
Journal of Sensor Networks and Data Communications

J Sen Net Data Comm, 2023

Optimizing Telemedicine Framework Using Fog Computing for Smart Healthcare
Systems

Research Article

Michael Enbibel Kelkile*

International Research Scholar, Ethiopia
*Corresponding Author
Michael Enbibel Kelkile, International Research Scholar, Ethiopia.

Submitted: 2023, Apr 15; Accepted: 2023, May 01; Published: 2023, Jun 22

 Volume 3 | Issue 1 | 01

Citation: Kelkile, M. E. (2023). Optimizing Telemedicine Framework Using Fog Computing For Smart Healthcare Systems. J Sen Net
Data Comm, 3(1), 01-24.

Abstract
The main aim of this research is to optimize the telemedicine framework using fog computing for smart healthcare
systems in IoT ecosystem. In this research we have studied about the historical background, different architectural
designs and approaches of the pre-existing telemedicine and smart healthcare systems. This research mainly
focuses on the drawbacks and different issues that arise while developing and implementing a smart telemedicine
system. We used Fog computing or fogging to solve the problems and also to optimize the telemedicine framework
with 263 ms for smart healthcare systems. Generally this research work proposes, validates and evaluates
telemedicine frameworks using Cloud Computing and Fog computing for smart healthcare systems. The research
also shows and guides how to optimize and overcome the drawbacks of the issues that arises mainly the Network
Latency issue. The finding in this project has a guide for the future in-order to come up with a sharp edged, most
reliable and robust smart healthcare system in telemedicine framework for IoT ecosystem. It can also be used as
a part of a smart healthcare system in the Smart cities in the future.

1. Introduction What is Telemedicine?
Telemedicine is a broad umbrella word that consists of different
infrastructures like information communication technologies
and healthcare institutions. The term was discovered in 1970 by
the World Health Organization (WHO) for diagnosing, treating,
and prevention of diseases [1]. As the term implies it is used to
treat a patient from a distance [1]. In general, telemedicine uses

information technologies to store, retrieve and execute the results
that are uploaded by the medical personnel in a given cross-
platform. The platforms can be a mobile application or a desktop
application that uses different communicational tools that are
available in information technology like cloud computing, big data
analysis, and computer networking to maintain the system.

1.1. Typical Telemedicine Framework

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

1

Optimizing Telemedicine Framework Using Fog
Computing For Smart Healthcare Systems

Dr. Michael Enbibel Kelkile* 1, a
. 1International Research Scholar, Ethiopia

a) Michael Enbibel Kelkile: Mickyenbi@gmail.com, https://orcid.org/0000-0002-6335-9817

Abstract: The main aim of this research is to optimize the telemedicine framework using fog
computing for smart healthcare systems in IoT ecosystem. In this research we have studied about
the historical background, different architectural designs and approaches of the pre-existing
telemedicine and smart healthcare systems. This research mainly focuses on the drawbacks and
different issues that arise while developing and implementing a smart telemedicine system. We
used Fog computing or fogging to solve the problems and also to optimize the telemedicine
framework with 263 ms for smart healthcare systems. Generally this research work proposes,
validates and evaluates telemedicine frameworks using Cloud Computing and Fog computing for
smart healthcare systems. The research also shows and guides how to optimize and overcome the
drawbacks of the issues that arises mainly the Network Latency issue. The finding in this project
has a guide for the future in-order to come up with a sharp edged, most reliable and robust smart
healthcare system in telemedicine framework for IoT ecosystem. It can also be used as a part of a
smart healthcare system in the Smart cities in the future.

Introduction
What is telemedicine?

Telemedicine is a broad umbrella word that consists of different infrastructures like information
communication technologies and healthcare institutions. The term was discovered in 1970 by the
World Health Organization (WHO) for diagnosing, treating, and prevention of diseases [1]. As
the term implies it is used to treat a patient from a distance [1]. In general, telemedicine uses
information technologies to store, retrieve and execute the results that are uploaded by the
medical personnel in a given cross-platform. The platforms can be a mobile application or a
desktop application that uses different communicational tools that are available in information
technology like cloud computing, big data analysis, and computer networking to maintain the
system.

Typical Telemedicine Framework

Figure 1. Typical Telemedicine Frameworks [10] Figure 1: Typical Telemedicine Frameworks [10]

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 02

1.3. The Historical Background of Telemedicine
The term was originated in 1970 but the information was
exchanged in Europe using heliographs or bonfires. During the
civil war, a telegraph was used to order medical supplies. In 1930
radio was used to transfer medical information in rural areas. It was
practically implemented by the National Aeronautics and Space
Administration (NASA) when physicians on earth successfully
monitored the health of astronauts in space [1]. They were able
to monitor the blood pressure, heart rate, respiration rate, and
temperature of the astronauts in space from earth.

In 1964 after the invention of television in 1950 there was
successful video communication between two hospitals found in
America. In 1967 there was a system deployed to link the United
States Airport terminals to hospitals [1].

2. Types of Telemedicine
2.1. Asynchronous Telemedicine
This type of telemedicine mainly focuses on the store, retrieves
and forward medical information when needed. This system
doesn’t need live communication or in other words, both parties
don’t need to communicate or connect to the system at the same
time [1]. Datum can be collected, organized, and stored. Any party
of the system can access or retrieve the datum for further diagnosis
and analysis whenever it is feasible.

For example, an ECG image with the patient’s medical history
can be sent via email to a specialist that is located in a different
location for further examination and diagnosis.
In this type of telemedicine smart healthcare system, we need to
be careful on the Datum generated by both parties to store, retrieve
and forward datum from the system and into the system. This is
directly proportional to the number of users that use the system.
In other words as the number of users that log in to the system
increases the data that is going to be produced also increases so
we need to design the database management system with the
general architecture of the system. Big Data will be generated as
the number of users increase. Hence we also have to use Big Data
manipulation tools and techniques.

2.3. Synchronous Telemedicine
This type of telemedicine differs from the above because both
parties should login simultaneously. In other words, it needs live
communication between the health professional and the patient
using wired or wireless devices for live communications such
as Microphone, Speaker, and a video camera. In our context,
Synchronous telemedicine can be implemented using LIVE

communication tools like videoconference and Audios.

In this type of telemedicine, we need to focus more on the network
architecture and network types that are useful for having live
communication [1]. This includes the internet speed and the
bandwidth has a significant impact in having a smooth LIVE
communication. So this type of telemedicine application requires
advanced wired and wireless communication network devices
and network types are required with an optimal computer LIVE
broadcasting network.

In this scenario, as both parties need to login and communicate at the
same time simultaneously we need to have a LIVE communication
so we need to think of the network capability and efficiency of the
network so we need to think of different network types like cloud
networks and hybrid approaches to maintain live communication.
Better Delay than Loss for Live communications.

2.4. The Services of Telemedicine
Telemedicine services can be of two types that are primary care
service and specialist referral service to achieve medical care
[1]. The specialist and the patient can use video conference.

2.5. Primary Care Services
This type of telemedicine services uses asynchronous telemedicine
where the health professionals and the patient uses the data centers
for storing, retrieving and forwarding information from the patient
to the health professional without LIVE communication just by
mining data about the patient medical history for further diagnosis
and treatment it can be combined with nurses' visits [20]. In this
type of telemedicine service the main problem is the database
management as the number of users increase so we need a
systematic approach for managing and manipulating Big Data.

2.6. Specialist Referral Service
This type of telemedicine service uses synchronous telemedicine
where both parties that are the patient and the Specialist should
login to the system simultaneously at the same time. Hence it
uses a LIVE communication between the two parties [20]. The
main problem in this system is the type of network used meaning
because we use video conferencing and online examination the
network should be robust, reliable and accessible. So we need a
wider bandwidth network connection and a fast internet access
with a cloud network for cost minimization. Better delay than loss
should be considered during communication. We can use a hybrid
cloud network to minimize the cost and accessibility.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 03

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

3

The services of telemedicine
Telemedicine services can be of two types that are primary care service and specialist referral
service to achieve medical care [1]. The specialist and the patient can use video conference.
Primary care services
 This type of telemedicine services uses asynchronous telemedicine where the health
professionals and the patient uses the data centers for storing, retrieving and forwarding
information from the patient to the health professional without LIVE communication just by
mining data about the patient medical history for further diagnosis and treatment it can be
combined with nurses' visits [20]. In this type of telemedicine service the main problem is the
database management as the number of users increase so we need a systematic approach for
managing and manipulating Big Data.
Specialist referral service
This type of telemedicine service uses synchronous telemedicine where both parties that are the
patient and the Specialist should login to the system simultaneously at the same time. Hence it
uses a LIVE communication between the two parties [20]. The main problem in this system is
the type of network used meaning because we use video conferencing and online examination
the network should be robust, reliable and accessible. So we need a wider bandwidth network
connection and a fast internet access with a cloud network for cost minimization. Better delay
than loss should be considered during communication. We can use a hybrid cloud network to
minimize the cost and accessibility.

Figure 2 Block diagram of types and services of Telemedicine

Figure 2: Block diagram of types and services of Telemedicine

3. Methodology Fog Computing
Fogging is a computer networking model that is found between
the cloud service and the devices we use in the network .Fogging
can be used for dumping processes and resources on the device
before the cloud; mostly it is embedded on the network devices
that are part of the system, while the data is going to be stored
in the private or public cloud system provided by cloud service
providers like Amazon or Google .Fog computing reduces the
processing time with few resources consumed while manipulating
a given system. In January 2014 it was first implemented by Cisco
Systems [12].

The main advantage of using fog computing is for resource
management and allocation through the network for minimizing the
latency and increase the efficiency of the system by decentralizing
the nodes while storing the information on the cloud [15].

3.1. Benefits of Fog Computing
Fogging has several benefits with reducing latency and increasing
the speed of processing for many cross-platforms like Internet of
Things (IoT), Big Data analysis, or Smart systems that are confined
in Smart cities [6].

A. Reduced Latency
Fog computing reduce latency because it is much closer to the
edges than a device to cloud approach, hence while we are using
fog computing in between the device and the cloud the fog will
act as an intermediary layer that can be used for facilitating the
interaction of the devices with the cloud by communicating both
ends [24]. This will result in reduction of latency during the data
flow of the system.

B. Privacy
When we compare the direct cloud approach with fogging we can

maintain a reduction of propagation of datum, the data center that
can’t be controlled by the system user is the one which makes
the system less secured. Hence if we use fogging the system will
become highly secured.

C. Energy Efficiency
Using fog computing we can easily increase the energy efficiency
of the sensors on the system using sleep mode. We can also use
gateways as proxies to extend the time of hibernation. While the
sensors are in hibernate mode, the gateway will be responsible for
any calls or system updates until the sensors wakes up.
On the other hand those who consume energy for computations on
the system can be minimized by battery embedded nodes on the
fog layer.

D. Bandwidth
With respect to a direct cloud approach, fogging reduces the datum
which is going to be stored into the data centers. One of the ways
in which we can reduce the datum that is going to be stored is by
filtering, analyzing, pre-processing or compressing the datum that
is going to be stored.

E. Scalability
Internal computation using fogging will increase the scalability of
the telemedicine framework as well as the smart healthcare system
by minimizing the centralized resource sharing that brought dead-
locks to our system.

F. Dependability
By fogging we can also increase dependability issues of our smart
healthcare system. We can also avoid redundancy by using nodes
that can give same functionalities.

The nodes that are distributed closer to the sensor using distributed

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 04

data flow will result in independency of the system more than
those who use centralized bottleneck architecture for resource
allocation.

G. Context
As we are using fog computing the fog nodes are the first system
components that can identifies about a given action held in the
system [26].

4. Identified Issues
4.1. Infrastructural Issues: This issue arises during implementation
phase while we try to implement our smart healthcare system. For
example when we are using a cloud infrastructure we need to have
a stable agreement with the cloud service vender as well as the
internet service provider for sustainable service offer. In-Addition
our smart healthcare system needs a higher bandwidth and in
some areas while the cost might be expensive for both the system
developer as well as the user.
4.2. Implementation Issues: In this research Implementation
is also one of the issues that arise due to vast need of System
Requirements and financial budgets to develop and test the smart
healthcare system. In-Addition we need to give training for village
end technicians, IT staff and local doctors using a user guide
manual of how to use the system.
4.3. Acceptance Issues: For village doctor and villagers, using
high end technology may be too obstructing. However, once the
benefits are seen, the acceptance rate will likely be high such as
has been seen with mobile telephony and rural internet services.
4.4. Data Management Issues: - Big Datum will be produced
while the health professionals as well as patients start signing up
and using the system. In this scenario the patient history and the
patient record we will be stored on the cloud and hence as the
number of patients that use the system increases also the Datum
will also increase because they are directly proportional.
4.5. Security Issues: - All the information about the patient should

be kept safe and secured while storing all data in Data warehouse
and Cloud. So we need to have a highly secured and authenticated
login platform for both end users.
Bottleneck system approach issues: - This issue arises while our
smart healthcare system uses directly the cloud all the users will
login into same cloud service provided by the system and in this
case while they are sharing a common resource at the same time
will result in deadlock [10]. Network latency issues: - This issue
arises while we are using and accessing Telemedicine framework
for smart healthcare from the cloud. Latency is the time delay that
happens when we are trying to access resources from the cloud
and internet service provider [26]. In this research we have used
this issue mainly in-order to optimize telemedicine framework for
smart healthcare systems. Generally the latency is the time it takes
to access a given resource from source to destination as we used
Round Time Trip (RTT) to calculate the time delay using Time
stamps.

5. Solutions
Optimizing the telemedicine framework by using the latest
network technology like fog computing or fogging.
Using Fog Computing we can maintain agility across the network
resulting in which it is going to reduce congestion and Latency
[12].
Using Fog Distributed Data Flow will result in the elimination of
Bottlenecks that come from centralized Computing systems [14].

6. Fog Computing Main Methodologies
6.1. Distributed Data Flow (DDF) Topology
This type of topology is mainly used to reduce the latency of
the system. This type of network topology uses online servers
and services that are provided by the cloud [10]. It also uses fog
computing to distribute the system with various locations integrated
with the edge layer that has sensors and different devices that
makes up the smart healthcare system in telemedicine framework.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 05

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

6

Solutions
Optimizing the telemedicine framework by using the latest network technology like fog
computing or fogging.
Using Fog Computing we can maintain agility across the network resulting in which it is going
to reduce congestion and Latency [12].
Using Fog Distributed Data Flow will result in the elimination of Bottlenecks that come from
centralized Computing systems [14].

Fog computing main methodologies
 Distributed Data Flow (DDF) Topology
This type of topology is mainly used to reduce the latency of the system. This type of network
topology uses online servers and services that are provided by the cloud [10]. It also uses fog
computing to distribute the system with various locations integrated with the edge layer that has
sensors and different devices that makes up the smart healthcare system in telemedicine
framework.

Figure3. Topology of Distributed Data Flow (DDF) using Fog computing

Figure 3: Topology of Distributed Data Flow (DDF) using Fog computing

6.1. System and Software requirements and steps for simulating
fog computing in a smart healthcare environmen
Step 1:- . First we need to download the ifogsim simulator from
the cloudsim lab that is provided by Melbourne university for
simulating and testing fog computing with cloud computing so

we need to visit The Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne using http://
www.cloudbus.org/cloudsim web link in- order to directly access
resources that are provided by the Melbourne university CLOUDS
lab [22].

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 06

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

7

System and software requirements and steps for simulating
fog computing in a smart healthcare environment

Step 1:- . First we need to download the ifogsim simulator from the cloudsim lab that is
provided by Melbourne university for simulating and testing fog computing with cloud
computing so we need to visit The Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, University of Melbourne using http://www.cloudbus.org/cloudsim web link in-
order to directly access resources that are provided by the Melbourne university CLOUDS lab

[22].

Figure 4 opening the CLOUDS Lab of Melbourne university

Figure 4: opening the CLOUDS Lab of Melbourne university

Step 2:- After we access the CLOUDS lab from Melbourne University in our case we are going to use fog computing for optimizing our
telemedicine framework for smart healthcare system so we need to go for the fog simulator provided by the university. So we will scroll
down until we found the ifogSim tool kit for fogging.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 07

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

8

Step 2:- After we access the CLOUDS lab from Melbourne University in our case we are
going to use fog computing for optimizing our telemedicine framework for smart healthcare
system so we need to go for the fog simulator provided by the university. So we will scroll down
until we found the ifogSim tool kit for fogging.

Figure 5 downloading iFogSim files Figure 5: downloading iFogSim files

Step 3:- When we click the link that is provided by the university for IfogSim it will automatically redirect us to the GitHub that is
linked with the zip file to be downloaded. [22]

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 08

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

9

Step 3:- When we click the link that is provided by the university for IfogSim it will
automatically redirect us to the GitHub that is linked with the zip file to be downloaded. [22]

Figure 6 Redirecting to the GitHub repository to get the zip file

Figure 6: Redirecting to the GitHub repository to get the zip file

Step 4:- Then when we click download zip, it will automatically download the ifogSim simulator zip files into our computer and we will
have a zip file which says IfogSim Main.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 09

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

10

Step 4:- Then when we click download zip, it will automatically download the ifogSim
simulator zip files into our computer and we will have a zip file which says IfogSim Main.

Figure 7 Fog zip file downloaded from the GitHub that was provided by Melbourne

University CLOUDS Lab

Figure 7: Fog zip file downloaded from the GitHub that was provided by Melbourne University CLOUDS Lab

Step 5:- After we download the zip file from the GitHub we need to extract the file for further use in our Java project.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 10

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

11

Step 5:- After we download the zip file from the GitHub we need to extract the file for further
use in our Java project.

Figure 8 extracting the downloaded iFogSim

Figure 8: extracting the downloaded iFogSim

Step 6:- After downloading and extracting iFogSim Zip files from Melbourne University CLOUDS lab the next step is to install Eclipse
software for java developers in order to create and manage our project using the iFogSim files that are already downloaded. So we need
to download and install Eclipse for Java developers’ software.

Step 7:- After downloading and installing the Eclipse java developers’ software we need to start the Eclipse software to create a project
for simulation.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 11

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

12

Step 6:- After downloading and extracting iFogSim Zip files from Melbourne University
CLOUDS lab the next step is to install Eclipse software for java developers in order to create
and manage our project using the iFogSim files that are already downloaded. So we need to
download and install Eclipse for Java developers’ software.
Step 7:- After downloading and installing the Eclipse java developers’ software we need to
start the Eclipse software to create a project for simulation.

Figure 9 initiating our Eclipse IDE java developers software

Figure 9: initiating our Eclipse IDE java developers software

Step 8:- After opening the Eclipse IDE for Java Developers we will have a wizard that asks for our confirmation in launching or
executing the Eclipse IDE workspace.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 12

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

13

Step 8:- After opening the Eclipse IDE for Java Developers we will have a wizard that asks
for our confirmation in launching or executing the Eclipse IDE workspace.

Figure 10 Launching our Eclipse Java Workspace

Figure 10: Launching our Eclipse Java Workspace

Step 9:- After launching our Eclipse IDE for java developers we need to create a project which is going to be connected with the
iFogSim Simulator on the Melbourne University. So first we need to create a new java project as shown below.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 13

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

14

Step 9:- After launching our Eclipse IDE for java developers we need to create a project which
is going to be connected with the iFogSim Simulator on the Melbourne University. So first we
need to create a new java project as shown below.

Figure 11 creating a Java project by connecting to the iFogSim files

Figure 11: creating a Java project by connecting to the iFogSim files

Step 10:- At this moment while we are giving the location information we need to use and link our project with theiFogSim extracted
file location.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 14

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

15

Step 10:- At this moment while we are giving the location information we need to use and
link our project with the iFogSim extracted file location.

Figure 12 creating modules our java project Figure 12: creating modules our java project

Step 11:- If we click the next command button it will redirect us to the java build settings where we can define our modules and our
output folder for the source folders.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 15

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

16

Step 11:- If we click the next command button it will redirect us to the java build settings
where we can define our modules and our output folder for the source folders.

Figure 13 finishing and creating a simulation project with the iFogSim files

Figure 13: finishing and creating a simulation project with the iFogSim files

Step 12:- After we created our project on our java developer environment now we can manipulate and assign different values while we
want to simulate depending on the environment we are testing our smart healthcare scenarios. For example in the following screen shoot
I have tried to show how we can monitor a patient heartbeat by assigning heartbeat level for the sensor so that it will automatically alert
the health professional when the patient has a lower or higher heartbeat on the EEG.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 16

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

17

Step 12:- After we created our project on our java developer environment now we can
manipulate and assign different values while we want to simulate depending on the environment
we are testing our smart healthcare scenarios. For example in the following screen shoot I have
tried to show how we can monitor a patient heartbeat by assigning heartbeat level for the sensor
so that it will automatically alert the health professional when the patient has a lower or higher
heartbeat on the EEG.

Figure 14 how we can assign the heartbeat level for monitoring the patient

Figure 14: how we can assign the heartbeat level for monitoring the patient

Step 13:- Creating topology for both cloud and fog
Creating a cloud topology for comparison as and for knowing the system topological design while using a resource from the cloud and
monitoring the pain of the patient.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 17

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

18

Step 13:- Creating topology for both cloud and fog
Creating a cloud topology for comparison as and for knowing the system topological design
while using a resource from the cloud and monitoring the pain of the patient.

Figure 15 CloudSim topology for cloud based pain monitoring

Figure 15: CloudSim topology for cloud based pain monitoring

Step 14:- iFogSim topology design for comparison and showing the distributed data flow, hence we used fog Devices for distribution
for the proposed patient health pain monitoring.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 18

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

19

Step 14:- iFogSim topology design for comparison and showing the distributed data flow,
hence we used fog Devices for distribution for the proposed patient health pain monitoring.

Figure 16.Fog topology for comparison with cloud topology with a distributed data

flow approach

Figure 16: Fog topology for comparison with cloud topology with a distributed data flow approach

From the above topological design there is a big difference on the
way the edges are connected to proxy gateway in order to share
resource that has been provided by the cloud service vendor.
For example as the number of patients and health professional
increases the data that is going to be stored on the cloud also
increase in creating Big Data. Typical a cloud system approach
uses a bottleneck approach by just giving one proxy gateway for
all sensors and devices that are integrated in the system [10]. So
this show that whenever all the sensors and edges are trying to
access a same resource there will be traffic as well conflictions
in the system due to priority assignment. In this scenarios while
retrieving and sharing same resources from the cloud will have a
dead lock.

6.2. System Overview and Architectural Design in Real World
Implementation
In this optimization process we used fogging in-order to solve
different issues that were listed in the Article. We mainly focus
on the latency issue in our research and we have designed and
come up with new approach that can help the professionals who
are interested in this particular area. We also recommend different
ways and methodologies for the upcoming era as a future work.

6.3. Architectural Design
To build and test the optimized smart healthcare System we mainly
need to have three client modules.
1. The patient client: an indoor positioning system, with Bluetooth
beacons planted in the test site, will be used to localize a patient’s
Android phone.
2. The data Collector client: A raspberry Pi is going to be used

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 19

as a data collector client from different simulated sensors and send
data to the server to be further processed.
3. The Smart healthcare client: An Android tablet is going to
be used to receive notification of the patients alarm and collect
position information of the patient for finding the patient.

Cloud services from Amazon Web Services (AWS)-EC2 in-
stance, is going to be used as a cloud back-end server for the
healthcare system. Further three Raspberry Pi's are going to be
used as a fog infrastructure to be installed in the site.

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

20

From the above topological design there is a big difference on the way the edges are connected
to proxy gateway in order to share resource that has been provided by the cloud service vendor.
For example as the number of patients and health professional increases the data that is going to
be stored on the cloud also increase in creating Big Data. Typical a cloud system approach uses a
bottleneck approach by just giving one proxy gateway for all sensors and devices that are
integrated in the system [10]. So this show that whenever all the sensors and edges are trying to
access a same resource there will be traffic as well conflictions in the system due to priority
assignment. In this scenarios while retrieving and sharing same resources from the cloud will
have a dead lock.

System overview and Architectural design in Real World
Implementation

In this optimization process we used fogging in-order to solve different issues that were listed in
the Article. We mainly focus on the latency issue in our research and we have designed and
come up with new approach that can help the professionals who are interested in this particular
area. We also recommend different ways and methodologies for the upcoming era as a future
work.
 Architectural design
To build and test the optimized smart healthcare System we mainly need to have three client
modules.
1. The patient client: an indoor positioning system, with Bluetooth beacons planted in the test
site, will be used to localize a patient’s Android phone.
2. The data Collector client: A raspberry Pi is going to be used as a data collector client from
different simulated sensors and send data to the server to be further processed.
3. The Smart healthcare client: An Android tablet is going to be used to receive notification
of the patients alarm and collect position information of the patient for finding the patient.

 Cloud services from Amazon Web Services (AWS)-EC2 instance, is going to be used as a
cloud back-end server for the healthcare system. Further three Raspberry Pi's are going to be
used as a fog infrastructure to be installed in the site.

Figure 17. High level architectural design of the smart healthcare system

Figure 17: High level architectural design of the smart healthcare system

6.4. Delimitation
The Requirement elicitation process for the implementation
of the smart healthcare system has produced a large number of
requirements that do not fit in this article due to the size of its
contents. Therefore, only the special requirements that are
significant for the explanation of the design of the system are
explained in this Article. This Article focuses only one of the
issues that were listed previously that is latency. The Technical
implementation needs an IT Expert and a network administrator
while setting up and testing the real world implementation who
is well experienced in cloud computing and fog computing while
setting and configuring each clients on the system.

6.5. Latency
Latency in communication is the time delay that takes place during
communication over a given network. There are mainly four types
of delays that affect end-to-end delay in a given communication
these are
•	 Processing delay
•	 Queue delay
•	 Serialization delay
•	 Propagation delay
Thus the overall end-to-end delay that is Dend-to-end, will be the
summation of the above four delays times the number of nodes the
packet passes through.
Dend-to-end=N*(dproc+dqueue+dseri+dprop)
In the above equation dproc is the nodal processing delay, dqueue is the
queue delay, dseri is the serialization delay, dprop is the propagation
delay and N is the number of network segment a packet must go
through along the IoT ecosystem [27].
In this Article I used RTT (Round Trip Time) is adopted from
Network Coordinate System
(NCS) that establishes virtual positioning system for every node.

6.6. End-to-End Delay Estimation with Timestamps in RTT
(Round Trip Time)
According to the Network Working Group (NWG) the RTT
between a Source and a destination node is defined as follows
ΔT=T1-T2
Where T1 is the time at which the first bit of the request packet sent
by the source node approaches the physical layer and T2 is the time
at which the last bit of the response sequence, immediately sent
back by the destination node, leaves the physical layer.
Simulation Parameters for the procedure in the RTT in the
above given equation are:
1. The source should have a test packet with the given length
containing the IP address of both the source and the destination.
2. The destination should be able to receive the test packets and
answer as soon as possible. The source host should also be able to
receive the response test packet.
3. The source host should be able to save the time reference value
just before sending the test packet.
4. The final time stamp (T2) is considered upon the receipt of
the packet, if the response packet arrives at source within a
predetermined time interval.
5. RTT is calculated by subtracting T2 from T1

When considering the RTT measurement method that is sending
test packets across the network and time stamping the test packets
in each node the packet passes by, there is an important aspect to
consider when it comes to time stamping: we have to make sure
that the CPU clock runs at a constant rate across all socket in
a node. We can do this by configuring it as the clock source for
the Linux Kernel at boot time. In case of Android environment
where the patient client and the Smart healthcare client run
on, the library class timestamp can be used. This class adds the
ability to hold the SQL TIMESTAMP fractional second value,
by allowing the specification of fractional seconds to precision of
nanoseconds.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 20

6.7. Ping
A way to measure/approximate network latency is the ping
command. A user can communicate with an underlying operating
system with this standard command, Ping, which is used to either
detect whether the network is operational or/ and detect if the
network has an actual connection to a far end destination across
the network. This command uses the Internet Control Message
Protocol (ICMP).
In summary, by using the Ping command one can identify that both
ends of the network are connected and operational. Additionally
by utilizing a ping command, one could find the total round trip
time (RTT).

6.8. Unified Modeling Language (UML) for Sequence of
operations
The sequence diagram figure 18 below shows the normal sequence
of events and the data flow between the three clients and the server
which contains the smart healthcare system. Notice that the server
layer runs the two different architectures that is the cloud and fog
architectures. We mainly used an application container that is
deployed-either directly to the cloud, or the fog cells. The sensor
data collected by the data collector client is sent to the server
continuously.
The data is then filtered through the Smart healthcare client
module.

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

22

When considering the RTT measurement method that is sending test packets across the network
and time stamping the test packets in each node the packet passes by, there is an important aspect
to consider when it comes to time stamping: we have to make sure that the CPU clock runs at a
constant rate across all socket in a node. We can do this by configuring it as the clock source for
the Linux Kernel at boot time. In case of Android environment where the patient client and the
Smart healthcare client run on, the library class timestamp can be used. This class adds the
ability to hold the SQL TIMESTAMP fractional second value, by allowing the specification of
fractional seconds to precision of nanoseconds.

Ping
A way to measure/approximate network latency is the ping command. A user can communicate
with an underlying operating system with this standard command, Ping, which is used to either
detect whether the network is operational or/ and detect if the network has an actual connection
to a far end destination across the network. This command uses the Internet Control Message
Protocol (ICMP).
In summary, by using the Ping command one can identify that both ends of the network are
connected and operational. Additionally by utilizing a ping command, one could find the total
round trip time (RTT).

Unified Modeling Language (UML) for Sequence of operations
The sequence diagram figure 18 below shows the normal sequence of events and the data flow
between the three clients and the server which contains the smart healthcare system. Notice that
the server layer runs the two different architectures that is the cloud and fog architectures. We
mainly used an application container that is deployed-either directly to the cloud, or the fog cells.
 The sensor data collected by the data collector client is sent to the server continuously.
The data is then filtered through the Smart healthcare client module.

Figure 18 sequence diagram for emergency mode

Figure 18: sequence diagram for emergency mode

6.9. Latency Measurement Method
As mentioned earlier we choose RTT for measuring latency in
this Article. This was done by sending JSON-file with different
packet sizes from the patients’ client to the smart healthcare
client through a fog cell and later on through the cloud server
and having all the nodes print their timestamps as shown in figure

20. Then after collecting the timestamps data, Equation 4.1 was
applied to send message, and the average of all the sent message
was calculated by dividing the total sum with the number of
message sent. We have done this for 100, 500 and 1000 bytes of
packages.

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

23

Latency Measurement Method
 As mentioned earlier we choose RTT for measuring latency in this Article. This was done
by sending JSON-file with different packet sizes from the patients’ client to the smart
healthcare client through a fog cell and later on through the cloud server and having all the
nodes print their timestamps as shown in figure 20. Then after collecting the timestamps data,
Equation 4.1 was applied to send message, and the average of all the sent message was
calculated by dividing the total sum with the number of message sent. We have done this for
100, 500 and 1000 bytes of packages.

 Figure 19. Sequence diagram for emergency mode

Figure 20. Latency estimation timestamp for RTT.

 Dt4-t1 = (t2-t1) + (t3-t2) + (t4-t3) (1)

 (2)

Figure 19: Sequence diagram for emergency mode

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 21

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

23

Latency Measurement Method
 As mentioned earlier we choose RTT for measuring latency in this Article. This was done
by sending JSON-file with different packet sizes from the patients’ client to the smart
healthcare client through a fog cell and later on through the cloud server and having all the
nodes print their timestamps as shown in figure 20. Then after collecting the timestamps data,
Equation 4.1 was applied to send message, and the average of all the sent message was
calculated by dividing the total sum with the number of message sent. We have done this for
100, 500 and 1000 bytes of packages.

 Figure 19. Sequence diagram for emergency mode

Figure 20. Latency estimation timestamp for RTT.

 Dt4-t1 = (t2-t1) + (t3-t2) + (t4-t3) (1)

 (2)

Figure 20: Latency estimation timestamp for RTT.

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

23

Latency Measurement Method
 As mentioned earlier we choose RTT for measuring latency in this Article. This was done
by sending JSON-file with different packet sizes from the patients’ client to the smart
healthcare client through a fog cell and later on through the cloud server and having all the
nodes print their timestamps as shown in figure 20. Then after collecting the timestamps data,
Equation 4.1 was applied to send message, and the average of all the sent message was
calculated by dividing the total sum with the number of message sent. We have done this for
100, 500 and 1000 bytes of packages.

 Figure 19. Sequence diagram for emergency mode

Figure 20. Latency estimation timestamp for RTT.

 Dt4-t1 = (t2-t1) + (t3-t2) + (t4-t3) (1)

 (2) Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

23

Latency Measurement Method
 As mentioned earlier we choose RTT for measuring latency in this Article. This was done
by sending JSON-file with different packet sizes from the patients’ client to the smart
healthcare client through a fog cell and later on through the cloud server and having all the
nodes print their timestamps as shown in figure 20. Then after collecting the timestamps data,
Equation 4.1 was applied to send message, and the average of all the sent message was
calculated by dividing the total sum with the number of message sent. We have done this for
100, 500 and 1000 bytes of packages.

 Figure 19. Sequence diagram for emergency mode

Figure 20. Latency estimation timestamp for RTT.

 Dt4-t1 = (t2-t1) + (t3-t2) + (t4-t3) (1)

 (2) Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

23

Latency Measurement Method
 As mentioned earlier we choose RTT for measuring latency in this Article. This was done
by sending JSON-file with different packet sizes from the patients’ client to the smart
healthcare client through a fog cell and later on through the cloud server and having all the
nodes print their timestamps as shown in figure 20. Then after collecting the timestamps data,
Equation 4.1 was applied to send message, and the average of all the sent message was
calculated by dividing the total sum with the number of message sent. We have done this for
100, 500 and 1000 bytes of packages.

 Figure 19. Sequence diagram for emergency mode

Figure 20. Latency estimation timestamp for RTT.

 Dt4-t1 = (t2-t1) + (t3-t2) + (t4-t3) (1)

 (2)

7. Result
The test result for checking if the smart healthcare system works
as intended, that the patient- client sends its location information
to the smart healthcare client, was confirmed by the observation
made on the test site. There are mainly two ways to check the
correctness of the received information:
1. By connecting and live debugging the Android tablet and
observing the coordinate message flow in as received message.
2. An observing temporal actor that received the message that
the smart healthcare client received, by connecting a chrome-
extension called smart Web Socket and connecting it to the cloud
and fog cells as a smart healthcare client.
When it comes to latency test a significant difference with 263
ms in latency was observed in test result shown in bar graph in
figure 21. The timestamps were collected from log files, and a

script that calculates the average time, according to the formula
above, were executed. The average time it took for Dt4-t1 that is
location information to arrive at the smart healthcare client was
277 ms for the cloud infrastructure, and for fog computing the
corresponding measurements was 14 ms. This shows that using
fog computing for smart healthcare system has reduced the latency
with 263 ms with respect to cloud computing. The average value
obtained by those three packages with their standard devotion
of 38.4 ms for the cloud and 4.8 ms for the fog. There was no
significant difference in value observed between the different
package sizes. Especially in the cloud architecture the 1000 bytes
message arrived 5-20 ms faster than the 100 bytes. Generally this
shows that the packet-size, between 100-1000 bytes, did not matter
in latency.

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 22

Dr. Michael Enbibel Kelkile https://orcid.org/0000-0002-6335-9817

24

Result
The test result for checking if the smart healthcare system works as intended, that the patient-
client sends its location information to the smart healthcare client, was confirmed by the
observation made on the test site. There are mainly two ways to check the correctness of the
received information:
1. By connecting and live debugging the Android tablet and observing the coordinate message
flow in as received message.
2. An observing temporal actor that received the message that the smart healthcare client
received, by connecting a chrome-extension called smart Web Socket and connecting it to the
cloud and fog cells as a smart healthcare client.
When it comes to latency test a significant difference with 263 ms in latency was observed in
test result shown in bar graph in figure 21. The timestamps were collected from log files, and a
script that calculates the average time, according to the formula above, were executed. The
average time it took for Dt4-t1 that is location information to arrive at the smart healthcare client
was 277 ms for the cloud infrastructure, and for fog computing the corresponding
measurements was 14 ms. This shows that using fog computing for smart healthcare system has
reduced the latency with 263 ms with respect to cloud computing. The average value obtained by
those three packages with their standard devotion of 38.4 ms for the cloud and 4.8 ms for the
fog. There was no significant difference in value observed between the different package sizes.
Especially in the cloud architecture the 1000 bytes message arrived 5-20 ms faster than the 100
bytes. Generally this shows that the packet-size, between 100-1000 bytes, did not matter in
latency.

Figure 21. Cloud and fog latency measurement with timestamp

0

50

100

150

200

250

300

100 500 1000

cloud latency /ms

Fog Latency/ms

Figure 21: Cloud and fog latency measurement with timestamp

8. Conclusion
In this Article, we proposed Fog Computing to optimize
Telemedicine framework for Smart healthcare Systems which
assures reduced latency, high privacy, energy efficient, better
bandwidth, high scalability, Less dependable, and precise context
for sharp edged telemedicine applications with low cost. Our
solution focuses on fogging with respect to cloud computing and
we found a significant result in reducing latency with 263 ms and
optimizing telemedicine framework for smart healthcare systems.
We have clearly stated and showed that using a distributed data
flow with fog computing can reduce the time delay from 277 ms
to 14 ms by using fog computing. This solution can be further
extended to be used for any smart healthcare services which may
be used to govern other remote healthcare centers. In addition
using fog computing for smart healthcare centers reduces the
cost and time it takes during implementation and maintaining the
system. Generally this research shows the different approaches
like fogging to optimize the telemedicine framework for smart
healthcare systems while designing and implementing. So this
Smart healthcare system can be further upgraded and can be used
in the future by the coming era in the IoT ecosystem when we built
a Smart City.

References
1.	 Aziz, H. A., & Abochar, H. (2015). Telemedicine. Clinical

Laboratory Science, 28(4), 256-259.
2.	 Harris, G. (2002). India: telemedicine's great new frontier.

IEEE Spectrum, 39(4), 16-17.
3.	 Ahad, A., Tahir, M., & Yau, K. L. A. (2019). 5G-based smart

healthcare network: architecture, taxonomy, challenges and

future research directions. IEEE access, 7, 100747-100762.
4.	 Zhai, Y., Xu, X., Chen, B., Lu, H., Wang, Y., Li, S., ... & Zhao,

J. (2021). 5G-network-enabled smart ambulance: architecture,
application, and evaluation. IEEE Network, 35(1), 190-196.

5.	 Matlani, P., & Londhe, N. D. (2013, January). A cloud
computing based telemedicine service. In 2013 IEEE Point-
of-Care Healthcare Technologies (PHT) (pp. 326-330). IEEE.

6.	 Qiao, L., & Koutsakis, P. (2010). Adaptive bandwidth
reservation and scheduling for efficient wireless telemedicine
traffic transmission. IEEE Transactions on Vehicular
Technology, 60(2), 632-643.

7.	 Galletta, A., Carnevale, L., Bramanti, A., & Fazio, M. (2018).
An innovative methodology for big data visualization for
telemedicine. IEEE Transactions on Industrial Informatics,
15(1), 490-497.

8.	 Hao, Z., Novak, E., Yi, S., & Li, Q. (2017). Challenges
and software architecture for fog computing. IEEE Internet
Computing, 21(2), 44-53.

9.	 Armfield, Nigel R, et al. "Studies in Health Technology and
Informatics." Clinicians' perceptions of telemedicine for
remote neonatal consultation, vol. 7 2019, p. 10, 10.3233/978-
1- 60750-659-1-1. Accessed 6 June 2019.

10.	 Abugabah, A., Nizamuddin, N., & Alzubi, A. A. (2020).
Decentralized telemedicine framework for a smart healthcare
ecosystem. IEEE Access, 8, 166575-166588.

11.	 Qi, S., Lu, Y., Wei, W., & Chen, X. (2020). Efficient data access
control with fine-grained data protection in cloud-assisted
IIoT. IEEE Internet of Things Journal, 8(4), 2886-2899.

12.	 Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P.
P., Gao, L., Xiang, Y., & Ranjan, R. (2018). Fog computing:

http://clsjournal.ascls.org/content/ascls/28/4/256.full.pdfhttp:/clsjournal.ascls.org/content/ascls/28/4/256.full.pdf
http://clsjournal.ascls.org/content/ascls/28/4/256.full.pdfhttp:/clsjournal.ascls.org/content/ascls/28/4/256.full.pdf
https://ieeexplore.ieee.org/abstract/document/993795
https://ieeexplore.ieee.org/abstract/document/993795
https://ieeexplore.ieee.org/abstract/document/8769822
https://ieeexplore.ieee.org/abstract/document/8769822
https://ieeexplore.ieee.org/abstract/document/8769822
https://ieeexplore.ieee.org/abstract/document/9354923
https://ieeexplore.ieee.org/abstract/document/9354923
https://ieeexplore.ieee.org/abstract/document/9354923
https://ieeexplore.ieee.org/abstract/document/6461351
https://ieeexplore.ieee.org/abstract/document/6461351
https://ieeexplore.ieee.org/abstract/document/6461351
https://ieeexplore.ieee.org/abstract/document/5645702
https://ieeexplore.ieee.org/abstract/document/5645702
https://ieeexplore.ieee.org/abstract/document/5645702
https://ieeexplore.ieee.org/abstract/document/5645702
https://ieeexplore.ieee.org/abstract/document/8370134
https://ieeexplore.ieee.org/abstract/document/8370134
https://ieeexplore.ieee.org/abstract/document/8370134
https://ieeexplore.ieee.org/abstract/document/8370134
https://ieeexplore.ieee.org/abstract/document/7867731
https://ieeexplore.ieee.org/abstract/document/7867731
https://ieeexplore.ieee.org/abstract/document/7867731
https://ieeexplore.ieee.org/abstract/document/9186603
https://ieeexplore.ieee.org/abstract/document/9186603
https://ieeexplore.ieee.org/abstract/document/9186603
https://ieeexplore.ieee.org/abstract/document/9184078
https://ieeexplore.ieee.org/abstract/document/9184078
https://ieeexplore.ieee.org/abstract/document/9184078
https://ieeexplore.ieee.org/abstract/document/8444370
https://ieeexplore.ieee.org/abstract/document/8444370

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 23

Survey of trends, architectures, requirements, and research
directions. IEEE access, 6, 47980-48009.

13.	 Sharma, N., & Bhatt, R. (2020, November). FoG Computing
based IoT in Healthcare Application. In 2020 Sixth
International Conference on Parallel, Distributed and Grid
Computing (PDGC) (pp. 442-446). IEEE.

14.	 Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog
computing for Healthcare 4.0 environment: Opportunities and
challenges. Computers & Electrical Engineering, 72, 1-13.

15.	 Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D.
(2017). Fog computing in healthcare–a review and discussion.
IEEE Access, 5, 9206-9222.

16.	 Dubey, H., Monteiro, A., Constant, N., Abtahi, M., Borthakur,
D., Mahler, L., ... & Mankodiya, K. (2017). Fog computing
in medical internet-of-things: architecture, implementation,
and applications. Handbook of Large-Scale Distributed
Computing in Smart Healthcare, 281-321. Dubey, H., &
Constant, N. P. (2016). Enhancing Telehealth Big Data
Through Fog Computing. Fog Data, 2, 6.

17.	 " Verma, P., & Sood, S. K. (2018). Fog assisted-IoT enabled
patient health monitoring in smart homes. IEEE Internet
Things J 5 (3): 1789–1796.

18.	 Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping
the Internet of Things realize its potential. Computer, 49(8),
112-116.

19.	 Craig, J., & Petterson, V. (2005). Introduction to the practice
of telemedicine. Journal of telemedicine and telecare, 11(1),
3-9.

20.	 Xue, M., Yuan, C., Wu, H., Zhang, Y., & Liu, W. (2020).
Machine learning security: Threats, countermeasures, and
evaluations. IEEE Access, 8, 74720-74742.

21.	 Gupta, H., VahidDastjerdi, A., & Ghosh, S. K. (2017).
RajkumarBuyya “iFogSim: A toolkit for modelling and
simulation of resource management techniques in the Internet
of Things. Edge and Fog computing environments.

22.	 Freed, J., Lowe, C., Flodgren, G. M., Binks, R., Doughty,
K., & Kolsi, J. (2018). Telemedicine: is it really worth it? A
perspective from evidence and experience.

23.	 George, A., Dhanasekaran, H., Chittiappa, J. P., Challagundla,
L. A., Nikkam, S. S., & Abuzaghleh, O. (2018, May). Internet
of Things in health care using fog computing. In 2018
IEEE Long Island Systems, Applications and Technology

conference (LISAT) (pp. 1-6). IEEE.
24.	 Buldakova, T. I., & Sokolova, A. V. (2019, November).

Network services for interaction of the telemedicine system
users. In 2019 1st International Conference on Control
Systems, Mathematical Modelling, Automation and Energy
Efficiency (SUMMA) (pp. 387-391). IEEE.

25.	 Aazam, M., & Fernando, X. (2019, December). oHealth:
opportunistic healthcare in public transit through fog and edge
computing. In 2019 IEEE International Conference on Smart
Cloud (SmartCloud) (pp. 59-64). IEEE.

26.	 Yu, H., & Zhou, Z. (2021). Optimization of IoT-based artificial
intelligence assisted telemedicine health analysis system.
IEEE access, 9, 85034-85048.

27.	 Schiza, E. C., Kyprianou, T. C., Petkov, N., & Schizas, C.
N. (2018). Proposal for an ehealth based ecosystem serving
national healthcare. IEEE journal of biomedical and health
informatics, 23(3), 1346-1357.

28.	 Lian, W., Xue, T., Lu, Y., Wang, M., & Deng, W. (2019).
Research on hierarchical data fusion of intelligent medical
monitoring. IEEE Access, 8, 38355-38367.

29.	 Martinez, N. P., Martinez, M., Kuebler, S. M., Touma, J.
E., Rumpf, R. C., & Lentz, J. K. (2018, August). Spatially-
variant photonic crystals and possible applications. In 2018
IEEE Research and Applications of Photonics In Defense
Conference (RAPID) (pp. 1-4). IEEE.

30.	 Touil, M., Bahatti, L., & El Magri, A. (2020, December).
Telemedicine application to reduce the spread of Covid-19.
In 2020 IEEE 2nd International Conference on Electronics,
Control, Optimization and Computer Science (ICECOCS)
(pp. 1-4). IEEE.

31.	 Jin, Z., & Chen, Y. (2015). Telemedicine in the cloud era:
Prospects and challenges. IEEE Pervasive Computing, 14(1),
54-61.

32.	 World Health Organization. (2010). Telemedicine:
opportunities and developments in member states. Report
on the second global survey on eHealth. World Health
Organization.

33.	 Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008).
The cost of a cloud: research problems in data center networks.
ACM SIGCOMM computer communication review, 39(1),
68-73.

https://ieeexplore.ieee.org/abstract/document/8444370
https://ieeexplore.ieee.org/abstract/document/8444370
https://ieeexplore.ieee.org/abstract/document/9315745/
https://ieeexplore.ieee.org/abstract/document/9315745/
https://ieeexplore.ieee.org/abstract/document/9315745/
https://ieeexplore.ieee.org/abstract/document/9315745/
https://doi.org/10.1016/j.compeleceng.2018.08.015
https://doi.org/10.1016/j.compeleceng.2018.08.015
https://doi.org/10.1016/j.compeleceng.2018.08.015
https://ieeexplore.ieee.org/abstract/document/7927714
https://ieeexplore.ieee.org/abstract/document/7927714
https://ieeexplore.ieee.org/abstract/document/7927714
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://link.springer.com/chapter/10.1007/978-3-319-58280-1_11
https://ieeexplore.ieee.org/abstract/document/7543455
https://ieeexplore.ieee.org/abstract/document/7543455
https://ieeexplore.ieee.org/abstract/document/7543455
https://doi.org/10.1177/1357633X0501100102
https://doi.org/10.1177/1357633X0501100102
https://doi.org/10.1177/1357633X0501100102
https://ieeexplore.ieee.org/abstract/document/9064510
https://ieeexplore.ieee.org/abstract/document/9064510
https://ieeexplore.ieee.org/abstract/document/9064510
https://fhi.brage.unit.no/fhi-xmlui/bitstream/handle/11250/3008292/Freed_2018_Tel.pdf?sequence=2
https://fhi.brage.unit.no/fhi-xmlui/bitstream/handle/11250/3008292/Freed_2018_Tel.pdf?sequence=2
https://fhi.brage.unit.no/fhi-xmlui/bitstream/handle/11250/3008292/Freed_2018_Tel.pdf?sequence=2
https://ieeexplore.ieee.org/abstract/document/8378012
https://ieeexplore.ieee.org/abstract/document/8378012
https://ieeexplore.ieee.org/abstract/document/8378012
https://ieeexplore.ieee.org/abstract/document/8378012
https://ieeexplore.ieee.org/abstract/document/8378012
https://ieeexplore.ieee.org/abstract/document/8947552
https://ieeexplore.ieee.org/abstract/document/8947552
https://ieeexplore.ieee.org/abstract/document/8947552
https://ieeexplore.ieee.org/abstract/document/8947552
https://ieeexplore.ieee.org/abstract/document/8947552
https://ieeexplore.ieee.org/abstract/document/9091403
https://ieeexplore.ieee.org/abstract/document/9091403
https://ieeexplore.ieee.org/abstract/document/9091403
https://ieeexplore.ieee.org/abstract/document/9091403
https://ieeexplore.ieee.org/abstract/document/9450819
https://ieeexplore.ieee.org/abstract/document/9450819
https://ieeexplore.ieee.org/abstract/document/9450819
https://ieeexplore.ieee.org/abstract/document/8358757
https://ieeexplore.ieee.org/abstract/document/8358757
https://ieeexplore.ieee.org/abstract/document/8358757
https://ieeexplore.ieee.org/abstract/document/8358757
https://ieeexplore.ieee.org/abstract/document/8930547
https://ieeexplore.ieee.org/abstract/document/8930547
https://ieeexplore.ieee.org/abstract/document/8930547
https://ieeexplore.ieee.org/abstract/document/8509003
https://ieeexplore.ieee.org/abstract/document/8509003
https://ieeexplore.ieee.org/abstract/document/8509003
https://ieeexplore.ieee.org/abstract/document/8509003
https://ieeexplore.ieee.org/abstract/document/8509003
https://ieeexplore.ieee.org/abstract/document/9314459
https://ieeexplore.ieee.org/abstract/document/9314459
https://ieeexplore.ieee.org/abstract/document/9314459
https://ieeexplore.ieee.org/abstract/document/9314459
https://ieeexplore.ieee.org/abstract/document/9314459
https://ieeexplore.ieee.org/abstract/document/7030248
https://ieeexplore.ieee.org/abstract/document/7030248
https://ieeexplore.ieee.org/abstract/document/7030248
https://www.cabdirect.org/cabdirect/abstract/20133159246
https://www.cabdirect.org/cabdirect/abstract/20133159246
https://www.cabdirect.org/cabdirect/abstract/20133159246
https://www.cabdirect.org/cabdirect/abstract/20133159246
https://dl.acm.org/doi/abs/10.1145/1496091.1496103
https://dl.acm.org/doi/abs/10.1145/1496091.1496103
https://dl.acm.org/doi/abs/10.1145/1496091.1496103
https://dl.acm.org/doi/abs/10.1145/1496091.1496103

J Sen Net Data Comm, 2023 Volume 3 | Issue 1 | 24

Scripts and commands
1. Dockers file for application container on cloud architecture
FROM ubuntu : 1 2 . 0 4 # Install dependencies RUN apt_get up-
date _y
RUN apt_get i n s t a l l _y apache2 # Configure apache
RUN a2enmod r ewr i t e
RUN chown _R www_data :www_data /var/www ENV APACHE_
RUN_USER www_data
ENV APACHE_RUN_GROUP www_data ENV APACHE_
LOG_DIR /var/log/apache2 # Set the working directory to /app
WORKDIR /app
Copy the current directory content s into the container at /app
ADD . /app
I n s t a l l any needed packages specified in requirements. t x t
RUN pip install trusted host pypi . python . org _r requirements . t
x t # Make port 80 a v a i l a b l e to the world outside this container
EXPOSE 80
Define environment variable ENV NAME World

2. Application container builds and run on cloud architecture.
\$docker build _t application container.
\$docker run _p 8000:80 application container

3. Dockers file for application container on fog architecture.
Use an official Python runtime as a parent image FROM py-
thon:2.7_slim
Set the working directory to /app WORKDIR /app
Copy the current directory content s into the container at /app
ADD . /app
I n s t a l l any needed packages specified in requirements. t x t
RUN pip install trusted host pypi . python . org _r requirements . t
x t # Make por t 80 a v a i l a b l e to the world outside this container
EXPOSE 80
Define environment variable ENV NAME World
Run server.py when the container launches CMD [" python " ,
" server.py "]

4. Dockerfile for cell connector container on fog architecture.
Use an official Python runtime as a parent image FROM python:
2.7 slim
Set the working directory to /app WORKDIR /app
Copy the current directory content s into the container at /app

ADD./app
Install any needed packages specified in requirements. t x t RUN
pip install trusted host pypi.python.org r requirements. txt # Make
port 80 available to the world outside this container EXPOSE 80
Define environment variable ENV NAME World
Run connector.py when the container launches CMD [" python
" , " connector . py "]

5. Dockerfile for controller container on fog architecure.
FROM ubuntu : 1 2 . 0 4 # Install dependencies RUN apt_get up-
date _y
RUN apt_get install _y apache2 # Configure apache
RUN a2enmod rewrite
RUN chown _R www_data :www_data /var/www ENV APACHE_
RUN_USER www_data
ENV APACHE_RUN_GROUP www_data ENV APACHE_
LOG_DIR /var/log/apache2 # Set the working directory to /app
WORKDIR /app
Copy the current directory content s into the container at /app
ADD . /app
I n s t a l l any needed packages specified in requirements . t x t
RUN pip i n s t a l l trusted host pypi.python.org _r requirements
. t x t # Make port 80 available to the world outside this container
EXPOSE 80
Define environment variable ENV NAME World
Run controller.py when the container launches CMD [" python
" , " controller.py "]

Annexure
Abbreviations with their full format WHO World Health Organi-
zation
NASA	 National Aeronautics and Space Administration
IoT	 Internet of Things
FC	 Fog Computing
RTT	 Round Trip Time
UML	 Unified Modelling Language
ICMP	 Internet Control Message Protocol
AWS	 Amazon Web Services
CPU	 Central Processing Unit
SQL	 Standard Query Language

Copyright: ©2023 Michael Enbibel Kelkile. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

https://opastpublishers.com

https://www.opastpublishers.com/

