correlation structure, remain constant over time [14,17]. 

To better understand the underlying dependencies of time series 
data, employing decomposition models or performing a basic 
data cleaning process to classify signals into stationary or non-
stationary categories are essential for subsequent analysis and 
forecasting [14]. However, applying an analysis or modeling 
technique developed for stationary conditions to a non-stationary 
signal can lead to ambiguity or significant performance reduction. 
Formal statistical tests for stationarity include unit root tests, with 
the augmented Dickey–Fuller test being one common approach 
[18]. Additionally, the Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test is widely used to determine if a time series is non-
stationary due to a unit root or stationary around a mean or linear 
trend [19]. 

The sources of data may lead to non-stationary time series, 
influenced by systematic components and dependencies on past 
values. Removing systematic trends and seasonal effects that 
are not of interest at the mean level of the series is essential. 
The primary method for achieving this is differentiation, which 
transforms non-stationary time series into stationary ones by 
eliminating trend effects [14]. In cases where the time series 
exhibits a varying trend, a first difference may not suffice to 
achieve complete stationarity. Higher orders of differentiation 
may be required. However, in practice, first or second differences 
often render the mean stationary, and further differentiation 
is rarely necessary [17,20]. While integer order difference 
transformations effectively render the series stationary, they 
come at the cost of removing all memory from the original 
series [21]. This poses a dilemma, particularly in time series 
forecasting, where preserving memory is essential for predictive 
modeling purposes.

This study introduces a novel preprocessing approach based 
on fractional-order differentiation, followed by a deep 
learning architecture comprising convolutional and multi-layer 
Bidirectional Long Short-Term Memory (Bi-LSTM) networks.

2. Materials and Methods
2.1 Dataset
Waveform Database Matched Subset of the Multi-parameter 
Intelligent Monitoring in Intensive Care (MIMIC)-III, a dataset 
containing 22,247 numeric records from 2001 to 2012 for 
10,282 patients in ICU, has been collected at the Beth Deaconess 
Medical Center in Boston, Massachusetts [22]. Records that 
contain periodic measurements including HR (times/min), SBP 
(mm-Hg), and diastolic blood pressure (DBP, mm-Hg) have been 
selected. We use records in which all three desired signals were 
present simultaneously. Records with a frequency of 1/60 Hz i.e. 
one sample per minute and a length of more than 180 minutes 
have been selected. Therefore, 4141 out of 22247 records have 
been nominated according to the above criteria. The total length 
of all selected records is 212947 hours, in which the minimum, 
maximum and mean record length are 180, 34615, and 3085 
minutes, respectively.

2.2 Proposed Method
Pre-processing
2.2.1 Windowing: The various time windows are defined for 
training of the deep learning model. The observe lengths vary 
from 20-, 30-, 60-, and 120-minutes time windows followed 
consecutively by the different predictive target length from 7, 
15, 20, and 30 minutes ahead. Therefore, number of datasets 
have been created based on different combinations of observe-
target length such as 20-7, 20-15, 30-7, 30-15, 30-20, 60-7, 60-
15, 60-20, 60-30, 120-7, 120-15, 120-20, and 120-30. In each 
dataset the entire records break down into the pieces of one of 
the observe-target length consecutively without any overlap i.e. 
a piece of 20-7 window is include 27 consecutive samples of a 
record that is supposed to predict the last 7 minutes from the first 
20 minutes observant input. Each dataset is dedicated to train 
one related DL model architecture. 

2.2.2 Filtering and Scaling: To prepare windows for training 



          Volume 3 | Issue 2 | 3Dearma J Cosmetic Laser Therapy, 2024

the model, at the first stage, they smoothed, and the noise was 
reduced by a convolution filter with order of 2. Then, the whole 
records were globally scaled by the Min-Max scaler.

2.2.3 Fractional Differencing: The notion of fractional 
differentiation applied to the time series has been developed by 
Hosking in 1981 [23]. In the following, the concept of fractional 
differentiation is described in detail. Assume a time series Xt 
is not stationary and let B the backshift operator (Bk Xt = Xt-k ) 
which is traditionally denoted for integer difference as following 
equation:

In a fractional differentiation, the exponent d can be a real 
number, with the following binomial series expansion:

Despite integer d, the weights, ωk, in Eq. 3 will not be zero 
in real value d that means to preserve memory. Therefore, the 
current value in time series depends on all the past values that 
occurred. From Eq. 2 the weights can be generated by following 
iterative scheme:

Although, there is an explicit expression (Eq. 3) for fractional order 
difference but in practice due to data limitations, the fractionally 
differentiated values cannot be computed on an infinite series of 
weights. Therefore, two alternative implementations of fractional 
differentiation have been proposed, i) the standard “expanding 
window” method, and ii) an efficient method based on FFD. In 
FFD, the weights are kept based on their modulus (|ωk |) values 
more than a given threshold while the remains are dropped. This 
modification results in the advantage that the same vector of 
weights is used across the entire time series differentiating, thus 
avoiding the negative drift caused by an expanding window’s 
added weights.

2.2.4 Model: We used a hybrid deep learning network architecture 
consists of CNN and Bi-LSTM layers, as illustrated in Fig 1. 
CNNs are well suited for learning and extracting salient features 
from an input feature, while LSTMs can capture temporal 
information from time series data. The network architecture 
comprises eight one-dimensional convolutional layers, forming 
a U-Net-like structure. As the original U-Net [24] model, it 
incorporates skip-connections to combine low-level feature 
maps with high-level feature maps. Our proposed CNN model 
is facilitated by the advantages of the skip connections. Each 
convolutional layer performs a convolution operation using a 
kernel size of 16 followed by a Rectified Linear Unit (ReLU) 
activation function, which introduces non-linearity into the 
model.
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After eight convolutional layers, the resulting feature map, after 
flattening, is fed into a dense layer with as many units equal 
to the target length. The output of the dense layer is fed into 
the first Bi-LSTM layer. Three Bi-LSTM layers are employed 
in the model architecture. Multiple Bi-LSTM layers allow the 
hidden state at each layer of the network to operate at a different 
time scale, thus enabling the model to capture a wide range of 
temporal dynamics. A Bi-LSTM layer produces an output se-
quence represented as a vector, which is then used as input to 
a subsequent Bi-LSTM layer. The output shape of the last Bi-
LSTM layer is subsequently fed into a time-distributed layer. 
A time-distributed layer is a wrapper that allows dense layers 
to process time-series inputs. The output of the time-distributed 
layer is the model's output, the shape of which is dependent on 
the target length. The model's output includes the observed se-
quence (input) and predicted values for subsequent time points. 
Although the output of our proposed model is a multi-step fore-
cast, some adverse clinical events including Bradycardia, Tachy-
cardia, and Hypotension are classified. There is no gold standard 
for these events, however, we use the following thresholds:

According to the national institutes of health, if the HR of an 
adult goes below 60 bits/min, then it is a bradycardia [25]. If 
a patients' Systolic BP goes above 140 mmHg for at least two 
consecutive samples then that event is known as a Hypertension. 
If a patients' Mean Arterial Blood Pressure (MAP) drops below 
70 mmHg for at least two consecutive samples then that event is 
known as a Hypotension.

2.2.5 Training: We utilized Adam's optimization algorithm to 
update the weights. The loss function employed in the model 
output was the MAPE. We trained each network with an initial 
learning rate of 0.0001, which was dropped by a factor of 10 
when validation loss did not improve after 5 epochs. The train-

ing was stopped using the Early Stopping callback, and a batch 
size of 16 was used to fit in the GPU memory.

 The MAPE utilized for training the model by ADAM optimiza-
tion. The other metrics including mean square error (MSE) and 
mean absolute error (MAE) have been calculated in addition to 
MAPE providing better insight about comparison of the results. 
The performance of the suggested structure was evaluated by 
these common regression criteria MAPE, MAE, and MSE as 
well as some criteria driven by the confusion matrix. 

Furthermore, we report accuracy (ACC), positive predictive val-
ue (PPV), and Mathews Correlation Coefficient (MCC) in ad-
dition to four confusion matrix categories (True Positive, False 
Positive, True Negative, and False Negative) which are more in-
terpretable for evaluating predicted signals. ACC simply means 
the number of values correctly predicted (it measures the frac-
tion of correct predictions). PPV is used to indicate the probabil-
ity that in case of a positive test that the patient has the specified 
disease. MCC is a more reliable statistical rate that produces a 
high score only if the prediction obtained good results in all of 
the four confusion matrix categories.

3. Results
In the present study, fractional differentiation is computed using 
FFD, which is, since the coefficients are driven by Eq. (3) tend to 
zero (Figure. 2), a given threshold determines how many coeffi-
cients will be preserved [21]. The first eight coefficients are kept 
for applying FFD, therefore the driven signal is lost in the first 
seven entities. There are two well-known unit root tests to deter-
mine whether a given time series is stationary, including the aug-
mented Dickey–Fuller (ADF) test and the KPSS test [26]. The 
null hypothesis of the ADF test assumes non-stationary, whereas 
the null hypothesis of the KPSS test is stationary.
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To find the optimized order of differentiating, the combination 
of the ADF and KPSS test statistics and Pearson correlation 
coefficient were utilized. These curves are depicted in Figure. 3. 
The dashed horizontal line represents the threshold if the ADF 
test statistic passes through, then it ensures that the fractionally 
difference series is stationary. The same concept with dash-dotted 
horizontal line which is associated with KPSS test statistic. A 
sample HR time series was examined in Figure. 3 that represents 
the behavior of such signal from our dataset and can help to 
adjust the difference order for further simulation. In Figure. 3 
for the sample HR series, the difference order is about 0.57 and 
0.91 accordingly to ADF and KPSS criteria, respectively, which 
shows a substantial variation. On the other hand, finding different 
orders based on this approach depends on the length of the time 

series. Additionally, the inverse fractional-order difference 
operation is required in practice to demonstrate the predicted 
series in the original scales. The inverse operation contains an 
intrinsic deterioration, especially in the difference order close 
to 1. On another note, the Pearson correlation is on the left 
y-axis, showing the correlation between the original series and 
the driven series which is almost 0.6 and 0.25 respectively to a 
difference order of 0.57 and 0.91. When the first-order difference 
is applied to the series, the Pearson correlation drops drastically 
down. For all these essential reasons, we decrease and adjust the 
difference order to 0.3 in this study to utilize fractional difference 
features while tolerating a little non-stationary trait. However, 
we examined the different order of a range between 0.3 to 0.6 
which consequence a subtle performance variation.
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Our study used the CNN with skip connections and Bi-LSTM 
recurrent neural network to forecast the future of HR, SBP, and 
mean arterial blood pressure (MBP) [5] from univariant time-
series data. In U-Net, by exploiting the auto-encoder structure, 
it is possible to reach salient features in the bottleneck. Also, 
utilizing skip connections serve to push more details between 
two linked down-sample and up-sample layers [5, 24]. We 
operate hyper-parameter tuning to set the hyper-parameters such 
as the number of layers and filters. Unlike the original U-Net in 
which filters were designed in ascending order, we got the best 
result with filters in descending order which can be related to a 
number of salient features that are required to restore the rest of 
the signal. Each model was evaluated using MAPE, MAE, and 
MSE of different observe-target windows (20-7 min, 20-15 min, 
30-7 min, 30-15 min, 30-20 min, etc.) according to tables1-4. In 
all tables, the best value of each criterion is bolded and the worst 
one has been underlined. 

We experimentally demonstrate the model performance in terms 
of classification of clinical events using confusion matrix criteria 
on predicted target window.

Table. 1 indicates the result of evaluating predicted HR signals 
based on three classes Normal, Bradycardia, and Tachycardia. 
Among all results for HR, the MAPE, MAE, and MSE had 
the lowest values (2.78, 2.17, and 15.2, respectively) all for a 
window size of 120-7 while their maximum values are 4.17, 
3.24, and 29.09 respectively all related to the window size 
of 120-30. Moreover, the true positive of normal class has 
a maximum value of 98.8% for a window size of 30-15 and 
a minimum value of 97.0% for a window size of 20-7. True 
positive of bradycardia has a maximum value of 92.03% related 
to 120-7 and the minimum value of 76.4% related to 20-15. True 
positive ratio of tachycardia also has a maximum value of 86.9% 
for 20-7 and the minimum value of 72.8% for 60-30. The false 
positive of bradycardia has been a range of [0.4%, 1.1%] for 30-
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15 and 30-7 respectively. The false positive of tachycardia has 
been minimum in both window sizes of 30-15 and 60-15 with 
the same values of 0.8 while it has been maximum in 20-7 with 
the value of 2.3. Accuracy (ACC) has also been calculated in a 
range of [82.96%, 92.03%] related to 60-30 and 120-7. Positive 
predictive value (PPV) for bradycardia has a minimum value 
of 98.67% for 30-7 and a maximum value of 99.49% for 30-7. 

PPV for tachycardia has a minimum value of 97.14% for 30-
20 and a maximum value of 99.03% for 60-15. The Matthew’s 
correlation coefficient (MCC) for bradycardia has a minimum 
value of 0.81% for 60-20 while it has a maximum value of 
0.93% for 120-7. MCC for tachycardia has a minimum value of 
0.78% for 60-30 while it has a maximum value of 0.88 for all 
windows with 7 minutes target length. 

Perform
ance

M
etrics 

Ob-
serva-
tion 
length 
(min)

20 30 60 120

Target 
length 
(min)

7 15 7 15 20 7 15 20 30 7 15 20 30

Loss 
Functions

MAPE 3.19 3.75 3.03 3.68 4.06 2.83 3.43 3.84 4.17 2.78 3.23 3.56 3.94
MAE 2.49 2.94 2.33 2.84 3.03 2.18 2.65 3.01 3.24 2.17 2.5 2.77 3.07
MSE 20.85 26.74 18.39 25.7 28.08 15.21 20.85 27.87 29.09 15.2 19.29 21.82 27.41

Confusion 
Matrix

T-Normal (%) 97.0 97.5 97.8 98.8 97.3 98.0 98.5 98.0 98.0 97.4 98.2 98.0 98.1
FP 
(Brady)

(%) 0.8+0. 0.6+0. 1.0+0.1 0.4+0. 0.7+0. 0.6+0. 0.7+0.0 0.3+0.2 0.7+0.1 0.8+0.00 0.8+0.00 0.5+0.00 0.9+0.0

FP 
(Tachy)

(%) 2.2+0.1 1.9+0.1 1.2+0. 0.8+0. 2+0.3 1.4+0. 0.8+0.0 1.7+0.3 1.3+0.1 1.8+0.2 1.0+0.1 1.5+0.2 1+0.1

T-Brady (%) 82.4 76.4 82.1 79.1 76.7 83.9 84.0 75.4 77.9 92.3 89.0 85.0 80.4
T-Tachy (%) 86.9 81.5 86.2 79.2 78.3 86.1 82.5 80.5 72.8 86.2 83.4 79.7 76

Confusion 
Matrix 
Metrics

ACC (%) 88.8 85.16 88.73 85.7 84.2 89.33 88.33 84.8 82.96 92.03 90.23 87.63 84.86
PPV 
(Brady)

(%) 99.03 99.22 98.67 99.49 99.09 99.28 99.17 99.34 98.98 99.14 99.1 99.41 98.89

PPV 
(Tachy)

(%) 97.42 97.6 98.62 99.0 97.14 98.4 99.03 97.57 98.11 97.73 98.69 97.91 98.57

MCC 
(Brady)

0.86 0.82 0.85 0.84 0.82 0.87 0.87 0.81 0.83 0.93 0.91 0.88 0.84

MCC 
(Tachy)

0.88 0.84 0.88 0.84 0.82 0.88 0.86 0.83 0.78 0.88 0.86 0.83 0.81

Table 1: The Validation Loss Values as well as Classification Performance for Various Observation and Target Lengths in 
HR.

Table. 2 shows the performance of the proposed model for SBP 
assumed on two normal and hypo-tension classes. According 
to the table, the SBP model performed best for the MAPE and 
MAE both in 120-7observe-target windows with values of 
4.69% and 5.93 while MSE performed best in 60-7 window 
size with a value of 103.4. Also, MAPE and MAE have had 
maximum values of 6.88% and 8.46 for a window size of 60-
30 and MSE has had the maximum value of 164.31 for 120-30. 
True positive ratio besides false positive ratios have shown their 
best values of 98.38% and 1.62% respectively both for 60-30. 

They also have had their worst values of 96.75% and 3.25% both 
for 20-7 window sizes. True positive ratio and false negative 
ratio both have had the best performance in 120-7 window size 
and the worst one in 60-30 with values of 79.95% and 20.05% 
besides 61.30% and 38.7% respectively. Accuracy, MCC, and 
PPV have the maximum values of 88.56%, 97.51% and 0.78% 
all related to the 120-7 observe-target window size. On the other 
hand, ACC has a minimum value of 79.83% for 60-30, PPV has 
a minimum value of 95.81% for 20-7 and MCC has a minimum 
value of 0.64 for two 60-30 and 120-30 window sizes.
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Perform
ance

M
etrics 

Observation 
length (min)

20 30 60 120

Target 
length 
(min)

7 15 7 15 20 7 15 20 30 7 15 20 30

Loss 
Functions

MAPE 5.61 6.37 5.33 6.19 6.52 4.93 6.02 6.44 6.88 4.69 5.67 6.01 6.82
MAE 7.11 7.97 6.73 7.73 8.12 6.26 7.50 7.86 8.46 5.93 7.09 7.47 8.36
MSE 137.98 156.55 121.76 145.8 156.5 103.4 139.2 143.05 161.83 103.91 128.1 136.37 164.31

Confusion 
Matrix

TNR (%) 96.75 97.38 97.38 98.08 97.97 97.97 97.70 97.78 98.38 97.18 98.2 98.2 97.85
FPR (%) 3.25 2.62 2.62 1.93 2.02 2.02 2.30 2.23 1.62 2.82 1.8 1.8 2.15
TPR (%) 74.45 67.47 76.08 66.90 66.40 75.88 70.25 67.12 61.30 79.95 70.53 67.8 62.3
FNR (%) 25.55 32.52 23.93 33.10 33.60 24.12 29.75 32.88 38.7 20.05 29.48 32.2 37.7

Confusion 
Matrix 
Metrics

ACC (%) 85.6 82.42 86.72 82.48 82.18 86.92 83.97 82.45 79.83 88.56 84.36 83.0 80.07
PPV (%) 95.81 96.25 96.66 97.2 97.04 97.4 96.82 96.79 97.41 96.59 97.51 97.41 96.66
MCC 0.73 0.68 0.75 0.68 0.67 0.75 0.7 0.68 0.64 0.78 0.71 0.69 0.64

Table 2: The Validation Loss Values as well as Classification Performance for Various Observation and Target Lengths in 
SBP.

Table. 3 is a description of the MBP model based on two different 
classes of normal and hypo-tension. MAPE, MAE, and MSE are 
in the ranges of [4.45, 6.47], [3.31, 4.93], and [35.58, 61.38] re-
spectively which all minimums are related to 120-7 and the max-
imums of MAPE and MAE both occurred in 60-30 though the 
maximum of MSE is in 120-30. Also, the true negative ratio with 
the range of [93.3, 95.9] along with the false positive ratio in the 
range of [4.1, 6.7] and PPV with the range of [92.39, 94.61] have 
had their best and worst values in the same window sizes of 60-

30 and 30-7 respectively. True positive ratios with values in the 
range of [72.1, 86.6] and false negative ratios with values in the 
range of [13.4, 27.9] both have performed well in 120-7 while 
they have had their lowest achievements in 60-30. ACC with 
values between 84.52 related to 30-15 and 90.58 related to 120-7 
has carried the least and greatest results respectively. Finally, the 
results of MCC with the minimum amount of 0.7 associated with 
120-7 and the maximum amount of 0.81 associated with 30-15, 
30-20, and 60-30 are seen in the table below.
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 Perform
ance 

 M
etrics  

Observation 

length (min) 
30 60 120 

Target 

length (min) 
7 15 20 7 15 20 30 7 15 20 30 

Loss 

Functions 

MAPE  5.09 5.97 6.44 4.63 5.61 6.11 6.47 4.45 5.4 5.88 6.44 

MAE  3.8 4.53 4.85 3.47 4.21 4.59 4.93 3.31 4.01 4.43 4.88 

MSE  44.26 55.45 59.94 36.40 47.9 57.16 59.64 35.58 45.23 56.48 61.38 

Confusion 

Matrix 

TNR (%) 93.3 94.67 94.58 95.17 95.2 95.03 95.9 94.58 95 94.88 95.33 

FPR (%) 6.7 5.33 5.42 4.83 4.8 4.98 4.1 5.42 5 5.12 4.67 

TPR (%) 81.4 74.38 74.72 83.93 77.68 76.33 72.1 86.6 82.04 79.33 75.15 

FNR (%) 18.6 25.62 25.27 16.07 22.32 23.67 27.9 13.4 17.95 20.67 24.85 

Confusion 

Matrix 

Metrics 

ACC (%) 87.35 84.52 84.65 89.55 86.43 85.67 84.0 90.58 88.52 87.1 85.23 

PPV (%) 92.39 93.31 93.23 94.56 94.18 93.88 94.61 94.1 93.67 93.93 94.14 

MCC  0.75 0.7 0.7 0.79 0.74 0.72 0.7 0.81 0.77 0.75 0.71 

 

 

Table 4: Comparison of Fractional Differences with Orders 0.3, 0.4, 0.5, and 0.6, along with the Standard Difference of 0, for 

Observation-Target Lengths of 20-7 in HR. 

 

 

 

 

 0 0.3 0.4 0.5 0.6 

MAPE 7.54 5.09 5.77 7.15 10.26 

MAE 6.04 3.8 4.27 5.4 8.23 

MSE 79.64 44.26 53.5 70.56 19360 

Table 3: The Validation Loss Values as well as Classification Performance for Various Observation and Target Lengths in 
MBP.
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Tables 4 and 5 present a comparative analysis of network per-
formance based on varying orders of differencing and with the 
inclusion of no differencing input data, for both HR and MBP 
datasets. The observation-target length considered was 20-7, and 
the evaluation metrics used include MAPE, MAE, and MSE. 
The results indicate that the most favorable performances were 

achieved through differencing with an order of 0.3. However, it 
is noteworthy that, in Table 4, the MSE for HR was marginally 
lower when differencing was performed with an order of 0.4. 
Additionally, it is observed that as the order of differencing in-
creases, the performance deteriorates. This increasing trend keep 
preserving in incremental difference orders, such as 0.5 and 0.6.

0 0.3 0.4 0.5 0.6
MAPE 4.44 3.19 3.22 3.60 4.72
MAE 3.36 2.49 2.51 2.73 3.41
MSE 28.06 20.85 18.89 24.11 33.71

0 0.3 0.4 0.5 0.6
MAPE 7.54 5.09 5.77 7.15 10.26
MAE 6.04 3.8 4.27 5.4 8.23
MSE 79.64 44.26 53.5 70.56 19360

Table 4: Comparison of Fractional Differences with Orders 0.3, 0.4, 0.5, and 0.6, along with the Standard Difference of 0, for 
Observation-Target Lengths of 20-7 in HR.

Table 5: Comparison of Fractional Differences with Orders 0.3, 0.4, 0.5, and 0.6, along with the Standard Difference of 0, for 
Observation-Target Lengths of 20-7 in MBP.

Tables 6 and 7 provide a comparison between the proposed 
method and ARIMA (Autoregressive Integrated Moving Aver-
age), as a baseline solution, for forecasting HR, SBP, and MBP. 
The evaluation criteria include MAPE, MAE, and MSE. The as-

sessment is conducted based on two distinct observation-target 
lengths: 120-30 for Table 6 and 30-15 for Table 7. The results 
clearly demonstrate the superior performance of the proposed 
method across all three metrics when compared to ARIMA.

ARIMA Proposed Network
HR SBP MBP HR SBP MBP

MAPE 7.30 10.91 10.22 3.94 6.82 6.44
MAE 5.91 13.19 7.83 3.07 8.36 4.88
MSE 77.96 324.69 110.81 27.41 164.31 61.38

ARIMA Proposed Network
HR SBP MBP HR SBP MBP

MAPE 7.42 7.79 8.68 3.68 6.19 5.97
MAE 5.97 9.87 6.57 2.84 7.73 4.53
MSE 80.61 208.30 98.77 25.7 145.8 55.45

Table 6: Comparison of the proposed method with ARIMA for Observation-Target Lengths of 120-30 in HR, SBP, and MBP.

Table 7: Comparison of the proposed method with ARIMA for Observation-Target Lengths of 30-15 in HR, SBP, and MBP.

To assess the agreement between the deep learning model’s pre-
dictions and the actual observed values for the three different 
vital signs of HR, MBP, and SBP, we employed Bland-Altman 
plots and presented the results in Figure 4. In the subplots (Fig-
ure. 4a, b, and c), the model’s output for HR, MBP, and SBP are 

compared to actual measurements across various time windows, 
respectively, that shows both acceptable bias and standard devi-
ation. In Figure 5 the deep learning model predictions are plotted 
against the actual values for HR, MBP, and SBP in 120-30 time 
window. 
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MAE 5.97 9.87 6.57 2.84 7.73 4.53 

MSE 80.61 208.30 98.77 25.7 145.8 55.45 

 

Figure 4: Bland-Altman Assessments for the Agreement between the Predicted Values and the Observed Values Figure 4: Bland-Altman Assessments for the Agreement between the Predicted Values and the Observed Values

Figure 5: The Predicted Values vs the Observed Values
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Figure 5: The Predicted Values vs the Observed Values 

4. Discussion
Our study used the three HR, SBP, and MBP time-series data 
from the MIMIC-III database for prediction. Each time series has 
been made stationary in preprocessing step by using fractional 
derivatives and preserving most of the time series information. 

Noticeable improvements are visible in using fractional order 
in all criteria according to Table 4 and Table 5. Complementary 
results provided for higher order differences (0.4, 0.5, and 0.6) 
in Tables 6 and 7 in which the deterioration of the network’s 
performance shown by calculating MAPE, MAE, and MSE. It 
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shows that preserving history of time series utilizing by fractional 
differencing has remarkable impact on the forecasting algorithm, 
however, the sophisticated part is to find out the optimum order. 

In the following step to forecast time series in a multi-step 
manner, we exploited a deep neural network which is a 
combination of CNNs with skip connections and Bi-LSTM. The 
proposed architecture is more efficient than the normal CNNs [5, 
7, and 24]. Evaluating the performance of the model based on 
the regression criteria reveals how much the predicted signal is 
similar to the actual signal. These criteria are beneficial to show 
the power of the model for the simulation of exact values of 
signal even with its fluctuation in the future which is important 
to make sense of events probably will occur in the specified 
future time for the clinicians. On the other hand, evaluating the 
performance of the model based on criteria calculated from the 
confusion matrix is essential due to classifying the predicted 
signal based on a threshold to alarm when an intended event 
is likely to happen. Although, this kind of evaluation cannot 
consider a main reference due to the inherent error of threshold 
besides the lack of global standard values. Therefore, we 
calculated ACC, PPV, and MCC in addition to four confusion 
matrix categories (True Positive, False Positive, True Negative, 
and False Negative). It seems that the suggested model 
performance with ACC, PPV, and MCC scores of more than 0.8 
could be a reliable model to forecast vital signs such as HR, SBP, 
and MBP during surgery or in ICU [27]. However, when the 
target size increases to 30 min this performance decay to almost 
0.7. Such prognostic performance for patients in ICUs could be 
considering as promising results for preventing adverse clinical 
events and enhancing patient care [3,5,7,8].

Furthermore, the study showed a relatively narrow difference 
between the maximum and the minimum values of regression 
criteria (MAPE, MAE, and MSE). Model performance based 
on regression criteria as described in the results section with 
details, have mostly the best values in a window size that has 
the longest observation length and the lowest target length i.e., 
120-7. This makes sense with the theory that says the model 
performs better when it sees longer signals as it can find more 
patterns and also it is quite clear that less target window has 
been a more precise prediction [10]. But it is worth noting that 
the longer the observed length, the more cost we pay, and it is 
preferred to make a system that can forecast more future time 
based on less input length. In this regard, the proposed structure 
has the advantage of having a narrow range of maximum and 
minimum for each criterion which means it also performs well 
for lower cost strategies such as 60-30 observe-target window. 
As a comparison of the results, Liu et al. in 2019 has reported 
MAPE values of 7.41% and 6.17% for HR and SBP respectively 
for an observe-target window size of 20-7 when the results of 
the proposed method are 3.19% for HR and 5.61% for SBP in 
the same window size which indicate that our proposed method 
performed better [10]. 

As illustrated in Figure. 4, the small mean difference in all nine 
plots suggests minimal bias in the model’s predictions, indicating 
reasonable accuracy. As the prediction windows get longer, the 
spread on the y-axis widens which means the model prediction 

may tolerate the acceptable range. More specificly, in Figure. 
4a the deviation range is of approximately ±7 beats per minutes 
in HR signal forecasting for various time windows. It indicates 
that the model can estimate heart rate values within this error 
range. According to inherent noise measurment and accuracy 
of devices, such an error range in HR is promising. In Figure. 
4b, the higher mean differences in SBP models, compared to 
HR models, imply a greater bias. Also, deviation increases to 
approximately ±20 mmHg. It showed that forecasting the blood 
pressure vital sign is complicated as it is the holistic complex 
signal derived from cardivascular system interacting with the 
whole body. In Figure. 4c, the mean difference in MBP models 
is greater than in HR models but comparable to SBP models. 
The deviation is narrower than the SBP models i.e. ±12 mmHg, 
indicating that MBP signal is well-behaved than SBP to model 
and forecast.

As for time series visual assemnet, Figure. 5 compares 
the forecasted HR, MBP, and SBP values with the actual 
measurements over time. The prediction line closely follows the 
ground truth line in Figure. 5a, indicating that the model captures 
the overall trend of HR. There are minor deviations, but overall, 
the model seems to have produced reasonabe results. In Figure. 
5b, the predicted SBP shows more variation than in the HR plot, 
with noticeable differences at certain points. However, there is 
still alignment between predicted and actual values, suggesting 
that the model provides fair predictions. In Figure. 5c, SBP 
predictions are compared to actual measurements. Similar to 
MBP, there are deviations between the lines, especially during 
sharp rises or falls in blood pressure estimations. 

5. Conclusion
In this paper, we proposed an effective way to directly forecast 
vital time series such as HR, SBP, and MBP for several minutes 
in advance. We make each time series stationary by fractional 
difference to preserve their main history. We showed that this 
algorithm has improved the MAPE reported by the last study. 
The forecasting process provides golden few minutes preventing 
adverse events and allows the physicians to be prepared 
and alerted and to intervene properly. For this purpose, we 
demonstrated the efficiency of the proposed method for use in 
the ICU to alarm adverse clinical events such as Bradycardia, 
Tachycardia, and Hypo-tension by evaluating criteria driven 
by a confusion matrix. Since the model structure is in a high 
interaction with the input type, it seems that our proposed 
model is not compatible with the multivariate input strategy 
and it is required some structural modification which would be 
considered in our future work.

References
1.	 ElMoaqet, H., Tilbury, D. M., & Ramachandran, S. K. 

(2016). Multi-step ahead predictions for critical levels in 
physiological time series. IEEE transactions on cybernetics, 
46(7), 1704-1714.

2.	 Fossion, R., Alvarez-Millán, L. A., Miranda-Velazco, E., 
Garduño, F. G., Padilla, S. R. M., Zapata-Fonseca, L. I., 
... & Estañol, B. (2019, April). On the role of continuous 
physiological monitoring and time-series analysis in 
medical prognosis. In AIP Conference Proceedings (Vol. 

https://doi.org/10.1109/TCYB.2016.2561974
https://doi.org/10.1109/TCYB.2016.2561974
https://doi.org/10.1109/TCYB.2016.2561974
https://doi.org/10.1109/TCYB.2016.2561974
https://doi.org/10.1063/1.5095922
https://doi.org/10.1063/1.5095922
https://doi.org/10.1063/1.5095922
https://doi.org/10.1063/1.5095922
https://doi.org/10.1063/1.5095922


Copyright: ©2024 Mojtaba Hajihasani, et al. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.

   Volume 3 | Issue 2 | 11Dearma J Cosmetic Laser Therapy, 2024 https://opastpublishers.com

2090, No. 1). AIP Publishing.
3.	 Deng, Y., Liu, S., Wang, Z., Wang, Y., Jiang, Y., & Liu, B. 

(2022). Explainable time-series deep learning models for 
the prediction of mortality, prolonged length of stay and 
30-day readmission in intensive care patients. Frontiers in 
Medicine, 9, 933037.

4.	 Sun, G., Matsui, T., Watai, Y., Kim, S., Kirimoto, T., Suzuki, 
S., & Hakozaki, Y. (2018). Vital‐SCOPE: Design and 
Evaluation of a Smart Vital Sign Monitor for Simultaneous 
Measurement of Pulse Rate, Respiratory Rate, and Body 
Temperature for Patient Monitoring. Journal of Sensors, 
2018(1), 4371872.

5.	 Masum, S., Liu, Y., & Chiverton, J. (2018). Multi-step time 
series forecasting of electric load using machine learning 
models. In Artificial Intelligence and Soft Computing: 
17th International Conference, ICAISC 2018, Zakopane, 
Poland, June 3-7, 2018, Proceedings, Part I 17 (pp. 148-
159). Springer International Publishing.

6.	 Lim, B., & Zohren, S. (2021). Time-series forecasting with 
deep learning: a survey. Philosophical Transactions of the 
Royal Society A, 379(2194), 20200209.

7.	 Masum, S., Chiverton, J. P., Liu, Y., & Vuksanovic, B. 
(2019). Investigation of machine learning techniques in 
forecasting of blood pressure time series data. In Artificial 
Intelligence XXXVI: 39th SGAI International Conference on 
Artificial Intelligence, AI 2019, Cambridge, UK, December 
17–19, 2019, Proceedings 39 (pp. 269-282). Springer 
International Publishing.

8.	 Narayan Shukla, S., & Marlin, B. M. (2020). Integrating 
Physiological Time Series and Clinical Notes with Deep 
Learning for Improved ICU Mortality Prediction. arXiv 
e-prints, arXiv-2003.

9.	 Bontempi, G., Ben Taieb, S., & Le Borgne, Y. A. (2013). 
Machine learning strategies for time series forecasting. 
Business Intelligence: Second European Summer School, 
eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial 
Lectures 2, 62-77.

10.	 Liu, S., Yao, J., & Motani, M. (2019, November). Early 
prediction of vital signs using generative boosting via 
LSTM networks. In 2019 IEEE International Conference 
on Bioinformatics and Biomedicine (BIBM) (pp. 437-444). 
IEEE.

11.	 Youssef Ali Amer, A., Wouters, F., Vranken, J., de Korte-
de Boer, D., Smit-Fun, V., Duflot, P., ... & Vanrumste, B. 
(2020). Vital signs prediction and early warning score 
calculation based on continuous monitoring of hospitalised 
patients using wearable technology. Sensors, 20(22), 6593.

12.	 Watkinson, P. J., Barber, V. S., Price, J. D., Hann, A., 
Tarassenko, L., & Young, J. D. (2006). A randomised 
controlled trial of the effect of continuous electronic 
physiological monitoring on the adverse event rate in high 
risk medical and surgical patients. Anaesthesia, 61(11), 
1031-1039.

13.	 Watkinson, P. J., & Tarassenko, L. (2012). Current and 
emerging approaches to address failure-to-rescue. The 
Journal of the American Society of Anesthesiologists, 
116(5), 1158-1159.

14.	 Hyndman, R. J. (2018). Forecasting: principles and 
practice. OTexts.

15.	 Lynn, L. A., & Curry, J. P. (2011). Patterns of unexpected 
in-hospital deaths: a root cause analysis. Patient safety in 
surgery, 5, 1-25.

16.	 Kristoufek, L. (2014). Measuring correlations between 
non-stationary series with DCCA coefficient. Physica A: 
Statistical Mechanics and its Applications, 402, 291-298.

17.	 Jebb, A. T., Tay, L., Wang, W., & Huang, Q. (2015). Time 
series analysis for psychological research: examining and 
forecasting change. Frontiers in psychology, 6, 727.

18.	 Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in 
autoregressive-moving average models of unknown order. 
Biometrika, 71(3), 599-607.

19.	 Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. 
(1992). Testing the null hypothesis of stationarity against 
the alternative of a unit root: How sure are we that economic 
time series have a unit root?. Journal of econometrics, 54(1-
3), 159-178.

20.	 Chan, K.-S. & Cryer, J. D. (2008). Time series analysis with 
applications in R, Springer.

21.	 Lopez de Prado, M. (2018). Advances in financial machine 
learning (chapter 1). Advances in Financial Machine 
Learning, Wiley, 1st Edition (2018).

22.	 Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. W. H., 
Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-
III, a freely accessible critical care database. Scientific data, 
3(1), 1-9.

23.	 Hosking, J. R. M. 1981. Fractional differencing. Biometrika, 
68, 165-176.

24.	 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: 
Convolutional networks for biomedical image segmentation. 
In Medical image computing and computer-assisted 
intervention–MICCAI 2015: 18th international conference, 
Munich, Germany, October 5-9, 2015, proceedings, part III 
18 (pp. 234-241). Springer International Publishing.

https://doi.org/10.1063/1.5095922
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.3389/fmed.2022.933037
https://doi.org/10.1155/2018/4371872
https://doi.org/10.1155/2018/4371872
https://doi.org/10.1155/2018/4371872
https://doi.org/10.1155/2018/4371872
https://doi.org/10.1155/2018/4371872
https://doi.org/10.1155/2018/4371872
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1007/978-3-319-91253-0_15
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.1007/978-3-030-34885-4_21
https://doi.org/10.48550/arXiv.2003.11059
https://doi.org/10.48550/arXiv.2003.11059
https://doi.org/10.48550/arXiv.2003.11059
https://doi.org/10.48550/arXiv.2003.11059
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1109/BIBM47256.2019.8983313
https://doi.org/10.1109/BIBM47256.2019.8983313
https://doi.org/10.1109/BIBM47256.2019.8983313
https://doi.org/10.1109/BIBM47256.2019.8983313
https://doi.org/10.1109/BIBM47256.2019.8983313
https://doi.org/10.3390/s20226593
https://doi.org/10.3390/s20226593
https://doi.org/10.3390/s20226593
https://doi.org/10.3390/s20226593
https://doi.org/10.3390/s20226593
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://doi.org/10.1111/j.1365-2044.2006.04818.x
https://books.google.com/books?hl=en&lr=&id=_bBhDwAAQBAJ&oi=fnd&pg=PA7&dq=14.%09Hyndman,+R.+J.+%26+Athanasopoulos,+G.+2018.+Forecasting:+principles+and+practice,+OTexts.&ots=TjgZBgYQMH&sig=g9B5oEAAQb0vUgy31h0v7sOu40I
https://books.google.com/books?hl=en&lr=&id=_bBhDwAAQBAJ&oi=fnd&pg=PA7&dq=14.%09Hyndman,+R.+J.+%26+Athanasopoulos,+G.+2018.+Forecasting:+principles+and+practice,+OTexts.&ots=TjgZBgYQMH&sig=g9B5oEAAQb0vUgy31h0v7sOu40I
https://doi.org/10.1186/1754-9493-5-3
https://doi.org/10.1186/1754-9493-5-3
https://doi.org/10.1186/1754-9493-5-3
https://doi.org/10.1016/j.physa.2014.01.058
https://doi.org/10.1016/j.physa.2014.01.058
https://doi.org/10.1016/j.physa.2014.01.058
https://doi.org/10.3389/fpsyg.2015.00727
https://doi.org/10.3389/fpsyg.2015.00727
https://doi.org/10.3389/fpsyg.2015.00727
https://doi.org/10.1093/biomet/71.3.599
https://doi.org/10.1093/biomet/71.3.599
https://doi.org/10.1093/biomet/71.3.599
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/0304-4076(92)90104-Y
https://ssrn.com/abstract=3104847
https://ssrn.com/abstract=3104847
https://ssrn.com/abstract=3104847
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28

