
J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 1

Optimized Decentralized Reward Distribution(1)
Research Article

Chun-Hu Cui He-Song Cui
fleetpro@gmail.com jsreputation@gmail.com

*Corresponding Author
Chun-Hu Cui, Independent Researcher.
fleetpro@gmail.com
Submitted: 2024, Jun 21; Accepted: 2024, Jul 11; Published: 2024, Jul 25

Citation: Cui, C. H., Cui, H. S. (2024). Optimized Decentralized Reward Distribution(1). J Math Techniques Comput Math,
3(7), 01-27.

Abstract
In DeFi (Decentralized Finance) applications, and in dApps (Decentralized Application) generally, it is common to periodically
pay interest to users as an incentive, or periodically collect a penalty from them as a deterrent. If we view the penalty as a
negative reward, both the interest and penalty problems come down to the problem of distributing rewards. Reward distribution
is quite accomplishable in financial management where general computers are used, but on a blockchain, where computational
resources are inherently expensive and the amount of computation per transaction is absolutely limited with a predefined,
uniform quota, not only do the system administrators have to pay heavy gas fees if they handle rewards of many users one
by one, but the transaction may also be terminated on the way. The computational quota makes it impossible to guarantee
processing an unknown number of users. We propose novel algorithms that solve Simple Interest, Simple Burn, Compound
Interest, and Compound Burn tasks, which are typical components of DeFi applications. If we put numerical errors aside,
these algorithms realize accurate distribution of rewards to an unknown number of users with no approximation, while
adhering to the computational quota per transaction. For those who might already be using similar algorithms, we prove the
algorithms rigorously so that they can be transparently presented to users. We also introduce reusable concepts and notations in
decentralized reasoning, and demonstrate how they can be efficiently used. We demonstrate, through simulated tests spanning
over 128 simulated years, that the numerical errors do not grow to a dangerous level.

Journal of Mathematical Techniques and Computational Mathematics
ISSN: 2834-7706

Keywords: DeFi, dApp, Staking Reward, Reward Distribution, Pendency Tracker, Activity Tracker

1. Introduction
Saving computational resources is a general demand in all
computing applications, but it has become a vital need in
blockchains. Blockchains impose a unilateral, uniform, and
unconditional quota on the amount of computation that can be
used for a transaction. Administrators as well as users must adhere
to the quota while also paying a significant amount of fees in
proportion to the amount of computation consumed. We cannot
trade off the integrity, consistency, and transparency requirements
of applications to work around the quota problem, because the fact
that blockchain is selected as the platform in the first place means
we cannot compromise on the requirements.

The problem of overcoming the high computational cost and
the computational quota per transaction arises especially when
processing arrays of unknown length. Suppose, for example, there
is a requirement to “pay each user 0.01 % interest every day based
on the amount they keep staked.” On a general computer platform,

it is possible and common to enumerate all users, calculate their
interest amount, and send the amount to their accounts. However,
the computational quota per transaction on blockchains make
it a necessity to find fundamentally different solutions. An
immediate naive solution is to restrict the number of users, which
is unacceptable.

The next idea is to process a certain number of users in one
transaction and repeat a similar transaction several times until
covering all users. The flaw is that the repetition has to be initiated
and controlled from the off-chain part by system administrators,
or, equivalently, by their administration automation tools. This
will prevent the achievement of the integrity, consistency,
and transparency goal that called for choosing blockchain as
the platform in the first place. If administrators and off-chain
administration tools were such reliable, they wouldn’t have chosen
the expensive blockchain as the platform in the first place.

Independent Researcher

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 2

Some algorithms implement reward distribution to an unknown
number of users without enumerating users. The earliest one
is the prize distribution algorithm adopted in the MasterChef
smart contract of the PancakeSwap DeFi application. Instead of
calculating each and every user’s prize share each time a new
total prize is collectively available to users, they maintain the
accumulated prize dividend index for each unit of total share (so,
of each users’ share) each time before the total share (so a user’s
share) changes its value. The prize per share is used by all other
users to calculate their pending prize. This allows administrators
to pretend to have processed users’ prize without actually having
processed them all. This virtual processing method has been a
model for many applications. We also gain inspiration from this
method.

We formulate our methodology in Section 2. We first identify
reward distribution tasks that we handle in this paper, (see Section
2.1), in terms of firstly how much rewards should theoretically
be available for the dApp to distribute to users, and secondly
whether the rewards are added to the same account as their

principal account or to a separate asset account. Simple Interest,
Simple Burn, Compound Interest, and Compound Burn are the
types of reward distribution tasks that we identify and aim to find
algorithms for in this paper. See Table 1 for the task types and their
algorithm names.

We then introduce the Consistency Criteria for a reward distribution
algorithm, as well as Relative Errors as a derived concept. See
Section 2.3 for the Consistency Criteria and Relative Errors.
Relative Errors are then used to assess the accuracy and numerical
errors of our algorithms.

We finally discuss several imaginary types of reward distribution
tasks and identify the position of our aimed reward distribution
tasks among those concepts. See Section 2.2 for more. We present
and prove our algorithms in Section 3. We depict them in UML
State Machine diagrams for quick reference and comprehension.
We find two alternative algorithms for each aimed reward
distribution task: pendency tracker and activity tracker. See Table
1 for the classification of algorithms.

The next idea is to process a certain number of users in one transaction and repeat a similar transaction several times
until covering all users. The flaw is that the repetition has to be initiated and controlled from the off-chain part by
system administrators, or, equivalently, by their administration automation tools. This will prevent the achievement
of the integrity, consistency, and transparency goal that called for choosing blockchain as the platform in the first
place. If administrators and off-chain administration tools were such reliable, they wouldn’t have chosen the expensive
blockchain as the platform in the first place.

Some algorithms implement reward distribution to an unknown number of users without enumerating users. The earliest
one is the prize distribution algorithm adopted in the MasterChef smart contract of the PancakeSwap DeFi application.
Instead of calculating each and every user’s prize share each time a new total prize is collectively available to users, they
maintain the accumulated prize dividend index for each unit of total share (so, of each users’ share) each time before the
total share (so a user’s share) changes its value. The prize per share is used by all other users to calculate their pending
prize. This allows administrators to pretend to have processed users’ prize without actually having processed them all.
This virtual processing method has been a model for many applications. We also gain inspiration from this method.

We formulate our methodology in Section 2. We first identify reward distribution tasks that we handle in this paper, (see
Section 2.1), in terms of firstly how much rewards should theoretically be available for the dApp to distribute to users,
and secondly whether the rewards are added to the same account as their principal account or to a separate asset account.
Simple Interest, Simple Burn, Compound Interest, and Compound Burn are the types of reward distribution tasks that
we identify and aim to find algorithms for in this paper. See Table 1 for the task types and their algorithm names.

We then introduce the Consistency Criteria for a reward distribution algorithm, as well as Relative Errors as a derived
concept. See Section 2.3 for the Consistency Criteria and Relative Errors. Relative Errors are then used to assess the
accuracy and numerical errors of our algorithms.

We finally discuss several imaginary types of reward distribution tasks and identify the position of our aimed reward
distribution tasks among those concepts. See Section 2.2 for more.

We present and prove our algorithms in Section 3. We depict them in UML State Machine diagrams for quick reference
and comprehension. We find two alternative algorithms for each aimed reward distribution task: pendency tracker and
activity tracker. See Table 1 for the classification of algorithms.

Task type Algorithms that do not handle errors

Simple Interest
Simple Interest Pendency tracker

Simple Interest Activity tracker

Simple Burn
Simple Burn Pendency tracker

Simple Burn Activity tracker

Compound Interest
Compound Interest Pendency tracker

Compound Interest Activity tracker

Compound Burn
Compound Burn Pendency tracker

Compound Burn Activity tracker

Table 1. Classification of algorithms

The term pendency and activity are two alternative variables that represent the state of a reward distribution algorithm.
They both allow tracking an aspect of reward distribution, but it turns out that they each have unique pros and cons.
The activity tracker algorithms are proved symbolically by mathematical induction. We demonstrate that appropriate
concepts and notations can help reasoning of decentralized processes.

2

Table 1: Classification of Algorithms

The term pendency and activity are two alternative variables that
represent the state of a reward distribution algorithm. They both
allow tracking an aspect of reward distribution, but it turns out
that they each have unique pros and cons. The activity tracker
algorithms are proved symbolically by mathematical induction.
We demonstrate that appropriate concepts and notations can help
reasoning of decentralized processes.

Section 3.9 discusses numerical error sources of the algorithms.
There are two types of numerical error sources theoretically.
Errors coming from integer expression of the exponentiation of
fractional numbers are exponentiation errors, while errors coming
from integer expression of the division of integers are division
errors. Both types of errors are small enough to ignore, if we don’t
have extensively many transactions in our applications, although
we propose an idea of how to mitigate division errors.

Section 4 discusses our simulation tests and their results on our
four reward distribution task types. Despite that the Relative Errors
in some tasks increase linearly, or even exponentially, over block
numbers, they are less than 10−11 in compound tasks and less than

10−22 in simple tasks in our particular simulated tests, which span
128 simulated years and assume quite steep interest/penalty rates
and modest frequency of transactions.

2. Methodology
2.1 Tasks
Throughout this paper, we assume decentralized reward distribution
applications where users’ digital assets are stored on a smart
contract, and all changes to the assets are only made through and
by access functions defined by the smart contract. Without losing
generality, we assume Solidity language as our smart contract
programming language. Reward distribution is defined, for the
purpose of this paper, as making the assets that are theoretically
available to users physically available to them by crediting the
assets to or debiting the assets from their destination accounts, or
by getting ready to fulfill any compatible asset transfer requests
immediately.

We identify types of reward distribution tasks below, in terms of
both the amount and textitdestination of rewards. We only handle
numerical amount of assets and don’t care of the nature and usage

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 3

of the assets, which is up to particular applications. We note it is
customary to burn up collected penalties and to call the penalty
a burn in Decentralized Applications. We follow the custom and
may call the penalty simply a burn. We also note that interest is a
positive reward while burn is a negative reward.	

For short notations, U denotes the set of all possible users,
throughout this paper.

Section 3.9 discusses numerical error sources of the algorithms. There are two types of numerical error sources
theoretically. Errors coming from integer expression of the exponentiation of fractional numbers are exponentiation
errors, while errors coming from integer expression of the division of integers are division errors. Both types of errors
are small enough to ignore, if we don’t have extensively many transactions in our applications, although we propose an
idea of how to mitigate division errors.

Section 4 discusses our simulation tests and their results on our four reward distribution task types. Despite that the
Relative Errors in some tasks increase linearly, or even exponentially, over block numbers, they are less than 10−11 in
compound tasks and less than 10−22 in simple tasks in our particular simulated tests, which span 128 simulated years
and assume quite steep interest/penalty rates and modest frequency of transactions.

2 Methodology

2.1 Tasks

Throughout this paper, we assume decentralized reward distribution applications where users’ digital assets are stored
on a smart contract, and all changes to the assets are only made through and by access functions defined by the smart
contract. Without losing generality, we assume solidity language as our smart contract programming language. Reward
distribution is defined, for the purpose of this paper, as making the assets that are theoretically available to users
physically available to them by crediting the assets to or debiting the assets from their destination accounts, or by
getting ready to fulfill any compatible asset transfer requests immediately.

We identify types of reward distribution tasks below, in terms of both the amount and textitdestination of rewards. We
only handle numerical amount of assets and don’t care of the nature and usage of the assets, which is up to particular
applications. We note it is customary to burn up collected penalties and to call the penalty a burn in Decentralized
Applications. We follow the custom and may call the penalty simply a burn. We also note that interest is a positive
reward while burn is a negative reward.

For short notations, U denotes the set of all possible users, throughout this paper.

• Simple Interest

Figure 1. In a simple task, reward(user) for any user user, as well as
∑

u∈U reward(u), grows linearly over time, because
simple tasks only collect rewards that grow linearly over time and the collected rewards have their own account different from the
principal account.

Simple Interest is a type of reward distribution task where the amount and destination of rewards are defined
by the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ rate ∗ blocks/cycle (1)

where user is the user to whom the rewards are distributed, reward[user] is the reward destination account
that stores user’s rewards, principals[user] is user’s amount of principal, blocks is the number of blockchain
blocks that elapses, cycle is a certain positive integer, and rate is the interest rate formulated: "the interest as
much as rate portion of principal should be paid to the user every cycle blocks that elapses." The meaning
and notation of variables are the same throughout this paper, except that rate refers to the penalty rate in burn

3

Section 3.9 discusses numerical error sources of the algorithms. There are two types of numerical error sources
theoretically. Errors coming from integer expression of the exponentiation of fractional numbers are exponentiation
errors, while errors coming from integer expression of the division of integers are division errors. Both types of errors
are small enough to ignore, if we don’t have extensively many transactions in our applications, although we propose an
idea of how to mitigate division errors.

Section 4 discusses our simulation tests and their results on our four reward distribution task types. Despite that the
Relative Errors in some tasks increase linearly, or even exponentially, over block numbers, they are less than 10−11 in
compound tasks and less than 10−22 in simple tasks in our particular simulated tests, which span 128 simulated years
and assume quite steep interest/penalty rates and modest frequency of transactions.

2 Methodology

2.1 Tasks

Throughout this paper, we assume decentralized reward distribution applications where users’ digital assets are stored
on a smart contract, and all changes to the assets are only made through and by access functions defined by the smart
contract. Without losing generality, we assume solidity language as our smart contract programming language. Reward
distribution is defined, for the purpose of this paper, as making the assets that are theoretically available to users
physically available to them by crediting the assets to or debiting the assets from their destination accounts, or by
getting ready to fulfill any compatible asset transfer requests immediately.

We identify types of reward distribution tasks below, in terms of both the amount and textitdestination of rewards. We
only handle numerical amount of assets and don’t care of the nature and usage of the assets, which is up to particular
applications. We note it is customary to burn up collected penalties and to call the penalty a burn in Decentralized
Applications. We follow the custom and may call the penalty simply a burn. We also note that interest is a positive
reward while burn is a negative reward.

For short notations, U denotes the set of all possible users, throughout this paper.

• Simple Interest

Figure 1. In a simple task, reward(user) for any user user, as well as
∑

u∈U reward(u), grows linearly over time, because
simple tasks only collect rewards that grow linearly over time and the collected rewards have their own account different from the
principal account.

Simple Interest is a type of reward distribution task where the amount and destination of rewards are defined
by the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ rate ∗ blocks/cycle (1)

where user is the user to whom the rewards are distributed, reward[user] is the reward destination account
that stores user’s rewards, principals[user] is user’s amount of principal, blocks is the number of blockchain
blocks that elapses, cycle is a certain positive integer, and rate is the interest rate formulated: "the interest as
much as rate portion of principal should be paid to the user every cycle blocks that elapses." The meaning
and notation of variables are the same throughout this paper, except that rate refers to the penalty rate in burn

3

• Simple Interest

Figure 1: In a simple task, reward(user) for any user user, as well as Σu∈U reward(u), grows linearly over time, because simple tasks
only collect rewards that grow linearly over time and the collected rewards have their own account different from the principal account.

Simple Interest is a type of reward distribution task where the amount and destination of rewards are defined by the following programming
pseudocode:

where user is the user to whom the rewards are distributed,
reward[user] is the reward destination account that stores user’s
rewards, principals[user] is user’s amount of principal, blocks is
the number of blockchain blocks that elapses, cycle is a certain
positive integer, and rate is the interest rate formulated: "the
interest as much as rate portion of principal should be paid to the
user every cycle blocks that elapses." The meaning and notation of
variables are the same throughout this paper, except that rate refers
to the penalty rate in burn tasks and is formulated: "the penalty as
much as rate portion of principal should be collected from the user
every cycle blocks that elapses."

In this task, the user earns interest proportional to the interest

rate and time that elapses on their principal. The interest is
accumulated to its own account separate from that of the principal,
and is not credited to the principal account. The rewards can even
be a different type of asset from the principal. See Figure 1 for
more. We choose block number, rather than block timestamp, as
the measure of time for security reasons. The interest being simply
additively accumulated in an account does not define how the
interest is processed or used in particular applications.

• Simple Burn
Simple Burn is a type of reward distribution task where the
amount and destination of rewards are defined by the following
programming pseudocode:

tasks and is formulated: "the penalty as much as rate portion of principal should be collected from the user
every cycle blocks that elapses."

In this task, the user earns interest proportional to the interest rate and time that elapses on their principal.
The interest is accumulated to its own account separate from that of the principal, and is not credited to the
principal account. The rewards can even be a different type of asset from the principal. See Figure 1 for
more. We choose block number, rather than block timestamp, as the measure of time for security reasons. The
interest being simply additively accumulated in an account does not define how the interest is processed or
used in particular applications.

• Simple Burn

Simple Burn is a type of reward distribution task where the amount and destination of rewards are defined by
the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ rate ∗ blocks/cycle (2)

In other words, the user is charged with a penalty proportional to the penalty rate and time that elapses on their
principal. The penalty has its own destination account different from that of principal, and is not debited from
the principal amount. The penalty can even be a different type of asset from the principal. See Figure 1 for
more. The penalties, which are negative rewards, are simply positively accumulated in the reward account,
because our algorithms do not extend to taking care of how the penalty is exercised or materialized in particular
applications.

• Compound Interest

Figure 2. In a compound task, balance(user) for any user user, which is user’s principal plus/minus user’s interest/burn, as
well as

∑
u∈U balance(u), grows/shrinks exponentially from its initial value, because compound tasks only collect interest/burn

that is exponential over time and the collected interest/burn is credited to/debited from the principal account.

Compound Interest is a type of reward distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (3)

In other words, interest is created by the amount principal[user] and credited to the principal[user] account.
Rigorously, the user continuously earns time-linear interest on their principal amount while the earned interest
is continuously credited to the principal amount. The continuity is implemented by exponentiation. The
interest and principal not only share the same asset type with each other but also share the same account. See
Figure 2 for more.

• Compound Burn

Compound Burn is a type of reward distribution task where the amount and destination of rewards are defined
by the following programming pseudocode:

principals[user] = principals[user]− principals[user] ∗ (1− (1− rate)blocks/cycle) (4)

In other words, the burn (penalty) is created by the amount principal[user] and debited from the
principal[user] account. Rigorously, the user continuously pays a time-linear burn on their principal while the

4

tasks and is formulated: "the penalty as much as rate portion of principal should be collected from the user
every cycle blocks that elapses."

In this task, the user earns interest proportional to the interest rate and time that elapses on their principal.
The interest is accumulated to its own account separate from that of the principal, and is not credited to the
principal account. The rewards can even be a different type of asset from the principal. See Figure 1 for
more. We choose block number, rather than block timestamp, as the measure of time for security reasons. The
interest being simply additively accumulated in an account does not define how the interest is processed or
used in particular applications.

• Simple Burn

Simple Burn is a type of reward distribution task where the amount and destination of rewards are defined by
the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ rate ∗ blocks/cycle (2)

In other words, the user is charged with a penalty proportional to the penalty rate and time that elapses on their
principal. The penalty has its own destination account different from that of principal, and is not debited from
the principal amount. The penalty can even be a different type of asset from the principal. See Figure 1 for
more. The penalties, which are negative rewards, are simply positively accumulated in the reward account,
because our algorithms do not extend to taking care of how the penalty is exercised or materialized in particular
applications.

• Compound Interest

Figure 2. In a compound task, balance(user) for any user user, which is user’s principal plus/minus user’s interest/burn, as
well as

∑
u∈U balance(u), grows/shrinks exponentially from its initial value, because compound tasks only collect interest/burn

that is exponential over time and the collected interest/burn is credited to/debited from the principal account.

Compound Interest is a type of reward distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (3)

In other words, interest is created by the amount principal[user] and credited to the principal[user] account.
Rigorously, the user continuously earns time-linear interest on their principal amount while the earned interest
is continuously credited to the principal amount. The continuity is implemented by exponentiation. The
interest and principal not only share the same asset type with each other but also share the same account. See
Figure 2 for more.

• Compound Burn

Compound Burn is a type of reward distribution task where the amount and destination of rewards are defined
by the following programming pseudocode:

principals[user] = principals[user]− principals[user] ∗ (1− (1− rate)blocks/cycle) (4)

In other words, the burn (penalty) is created by the amount principal[user] and debited from the
principal[user] account. Rigorously, the user continuously pays a time-linear burn on their principal while the

4

In other words, the user is charged with a penalty proportional
to the penalty rate and time that elapses on their principal. The
penalty has its own destination account different from that of
principal, and is not debited from the principal amount. The
penalty can even be a different type of asset from the principal.

See Figure 1 for more. The penalties, which are negative rewards,
are simply positively accumulated in the reward account, because
our algorithms do not extend to taking care of how the penalty is
exercised or materialized in particular applications.

• Compound Interest

Figure 2: In a compound task, balance(user) for any user user, which is user’s principal plus/minus user’s interest/burn, as well as Σu∈U
balance(u), grows/shrinks exponentially from its initial value, because compound tasks only collect interest/burn that is exponential over
time and the collected interest/burn is credited to/debited from the principal account

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 4

tasks and is formulated: "the penalty as much as rate portion of principal should be collected from the user
every cycle blocks that elapses."

In this task, the user earns interest proportional to the interest rate and time that elapses on their principal.
The interest is accumulated to its own account separate from that of the principal, and is not credited to the
principal account. The rewards can even be a different type of asset from the principal. See Figure 1 for
more. We choose block number, rather than block timestamp, as the measure of time for security reasons. The
interest being simply additively accumulated in an account does not define how the interest is processed or
used in particular applications.

• Simple Burn

Simple Burn is a type of reward distribution task where the amount and destination of rewards are defined by
the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ rate ∗ blocks/cycle (2)

In other words, the user is charged with a penalty proportional to the penalty rate and time that elapses on their
principal. The penalty has its own destination account different from that of principal, and is not debited from
the principal amount. The penalty can even be a different type of asset from the principal. See Figure 1 for
more. The penalties, which are negative rewards, are simply positively accumulated in the reward account,
because our algorithms do not extend to taking care of how the penalty is exercised or materialized in particular
applications.

• Compound Interest

Figure 2. In a compound task, balance(user) for any user user, which is user’s principal plus/minus user’s interest/burn, as
well as

∑
u∈U balance(u), grows/shrinks exponentially from its initial value, because compound tasks only collect interest/burn

that is exponential over time and the collected interest/burn is credited to/debited from the principal account.

Compound Interest is a type of reward distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (3)

In other words, interest is created by the amount principal[user] and credited to the principal[user] account.
Rigorously, the user continuously earns time-linear interest on their principal amount while the earned interest
is continuously credited to the principal amount. The continuity is implemented by exponentiation. The
interest and principal not only share the same asset type with each other but also share the same account. See
Figure 2 for more.

• Compound Burn

Compound Burn is a type of reward distribution task where the amount and destination of rewards are defined
by the following programming pseudocode:

principals[user] = principals[user]− principals[user] ∗ (1− (1− rate)blocks/cycle) (4)

In other words, the burn (penalty) is created by the amount principal[user] and debited from the
principal[user] account. Rigorously, the user continuously pays a time-linear burn on their principal while the

4

tasks and is formulated: "the penalty as much as rate portion of principal should be collected from the user
every cycle blocks that elapses."

In this task, the user earns interest proportional to the interest rate and time that elapses on their principal.
The interest is accumulated to its own account separate from that of the principal, and is not credited to the
principal account. The rewards can even be a different type of asset from the principal. See Figure 1 for
more. We choose block number, rather than block timestamp, as the measure of time for security reasons. The
interest being simply additively accumulated in an account does not define how the interest is processed or
used in particular applications.

• Simple Burn

Simple Burn is a type of reward distribution task where the amount and destination of rewards are defined by
the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ rate ∗ blocks/cycle (2)

In other words, the user is charged with a penalty proportional to the penalty rate and time that elapses on their
principal. The penalty has its own destination account different from that of principal, and is not debited from
the principal amount. The penalty can even be a different type of asset from the principal. See Figure 1 for
more. The penalties, which are negative rewards, are simply positively accumulated in the reward account,
because our algorithms do not extend to taking care of how the penalty is exercised or materialized in particular
applications.

• Compound Interest

Figure 2. In a compound task, balance(user) for any user user, which is user’s principal plus/minus user’s interest/burn, as
well as

∑
u∈U balance(u), grows/shrinks exponentially from its initial value, because compound tasks only collect interest/burn

that is exponential over time and the collected interest/burn is credited to/debited from the principal account.

Compound Interest is a type of reward distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (3)

In other words, interest is created by the amount principal[user] and credited to the principal[user] account.
Rigorously, the user continuously earns time-linear interest on their principal amount while the earned interest
is continuously credited to the principal amount. The continuity is implemented by exponentiation. The
interest and principal not only share the same asset type with each other but also share the same account. See
Figure 2 for more.

• Compound Burn

Compound Burn is a type of reward distribution task where the amount and destination of rewards are defined
by the following programming pseudocode:

principals[user] = principals[user]− principals[user] ∗ (1− (1− rate)blocks/cycle) (4)

In other words, the burn (penalty) is created by the amount principal[user] and debited from the
principal[user] account. Rigorously, the user continuously pays a time-linear burn on their principal while the

4

Compound Interest is a type of reward distribution task where the amount and destination of rewards are defined by the following
programming pseudocode:

In other words, interest is created by the amount principal[user]
and credited to the principal[user] account. Rigorously, the user
continuously earns time-linear interest on their principal amount
while the earned interest is continuously credited to the principal
amount. The continuity is implemented by exponentiation. The
interest and principal not only share the same asset type with each
other but also share the same account. See Figure 2 for more.

• Compound Burn
Compound Burn is a type of reward distribution task where the
amount and destination of rewards are defined by the following
programming pseudocode:

In other words, the burn (penalty) is created by the amount
principal[user] and debited from the principal[user] account.
Rigorously, the user continuously pays a time-linear burn on
their principal while the paid burn is continuously debited
from the principal amount. The continuity is implemented by
exponentiation. The penalty and principal not only share the same
asset type with each other but also share the same account. See

Figure 2 for more.

• Simple Shared Prize
Simple Shared Prize is a type of reward distribution task where the
amount and destination of rewards are defined by the following
programming pseudocode:

paid burn is continuously debited from the principal amount. The continuity is implemented by exponentiation.
The penalty and principal not only share the same asset type with each other but also share the same account.
See Figure 2 for more.

• Simple Shared Prize
Simple Shared Prize is a type of reward distribution task where the amount and destination of rewards are

defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user]/totalPrincipal ∗ alpha ∗ blocks/cycle, (5)

where alpha is a constant that determines the total prize created for all users collectively over time. The user
earns their share of the total prize alpha ∗ blocks/cycle. The earned rewards have a separate account from
that of the principal.

Simple tasks are simple because the rewards are destined to a separate account and they may even be of different asset
type, whereas compound tasks are compound because the rewards are destined to the principal account, either by adding
to or subtracting from the existing principal.

We propose algorithms that solve the former four tasks, under the conditions that the number of users is unknown and
there is a computational quota. The 5th task is used as a reference to understand the former four tasks.

2.2 Position

We discuss the position of our aimed task types identified in Section 2.1 on the map of possible reward distribution
policies.
We can identify several imaginable types of reward distribution task types that can be thought of but unreasonable
practically, in order to clarify the position of our aimed types of reward distribution tasks, as follows:

• Simple Interest Exponential
Simple Interest Exponential is an unreasonable type of reward distribution task where the amount and

destination of rewards are defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (6)

The more frequently rewards are collected according to this formula, the less total reward the user will earn.
Users will not move, unless. If this formula is intentionally used to discourage them from collecting their
rewards frequently, the algorithm is likely found by tweaking our algorithms.

• Simple Burn Exponential
Simple Burn Exponential is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

penalty[user] = penalty[user] + principals[user] ∗ ((1− rate)blocks/cycle − 1) (7)

The more frequently penalty is paid according to this formula, the less total penalty the user will pay. Users
will not rest, unless. If this formula is intentionally used to encourage them to pay penalty frequently, the
algorithm is likely found by tweaking our algorithms.

• Compound Interest Linear
Compound Interest Linear is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ (alpha ∗ rate ∗ blocks/cycle) (8)

5

paid burn is continuously debited from the principal amount. The continuity is implemented by exponentiation.
The penalty and principal not only share the same asset type with each other but also share the same account.
See Figure 2 for more.

• Simple Shared Prize
Simple Shared Prize is a type of reward distribution task where the amount and destination of rewards are

defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user]/totalPrincipal ∗ alpha ∗ blocks/cycle, (5)

where alpha is a constant that determines the total prize created for all users collectively over time. The user
earns their share of the total prize alpha ∗ blocks/cycle. The earned rewards have a separate account from
that of the principal.

Simple tasks are simple because the rewards are destined to a separate account and they may even be of different asset
type, whereas compound tasks are compound because the rewards are destined to the principal account, either by adding
to or subtracting from the existing principal.

We propose algorithms that solve the former four tasks, under the conditions that the number of users is unknown and
there is a computational quota. The 5th task is used as a reference to understand the former four tasks.

2.2 Position

We discuss the position of our aimed task types identified in Section 2.1 on the map of possible reward distribution
policies.
We can identify several imaginable types of reward distribution task types that can be thought of but unreasonable
practically, in order to clarify the position of our aimed types of reward distribution tasks, as follows:

• Simple Interest Exponential
Simple Interest Exponential is an unreasonable type of reward distribution task where the amount and

destination of rewards are defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (6)

The more frequently rewards are collected according to this formula, the less total reward the user will earn.
Users will not move, unless. If this formula is intentionally used to discourage them from collecting their
rewards frequently, the algorithm is likely found by tweaking our algorithms.

• Simple Burn Exponential
Simple Burn Exponential is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

penalty[user] = penalty[user] + principals[user] ∗ ((1− rate)blocks/cycle − 1) (7)

The more frequently penalty is paid according to this formula, the less total penalty the user will pay. Users
will not rest, unless. If this formula is intentionally used to encourage them to pay penalty frequently, the
algorithm is likely found by tweaking our algorithms.

• Compound Interest Linear
Compound Interest Linear is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ (alpha ∗ rate ∗ blocks/cycle) (8)

5

paid burn is continuously debited from the principal amount. The continuity is implemented by exponentiation.
The penalty and principal not only share the same asset type with each other but also share the same account.
See Figure 2 for more.

• Simple Shared Prize
Simple Shared Prize is a type of reward distribution task where the amount and destination of rewards are

defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user]/totalPrincipal ∗ alpha ∗ blocks/cycle, (5)

where alpha is a constant that determines the total prize created for all users collectively over time. The user
earns their share of the total prize alpha ∗ blocks/cycle. The earned rewards have a separate account from
that of the principal.

Simple tasks are simple because the rewards are destined to a separate account and they may even be of different asset
type, whereas compound tasks are compound because the rewards are destined to the principal account, either by adding
to or subtracting from the existing principal.

We propose algorithms that solve the former four tasks, under the conditions that the number of users is unknown and
there is a computational quota. The 5th task is used as a reference to understand the former four tasks.

2.2 Position

We discuss the position of our aimed task types identified in Section 2.1 on the map of possible reward distribution
policies.
We can identify several imaginable types of reward distribution task types that can be thought of but unreasonable
practically, in order to clarify the position of our aimed types of reward distribution tasks, as follows:

• Simple Interest Exponential
Simple Interest Exponential is an unreasonable type of reward distribution task where the amount and

destination of rewards are defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (6)

The more frequently rewards are collected according to this formula, the less total reward the user will earn.
Users will not move, unless. If this formula is intentionally used to discourage them from collecting their
rewards frequently, the algorithm is likely found by tweaking our algorithms.

• Simple Burn Exponential
Simple Burn Exponential is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

penalty[user] = penalty[user] + principals[user] ∗ ((1− rate)blocks/cycle − 1) (7)

The more frequently penalty is paid according to this formula, the less total penalty the user will pay. Users
will not rest, unless. If this formula is intentionally used to encourage them to pay penalty frequently, the
algorithm is likely found by tweaking our algorithms.

• Compound Interest Linear
Compound Interest Linear is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ (alpha ∗ rate ∗ blocks/cycle) (8)

5

where alpha is a constant that determines the total prize created
for all users collectively over time. The user earns their share of
the total prize alpha ∗ blocks/cycle. The earned rewards have a
separate account from that of the principal.

Simple tasks are simple because the rewards are destined to a
separate account and they may even be of different asset type,
whereas compound tasks are compound because the rewards are
destined to the principal account, either by adding to or subtracting
from the existing principal.

We propose algorithms that solve the former four tasks, under
the conditions that the number of users is unknown and there
is a computational quota. The 5th task is used as a reference to
understand the former four tasks.

2.2 Position
We discuss the position of our aimed task types identified in
Section 2.1 on the map of possible reward distribution policies.
We can identify several imaginable types of reward distribution
task types that can be thought of but unreasonable practically,
in order to clarify the position of our aimed types of reward
distribution tasks, as follows:

• Simple Interest Exponential
Simple Interest Exponential is an unreasonable type of reward
distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

The more frequently rewards are collected according to this
formula, the less total reward the user will earn. Users will not
move, unless. If this formula is intentionally used to discourage
them from collecting their rewards frequently, the algorithm is
likely found by tweaking our algorithms.

• Simple Burn Exponential
Simple Burn Exponential is an unreasonable type of reward
distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

The more frequently penalty is paid according to this formula,
the less total penalty the user will pay. Users will not rest, unless.
If this formula is intentionally used to encourage them to pay

penalty frequently, the algorithm is likely found by tweaking our
algorithms.

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 5

• Compound Interest Linear
Compound Interest Linear is an unreasonable type of reward

distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

paid burn is continuously debited from the principal amount. The continuity is implemented by exponentiation.
The penalty and principal not only share the same asset type with each other but also share the same account.
See Figure 2 for more.

• Simple Shared Prize
Simple Shared Prize is a type of reward distribution task where the amount and destination of rewards are

defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user]/totalPrincipal ∗ alpha ∗ blocks/cycle, (5)

where alpha is a constant that determines the total prize created for all users collectively over time. The user
earns their share of the total prize alpha ∗ blocks/cycle. The earned rewards have a separate account from
that of the principal.

Simple tasks are simple because the rewards are destined to a separate account and they may even be of different asset
type, whereas compound tasks are compound because the rewards are destined to the principal account, either by adding
to or subtracting from the existing principal.

We propose algorithms that solve the former four tasks, under the conditions that the number of users is unknown and
there is a computational quota. The 5th task is used as a reference to understand the former four tasks.

2.2 Position

We discuss the position of our aimed task types identified in Section 2.1 on the map of possible reward distribution
policies.
We can identify several imaginable types of reward distribution task types that can be thought of but unreasonable
practically, in order to clarify the position of our aimed types of reward distribution tasks, as follows:

• Simple Interest Exponential
Simple Interest Exponential is an unreasonable type of reward distribution task where the amount and

destination of rewards are defined by the following programming pseudocode:

reward[user] = reward[user] + principals[user] ∗ ((1 + rate)blocks/cycle − 1) (6)

The more frequently rewards are collected according to this formula, the less total reward the user will earn.
Users will not move, unless. If this formula is intentionally used to discourage them from collecting their
rewards frequently, the algorithm is likely found by tweaking our algorithms.

• Simple Burn Exponential
Simple Burn Exponential is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

penalty[user] = penalty[user] + principals[user] ∗ ((1− rate)blocks/cycle − 1) (7)

The more frequently penalty is paid according to this formula, the less total penalty the user will pay. Users
will not rest, unless. If this formula is intentionally used to encourage them to pay penalty frequently, the
algorithm is likely found by tweaking our algorithms.

• Compound Interest Linear
Compound Interest Linear is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

principals[user] = principals[user] + principals[user] ∗ (alpha ∗ rate ∗ blocks/cycle) (8)

5
The more frequently the reward is collected according to this
formula, the more total reward the user will earn. Users will
not rest, unless. The algorithm, nonetheless, is likely found by
tweaking our algorithms.

• Compound Burn Linear
Compound Burn Linear is an unreasonable type of reward
distribution task where the amount and destination of rewards are
defined by the following programming pseudocode:

The more frequently the reward is collected according to this formula, the more total reward the user will earn.
Users will not rest, unless. The algorithm, nonetheless, is likely found by tweaking our algorithms.

• Compound Burn Linear
Compound Burn Linear is an unreasonable type of reward distribution task where the amount and destination
of rewards are defined by the following programming pseudocode:

principals[user] = principals[user]− principals[user] ∗ (alpha ∗ rate ∗ blocks/cycle) (9)

The more frequently the penalty is paid according to this formula, the less total penalty the user will pay. Users
will not rest, unless. The algorithm is likely found by tweaking our algorithms.

We exclude Simple Shared Prize type of tasks from our goal, because

• The algorithm created by the Pancakeswap dApp can correctly answer pending(user) for Simple Shared
Prize tasks. (See Equation 5 for the formula of Simple Shared Prize.)

• We can extend with ease the PancakeSwap algorithm to correctly answer balance(user), totalPending(),
and totalBalance() for any Simple Shared Prize tasks, by using a similar logic as used for other task types in
this paper. See Section 2.3 for balance(user), totalPending(), and totalBalance().

Our goal is, therefore, to find algorithms that distribute rewards that are generated continuously over time to users for
Simple Interest, Simple Burn, Compound Interest, and Compound Burn tasks, for an unknown number of users and
adhering to the computational quota.

To the best of our knowledge, virtual distribution was invented by the PancakeSwap DeFi application. Their virtual
distribution method is often used as a model to work around the computational quota in subsequent Decentralized
Applications. We confirm, however, that our goal can not be accomplished by tweaking the PancakeSwap’s algorithm.
In their algorithm, a user’s rewards are generated by the relative amount of the user’s principal, while on our tasks, a
user’s rewards are generated by the absolute amount of the user’s principal. See Section 2.1 for their respective reward
formulas. There have been frequent attempts to solve the Compound Interest and Compound Burn tasks, raising several
concepts, for example, around Compound Interest: periodic compound, manual compound, continuous compound, and
automatic compound. We should make it clear which of the concepts relate how to our algorithms. We discuss these
concepts one by one, although they are not exclusive of each other.

To avoid confusion, compounding itself refers to adding interest to the principal that created the interest or subtracting
a burn (penalty) from the principal that caused the burn. The amount of interest to be compounded can be either
principal∗((1+rate)period−1) or principal∗rate∗period, which we call the time-exponential interest and the time-
linear interest, respectively. As with burn tasks, they are principal∗((1−(1−rate)period)) and principal∗rate∗period,
and called time-exponential burn and time-linear burn, respectively.

• Periodic Compound

This task literally compounds periodically, either regularly or irregularly. The compounding must be a part
of a blockchain transaction and the transaction must be invoked either by administrators or users. Periodic
compounding of time-linear interest by users’ transactions may cause a meaningless competition or bank-
run between users, because the more frequently they compound, the more interest they earn. Periodic
compounding by users is reasonable for time-exponential interest, as frequency has no effect on compounding
time-exponential interest. Periodic compounding of time-linear interest by administrators’ transactions, on
the other hand, might hurt users if administrators or administration automation tools fail to call compounding
in time, restricting the growth of users’ interest. Periodic compounding of time-exponential interest by
administrators’ transactions might cause users to await, if they fail, for the next round of compounding to be

6

The more frequently the penalty is paid according to this formula,
the less total penalty the user will pay. Users will not rest, unless.
The algorithm is likely found by tweaking our algorithms.

We exclude Simple Shared Prize type of tasks from our goal,
because
• The algorithm created by the Pancakeswap dApp can correctly
answer pending(user) for Simple Shared Prize tasks. (See Equation
5 for the formula of Simple Shared Prize) [2].
• We can extend with ease the PancakeSwap algorithm to correctly
answer balance(user), totalPending(), and totalBalance() for any
Simple Shared Prize tasks, by using a similar logic as used for
other task types in this paper. See Section 2.3 for balance(user),
totalPending(), and totalBalance().

Our goal is, therefore, to find algorithms that distribute rewards that
are generated continuously over time to users for Simple Interest,
Simple Burn, Compound Interest, and Compound Burn tasks, for
an unknown number of users and adhering to the computational
quota.

To the best of our knowledge, virtual distribution was invented
by the PancakeSwap DeFi application. Their virtual distribution
method is often used as a model to work around the computational
quota in subsequent Decentralized Applications. We confirm,
however, that our goal can not be accomplished by tweaking the
PancakeSwap’s algorithm. In their algorithm, a user’s rewards are
generated by the relative amount of the user’s principal, while on
our tasks, a user’s rewards are generated by the absolute amount
of the user’s principal. See Section 2.1 for their respective reward
formulas. There have been frequent attempts to solve the Compound
Interest and Compound Burn tasks, raising several concepts, for
example, around Compound Interest: periodic compound, manual
compound, continuous compound, and automatic compound.
We should make it clear which of the concepts relate how to our
algorithms. We discuss these concepts one by one, although they
are not exclusive of each other.

To avoid confusion, compounding itself refers to adding interest to
the principal that created the interest or subtracting a burn (penalty)
from the principal that caused the burn. The amount of interest
to be compounded can be either principal ∗((1+rate)period −1) or

principal ∗ rate∗ period, which we call the time-exponential interest
and the time- linear interest, respectively. As with burn tasks, they
are principal∗((1−(1−rate)period)) and principal∗rate∗period, and
called time-exponential burn and time-linear burn, respectively.

• Periodic Compound
This task literally compounds periodically, either regularly or
irregularly. The compounding must be a part of a blockchain
transaction and the transaction must be invoked either by
administrators or users. Periodic compounding of time-linear
interest by users’ transactions may cause a meaningless competition
or bank-run between users, because the more frequently they
compound, the more interest they earn. Periodic compounding
by users is reasonable for time-exponential interest, as frequency
has no effect on compounding time-exponential interest.
Periodic compounding of time-linear interest by administrators’
transactions, on the other hand, might hurt users if administrators or
administration automation tools fail to call compounding in time,
restricting the growth of users’ interest. Periodic compounding of
time-exponential interest by administrators’ transactions might
cause users to await, if they fail, for the next round of compounding
to be unleashed. Administrators don’t need to unreasonably take
compounding over while users can reasonably take responsibility
for that.

• Manual Compound
If manual compounding means compounding with direct personal
involvement of people rather than by off-chain automation tools,
then we need to note that people are the most unreliable component
in a Decentralized Application, unless the people are users
compounding for themselves. Users compounding for themselves
means users in need of their compounding call compounding at their
discretion. This will allow them to be responsible for their rewards.
If manual compounding means compounding by administrators’
transactions, rather than by users’, and if administrators fail, then
compounding may stop while users are still using the system.

• Automatic Compound
If automatic compounding means compounding with no direct
personal involvement of people but with their automation tools,
off-chain tools are second most unreliable component for a
Decentralized Applications, unless the tools are operated by users

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 6

for themselves and at their discretion. If automatic compounding
means compounding with no direct involvement of administrators,
then it is with the involvement of users and by users’ transactions.
Compounding will not stop as long as users in need of compounding
keep using the system, if compounding is left to users.

• Continuous Compound
We cannot compound continuously, as nobody wants to invoke
compounding transactions every block. Continuous compounding
can be viewed as periodic compounding of time-linear interest with
an infinitely small compounding period. This does not necessarily
mean calling compounding transactions in every block, which
too is not enough to be continuous. Continuous compounding
can be implemented by, periodically or intermittently, regularly
or irregularly, compounding time-exponential interest. As
mentioned above, frequency has no effect on compounding time-
exponential interest. Continuous compounding, or compounding
time-exponential interest, is only reasonable if invoked by users
for themselves.

We observe above that the desirable compounding should be by
users’ transactions compounding time-exponential interest for users
themselves at their discretion, whether it be manual or automatic.
(Manual and automatic are not defined clearly.) A Decentralized
Application, after all, should be in operation only while there
are users using it, not while there are administrators. Users will,
immediately or eventually, have to pay more for more gas, but gas

fees cannot warrant compounding called by administrators.

We follow this observation and choose, regular or irregular,
compounding of time-exponential interest carried out by users’
transactions for users themselves, whether it be manual or
automatic.

Carrying out compounding by users’ transactions leads to
getting compounding actions, which are part of our algorithms,
parasitic on users’ transactions. Technically, this is implemented
by our algorithms hooking user transactions, working inside the
transactions’ context, and collecting pending rewards before
the transactors perform their intended actions, although true
dynamic hooking is not possible on a blockchain and in Solidity
language. Coincidentally, normal users’ transactions work better
if pending rewards have been collected before performing their
intended actions. For example, when a user transfers a portion
of their net principal to someone else, the user wants to collect
pending interest into the principal account before transferring.
Generally, compounding actions should get parasitic on
every principal-changing transaction and precede it. Any user
transactions that require compounding to precede themselves may
want compounding actions to get parasitic on themselves. The
transactions include: mint, burn, transfer, stake, un-stake, harvest,
etc. See Listing 1 for how to implement compounding actions
parasitic on users’ transactions.

Listing 1. Example of changePrincipal(user, amount) function
parasitic on transactions. The changePrincipal(user) function in
our algorithms acts as the compounding action that gets parasitic
on users’ transactions and precedes the transactions’ intended
actions. This function collects all pending rewards of the user
and adds it to their destination account. Furthermore, the function
takes over principal-chaining actions from the transactions, as
compounding actions and principal-changing actions have high
cohesion and should be in the same module, from the software
engineering point of view.

One of the thumb rules that we learn from the previous and this
section is that reasonable simple tasks handle linear rewards
whereas reasonable compound tasks handle exponential rewards.

2.3 Consistency Criteria
We clarify the following terms:
• If a distribution is made actually, all users’ entitled rewards are
moved to their respective destination accounts.
• If a distribution is made actually and immediately, the distribution
is made actually, as soon as users are entitled to some rewards.

Algorithms that distribute rewards to an unknown number of
users should act as if all distributions were made actually and
immediately, while actual distributions are deferred until suitable
moments of time, because immediate actual distribution to all
users is not guaranteed to succeed due to the computational quota
and possibly excessively large number of users. Acting this way is
called making virtual reward distribution.

For a query into a reward distribution process, we clarify the term
return value and true value:

• return value, for a query, is the value returned by an algorithm
that is running in a particular program, in response to the query.
• true value, for a query, is the value that exists for the query purely
by accounting principals and independently of algorithms and
programs.

A reward distribution algorithm that is running in a particular
program is said to be consistent at a moment if and only if the
Consistency Criteria, defined below, are satisfied at the moment:

• A query pending(user)’s return value pending(user) equals its

unleashed. Administrators don’t need to unreasonably take compounding over while users can reasonably
take responsibility for that.

• Manual Compound

If manual compounding means compounding with direct personal involvement of people rather than by off-
chain automation tools, then we need to note that people are the most unreliable component in a Decentralized
Application, unless the people are users compounding for themselves. Users compounding for themselves
means users in need of their compounding call compounding at their discretion. This will allow them to be
responsible for their rewards. If manual compounding means compounding by administrators’ transactions,
rather than by users’, and if administrators fail, then compounding may stop while users are still using the
system.

• Automatic Compound

If automatic compounding means compounding with no direct personal involvement of people but with their
automation tools, off-chain tools are second most unreliable component for a Decentralized Applications,
unless the tools are operated by users for themselves and at their discretion. If automatic compounding means
compounding with no direct involvement of administrators, then it is with the involvement of users and by
users’ transactions. Compounding will not stop as long as users in need of compounding keep using the system,
if compounding is left to users.

• Continuous Compound

We cannot compound continuously, as nobody wants to invoke compounding transactions every block.
Continuous compounding can be viewed as periodic compounding of time-linear interest with an infinitely
small compounding period. This does not necessarily mean calling compounding transactions in every block,
which too is not enough to be continuous. Continuous compounding can be implemented by, periodically
or intermittently, regularly or irregularly, compounding time-exponential interest. As mentioned above,
frequency has no effect on compounding time-exponential interest. Continuous compounding, or compounding
time-exponential interest, is only reasonable if invoked by users for themselves.

We observe above that the desirable compounding should be by users’ transactions compounding time-exponential
interest for users themselves at their discretion, whether it be manual or automatic. (Manual and automatic are not
defined clearly.) A Decentralized Application, after all, should be in operation only while there are users using it, not
while there are administrators. Users will, immediately or eventually, have to pay more for more gas, but gas fees
cannot warrant compounding called by administrators.

We follow this observation and choose, regular or irregular, compounding of time-exponential interest carried out by
users’ transactions for users themselves, whether it be manual or automatic.

Carrying out compounding by users’ transactions leads to getting compounding actions, which are part of our algorithms,
parasitic on users’ transactions. Technically, this is implemented by our algorithms hooking user transactions,
working inside the transactions’ context, and collecting pending rewards before the transactors perform their intended
actions, although true dynamic hooking is not possible on a blockchain and in Solidity language. Coincidentally,
normal users’ transactions work better if pending rewards have been collected before performing their intended
actions. For example, when a user transfers a portion of their net principal to someone else, the user wants to collect
pending interest into the principal account before transferring. Generally, compounding actions should get parasitic
on every principal-changing transaction and precede it. Any user transactions that require compounding to precede
themselves may want compounding actions to get parasitic on themselves. The transactions include: mint, burn, trans-
fer, stake, un-stake, harvest, etc. See List 2.2 for how to implement compounding actions parasitic on users’ transactions.

f u n c t i o n mint (user , amount) {
changePr inc ipa l (user , amount) ; # C o l l e c t user ’ s pending rewards , and c r e d i t user ’ s p r i n c i p a l

7

}
f u n c t i o n t r a n s f e r (sender , r e c i p i e n t , amount) {

changePr inc ipa l (sender , −amount) ; # C o l l e c t sender ’ s pending rewards , and deb i t t h e i r p r i n c i p a l
changePr inc ipa l (r e c i p i e n t , amount) ; # C o l l e c t r e c i p i e n t ’ s pending rewards , and c r e d i t t h e i r p r i n c i p a l

}

Listing 1. Example of changePrincipal(user, amount) function parasitic on transactions. The changePrincipal(user)

function in our algorithms acts as the compounding action that gets parasitic on users’ transactions and precedes the transactions’
intended actions. This function collects all pending rewards of the user and adds it to their destination account. Furthermore, the
function takes over principal-chaining actions from the transactions, as compounding actions and principal-changing actions have
high cohesion and should be in the same module, from the software engineering point of view.

One of the thumb rules that we learn from the previous and this section is that reasonable simple tasks handle linear
rewards whereas reasonable compound tasks handle exponential rewards.

2.3 Consistency criteria

We clarify the following terms:

• If a distribution is made actually, all users’ entitled rewards are moved to their respective destination accounts.

• If a distribution is made actually and immediately, the distribution is made actually, as soon as users are
entitled to some rewards.

Algorithms that distribute rewards to an unknown number of users should act as if all distributions were made actually
and immediately, while actual distributions are deferred until suitable moments of time, because immediate actual
distribution to all users is not guaranteed to succeed due to the computational quota and possibly excessively large
number of users. Acting this way is called making virtual reward distribution.

For a query into a reward distribution process, we clarify the term return value and true value:

• return value, for a query, is the value returned by an algorithm that is running in a particular program, in
response to the query.

• true value, for a query, is the value that exists for the query purely by accounting principals and independently
of algorithms and programs.

A reward distribution algorithm that is running in a particular program is said to be consistent at a moment if and only if
the Consistency Criteria, defined below, are satisfied at the moment:

• A query pending(user)’s return value pending(user) equals its true value {pending(user)} for any user
user, which is the current amount of reward that user is entitled to but is not yet actually distributed.

• A query balance(user)’s return value balance(user) equals its true value {balance(user)} for any user
user, which is the balance of user’s reward destination account plus/minus pending(user). (Minus is for
burn tasks.) Equivalently, it answers to "what would the balance of user’s reward account be if all distributions
were made actually and immediately." We note that in compound tasks the reward account is the same as the
principal account, unlike in simple tasks. See Section 2.1 for more about task types.

• A query totalPending()’s return value totalPending() equals its true value {totalPending()}, which is∑
u∈U{pending(user)}. This query has its own significance, as it may be impossible to sum up across all

users. Algorithms find this value indirectly.

• A query totalBalance()’s return value totalBalance() equals its true value, {totalBalance()}, which is∑
u∈U{balance(user)}. This query has also its own significance, as it may be impossible to sum up across

all users. Algorithms find this value indirectly.

8

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 7

Consistency Errors only takes care of balance(user), and not
of pending(user), because balance(user) is not independent of
pending(user) but is an accumulation of pending(user). Absolute
Error and Relative Error may be called Absolute Consistency Error
and Relative Consistency Error, respectively.

3. Algorithms
In this section, the eight algorithms for our four task types are
proved to be consistent at any moment, under the assumption that

there are no computer numerical errors, as is not the case. See Table
1 for a classification of the eight algorithms. Numerical errors are
handled in the last subsection 3.9, where random algorithms that
mitigate some of numerical errors are proposed and discussed.

The algorithms presented below are in the form of UML State
Machine diagram, without losing rigorosity. We choose verbal
proof for pendency tracker algorithms, and choose symbolic proof
for activity tracker algorithms, for comparison.

• The algorithm allows consistent transfers, meaning that the algorithm allows all transfers of any amount of
asset from the reward destination account of any user user if the amount is equal to or less than balance(user),
unless the application prohibits the transfers.

The Consistency Criteria can be simplified as:

• pending(user) = {pending(user)} for any user user

• balance(user) = {balance(user)} for any user user

• totalPending() = {totalPending()}

• totalBalance() = {totalBalance()}

• the algorithm allows consistent transfers

Algorithms may not be consistent, because they may

• have errors in their logic, unlike our algorithms

• have an approximation in their logic, unlike our algorithms

• suffer numerical errors of computer operation, like our algorithms

We prove that our algorithms have no errors in their logic by rigorously verifying that our algorithms are consistent at
any moment, in the next section.

As for numerical errors, we discuss the errors theoretically and in simulated tests. We introduce the following
Consistency Errors as performance measures of our algorithms running in a particular program:

TrueTotal = {totalBalance()} =
∑
u∈U

{balance(user)} (10)

Absolute Error A = |totalBalance()− TrueTotal| (11)

Absolute Error B = |
∑
u∈U

balance(u)− TrueTotal| (12)

Relative Error A = |totalBalance()− TrueTotal|/TrueTotal (13)

Relative Error B = |
∑
u∈U

balance(u)− TrueTotal|/TrueTotal (14)

Consistency Errors only takes care of balance(user), and not of pending(user), because balance(user) is not
independent of pending(user) but is an accumulation of pending(user). Absolute Error and Relative Error may be
called Absolute Consistency Error and Relative Consistency Error, respectively.

9

true value {pending(user)} for any user user, which is the current
amount of reward that user is entitled to but is not yet actually
distributed.
• A query balance(user)’s return value balance(user) equals its
true value {balance(user)} for any user user, which is the balance
of user’s reward destination account plus/minus pending(user).
(Minus is for burn tasks.) Equivalently, it answers to "what would
the balance of user’s reward account be if all distributions were
made actually and immediately." We note that in compound tasks
the reward account is the same as the principal account, unlike in
simple tasks. See Section 2.1 for more about task types.
• A query totalPending()’s return value totalPending() equals its
true value {totalPending()}, which is
Σu∈U {pending(user)}. This query has its own significance, as it
may be impossible to sum up across all users. Algorithms find this
value indirectly.
• A query totalBalance()’s return value totalBalance() equals its
true value, {totalBalance()}, which is Σu∈U {balance(user)}. This
query has also its own significance, as it may be impossible to sum
up across all users. Algorithms find this value indirectly.

• The algorithm allows consistent transfers, meaning that the
algorithm allows all transfers of any amount of asset from the
reward destination account of any user user if the amount is equal
to or less than balance(user), unless the application prohibits the
transfers.

The Consistency Criteria can be simplified as:

•	 pending(user) = {pending(user)} for any user user
•	 balance(user) = {balance(user)} for any user user
•	 totalPending() = {totalPending()}
•	 totalBalance() = {totalBalance()}
•	 the algorithm allows consistent transfers

Algorithms may not be consistent, because they may
•	 have errors in their logic, unlike our algorithms
•	 have an approximation in their logic, unlike our
algorithms
•	 suffer numerical errors of computer operation, like our
algorithms

We prove that our algorithms have no errors in their logic by
rigorously verifying that our algorithms are consistent at any
moment, in the next section.

As for numerical errors, we discuss the errors theoretically and in
simulated tests. We introduce the following Consistency Errors as
performance measures of our algorithms running in a particular
program:

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 8

3.1 Simple Interest Pendency Tracker Algorithm

3 Algorithms

In this section, the eight algorithms for our four task types are proved to be consistent at any moment, under the
assumption that there are no computer numerical errors, as is not the case. See Table 1 for a classification of the eight
algorithms. Numerical errors are handled in the last subsection 3.9, where random algorithms that mitigate some of
numerical errors are proposed and discussed.

The algorithms presented below are in the form of UML State Machine diagram, without losing rigorosity. We choose
verbal proof for pendency tracker algorithms, and choose symbolic proof for activity tracker algorithms, for comparison.

3.1 Simple Interest pendency tracker algorithm

Figure 3. The UML State Machine of Simple Interest pendency tracker algorithm. The four functions corresponding to queries in the
Consistency Criteria, as well as the changePrincipal(user, amount) function, are represented as events of the state machine.
When invoked, these events are supposed to let the state machine transition from the consistent state back to the same consistent
state.

See Equation 1 for the formula of Simple Interest tasks. See Figure 3 for the state machine of the algorithm.

The algorithm can be proved as follows:

The changePrincipal(user, amount) function collects and compounds all pending interest of a given user user,
whenever before changing the variable principals[user], because the interest formula Equation 1 is a function of
a constant principals[user] and the elapsed time period over which the principals[user] remained that constant.
After finishing the changePrincipal(user, amount) function, the user’s pending interest becomes zero. This
justifies the logic of the pending(user) function, which simply returns the rewards created after the latest call on the
changePrincipal(user, amount) function.

As for the totalPending() function, the variable pendency is tracked by the update() and
changePrincipal(user, amount) functions for the user user who is currently calling a principal-changing
transaction, which, in turn, calls the current instance of changePrincipal(user, amount) function. The variable
pendency is added, in the update() function, with the total interest newly created by the existing total principal
totalPrincipal during the period over which the total Principal was kept to the current constant, whenever before the
total principal is changed, so, whenever before a user’s principal is changed. That newly created total interest should
represents all users’ newly created interest for the same period. The variable pendency is then subtracted with the

10

Figure 3: The UML State Machine Diagram of Simple Interest pendency tracker algorithm. The four functions corresponding to queries
in the Consistency Criteria, as well as the changePrincipal(user, amount) function, are represented as events of the state machine. When
invoked, these events are supposed to let the state machine transition from the consistent state back to the same consistent state.

See Equation 1 for the formula of Simple Interest tasks. See Figure
3 for the state machine of the algorithm. The algorithm can be
proved as follows:
The changePrincipal(user, amount) function collects and
compounds all pending interest of a given user user, whenever
before changing the variable principals[user], because the interest
formula Equation 1 is a function of a constant principals[user] and
the elapsed time period over which the principals[user] remained
that constant. After finishing the changePrincipal(user, amount)
function, the user’s pending interest becomes zero. This justifies
the logic of the pending(user) function, which simply returns the
rewards created after the latest call on the changePrincipal(user,
amount) function.

As for the totalPending() function, the variable pendency is tracked
by the update() and changePrincipal(user, amount) functions for the
user user who is currently calling a principal-changing transaction,
which, in turn, calls the current instance of changePrincipal(user,
amount) function. The variable pendency is added, in the update()
function, with the total interest newly created by the existing total
principal totalPrincipal during the period over which the total
Principal was kept to the current constant, whenever before the

total principal is changed, so, whenever before a user’s principal
is changed. That newly created total interest should represents all
users’ newly created interest for the same period. The variable
pendency is then subtracted with the user’s pending interest and
the user’s reward account is credited with that pending interest,
effectively distributing the user’s pending interest to the user, via
pendency. Therefore, the variable pendency indicates the total
pending interest, as of the latest changePrincipal(user, amount)
call, that is not yet actually distributed to individual users other
than the very user. When asking the totalPending() query, the
additional interest created after the latest changePrincipal(user,
amount) call is returned together with the pendency.

The balance(user) function is straightforward. The balance of a
user is the sum of their rewards, which is collected and accumulated
interest of the user, and their pending interest. The totalBalance()
is similar.

This algorithm is called a pendency tracker, because the
totalPending() function is calculated by using a representation of
pending amount, pendency.

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 9

3.2 Simple Burn Pendency Tracker Algorithm

user’s pending interest and the user’s reward account is credited with that pending interest, effectively distributing
the user’s pending interest to the user, via pendency. Therefore, the variable pendency indicates the total pending
interest, as of the latest changePrincipal(user, amount) call, that is not yet actually distributed to individual users
other than the very user. When asking the totalPending() query, the additional interest created after the latest
changePrincipal(user, amount) call is returned together with the pendency.

The balance(user) function is straightforward. The balance of a user is the sum of their rewards, which is collected
and accumulated interest of the user, and their pending interest. The totalBalance() is similar.

This algorithm is called a pendency tracker, because the totalPending() function is calculated by using a representation
of pending amount, pendency.

3.2 Simple Burn pendency tracker algorithm

Figure 4. The UML State Machine of Simple Burn pendency tracker algorithm.

See Equation 2 for the formula of Simple Burn tasks. See Figure 4 for the state machine of the algorithm.
We note in the functions balance(user) and totalBalance(), the pending penalty, which is the penalty theoretically
charged but not yet actually distributed, is added to, and not subtracted from, the user’s reward. This is because
these algorithms solve only quantitative relationships and do not relate to how the assets are materialized, simply
accumulating charged penalties into the negative reward account.

This algorithm can be proved similarly as in Simple Interest Pendency tracker.

11

Figure 4: The UML State Machine Diagram of Simple Burn Pendency Tracker Algorithm

See Equation 2 for the formula of Simple Burn tasks. See Figure 4
for the state machine of the algorithm.
We note in the functions balance(user) and totalBalance(), the
pending penalty, which is the penalty theoretically charged but
not yet actually distributed, is added to, and not subtracted from,
the user’s reward. This is because these algorithms solve only

quantitative relationships and do not relate to how the assets are
materialized, simply accumulating charged penalties into the
negative reward account.

This algorithm can be proved similarly as in Simple Interest
Pendency tracker.

3.3 Compound Interest Pendency Tracker Algorithm3.3 Compound Interest pendency tracker algorithm

Figure 5. The UML State Machine of Compound Interest pendency tracker algorithm.

See Equation 3 for the formula of Compound Interest tasks. See Figure 5 for the state machine of the algorithm.

3.4 Compound Burn pendency tracker algorithm

Figure 6. The UML State Machine of Compound Burn pendency tracker algorithm.

See Equation 4 for the formula of Compound Burn tasks. See Figure 6 for the state machine of the Compound Burn
pendency tracker algorithm.

This algorithm can be proved Similarly as in Simple Interest Pendency tracker

12

Figure 5: The UML State Machine Diagram of Compound Interest Pendency Tracker Algorithm

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 10

See Equation 3 for the formula of Compound Interest tasks. See Figure 5 for the state machine of the algorithm.

3.4 Compound Burn Pendency Tracker Algorithm

3.3 Compound Interest pendency tracker algorithm

Figure 5. The UML State Machine of Compound Interest pendency tracker algorithm.

See Equation 3 for the formula of Compound Interest tasks. See Figure 5 for the state machine of the algorithm.

3.4 Compound Burn pendency tracker algorithm

Figure 6. The UML State Machine of Compound Burn pendency tracker algorithm.

See Equation 4 for the formula of Compound Burn tasks. See Figure 6 for the state machine of the Compound Burn
pendency tracker algorithm.

This algorithm can be proved Similarly as in Simple Interest Pendency tracker

12

Figure 6: The UML State Machine Diagram of Compound Burn Pendency Tracker Algorithm

See Equation 4 for the formula of Compound Burn tasks. See Figure 6 for the state machine of the Compound Burn pendency tracker
algorithm.
This algorithm can be proved Similarly as in Simple Interest Pendency tracker

3.5 Simple Interest Activity Tracker Algorithm3.5 Simple Interest activity tracker algorithm

Figure 7. The UML State Machine of Simple Interest activity tracker algorithm.

See Equation 1 for the formula of Simple Interest tasks. See Figure 7 for the state machine of the Simple Interest
activity tracker algorithm.

Unlike pendency tracker algorithms presented so far that track the amount of rewards that are not yet distributed, activity
tracker algorithms track a representation of users’ activity in terms of how long time users keep how much principal.
Symmetric, they should be equivalent, but it is observed that the two performs not the same and not necessarily one is
better than the other in all aspects. Pendency tracker and activity tracker algorithms are alternatives to each other and
we can choose between them in practice according to specific task requirements. See Section 4 for more.

We introduce the following definitions and notations, which might be used in symbolic reasoning of general blockchain
techniques:

• History is a set of identified events in a particular decentralized application program.

– The identified events primarily may include all transactions in the program.

– If the task has a transaction in a block, then the block can also be included in the identified events.

– The initial block initBlock, where the decentralized application program is deployed on the blockchain,
is included, in particular.

– We assume there is an event init where all variables are initialized from no value to zero at the beginning
of initBlock.

– If we need to identify the evaluation of a block of individual programming statements in a particular
transaction, then the evaluation of those statements are also an event in the event history.

– Different programs may have different history for the same application class, as each program relates to
events of its own interest.

• Left moment of event e, denoted by e−, is the very start of the event e and has no duration. Right moment of
event e, e+, is the very end of event e. For example, if e is a block, then e− is the start of the block; if e is a
transaction, then e+ is the end of the transaction; etc. We assume init− is equal to initBlock−, in particular.

• Moments of history H , M(H), means ∪e∈H{e−, e+}

• Ordered moments of history H , OM(H), is a sequence that consists of elements of the moments of history
H and that is arranged in the order of taking place. The ordered moments of history exist uniquely for a given
history, and is a finite-length sequence or has the same structure as natural numbers.

• Block of moment m, B(m) for a moment m, is the block or block number where the moment takes place.

13

 Figure 7: The UML State Machine Diagram of Simple Interest activity tracker algorithm

See Equation 1 for the formula of Simple Interest tasks. See Figure
7 for the state machine of the Simple Interest activity tracker
algorithm.

Unlike pendency tracker algorithms presented so far that track
the amount of rewards that are not yet distributed, activity tracker
algorithms track a representation of users’ activity in terms of how
long time users keep how much principal. Symmetric, they should
be equivalent, but it is observed that the two performs not the

same and not necessarily one is better than the other in all aspects.
Pendency tracker and activity tracker algorithms are alternatives to
each other and we can choose between them in practice according
to specific task requirements. See Section 4 for more.
We introduce the following definitions and notations, which might
be used in symbolic reasoning of general blockchain techniques:
• History is a set of identified events in a particular decentralized
application program.
– The identified events primarily may include all transactions in

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 11

the program.
– If the task has a transaction in a block, then the block can also be
included in the identified events.
– The initial block initBlock, where the decentralized application
program is deployed on the blockchain, is included, in particular.
– We assume there is an event init where all variables are initialized
from no value to zero at the beginning of initBlock.
– If we need to identify the evaluation of a block of individual
programming statements in a particular transaction, then the
evaluation of those statements are also an event in the event history.
– Different programs may have different history for the same
application class, as each program relates to events of its own
interest.
• Left moment of event e, denoted by e−, is the very start of the
event e and has no duration. Right moment of event e, e+, is
the very end of event e. For example, if e is a block, then e− is
the start of the block; if e is a transaction, then e+ is the end of
the transaction; etc. We assume init− is equal to initBlock−, in
particular.
• Moments of history H, M (H), means ∪e∈H {e−, e+}
• Ordered moments of history H, OM (H), is a sequence that
consists of elements of the moments of history H and that is
arranged in the order of taking place. The ordered moments of
history exist uniquely for a given history, and is a finite-length
sequence or has the same structure as natural numbers.
• Block of moment m, B(m) for a moment m, is the block or block
number where the moment takes place.
• Quantity Q as of moment m, Q[m] for a moment m, is the quantity
of property Q that exists at the moment m.
• All users, U , is the set of all possible account addresses.

We also have the following definitions and notations specifically
for this paper:
• Last block of user u at moment m, u.lastBlock[m], is the block
or block number where the user u’s principal changed latest before
the given moment m.
• Principal of user u, principals[u], is the amount of the principal
of user u.
• Interest/burn rate, rate, is an interest rate or burn rate in the
reward distribution application.
• Virtual rewarding period, cycle, is a certain positive integer
such that the interest/burn rate is described as "an interest/burn
as much as rate portion of the principal is credited from/debited
to its destination account every cycle block(s) that elapses." This

is called a virtual because we don’t actually collect rewards every
cycle blocks.

The following abbreviations are used interchangeably for the
remaining part of this paper:

•	 P for principals
•	 lB for lastBlock
•	 C for cycle
•	 R for rate

We introduce the following definitions:
• A reward distribution algorithm is said to be consistent for a
principal-changing event e if and only if the algorithm is consistent
for any moment m over the moment interval [e+, en−] where en
is the next coming principal-changing event. (See Section 2.3 for
Consistency Criteria.)
• A reward distribution algorithm is said to be consistent if and
only if the algorithm is consistent for any principal-changing event
e.

We prove that the Simple Interest activity tracker algorithm is
consistent, by mathematical induction for principal-changing
events, as follows:
• The algorithm is consistent for the initial principal-changing
event init.
We have to prove that the algorithm is consistent at any moment
m over the moment interval [init+, n−] where n is the next
coming principal-chaining event. Firstly, all the four queries in the
Consistency Criteria return zero; which is its true value, because
the principals of all users remain zero over the interval [init+,
n−], as there were no principal-changing actions at all after all
principals were initialized to zero by the event init.

Secondly, the algorithm allows consistent transfers, because
balance(user) is zero for any user user, and the algorithm can
always transfer/debit zero amount from the reward destination
account of user.
• If we assume that the algorithm is consistent for a principal-
changing event e, then it is also consistent for the next coming
principal-changing event ne .
See Section 2.3 for Consistency Criteria. Let u be the user whose
principal is changed by the event ne, then this proposition is proved
as follows.

˙

• Quantity Q as of moment m, Q[m] for a moment m, is the quantity of property Q that exists at the moment
m.

• All users, U , is the set of all possible account addresses.

We also have the following definitions and notations specifically for this paper:

• Last block of user u at moment m, u.lastBlock[m], is the block or block number where the user u’s principal
changed latest before the given moment m.

• Principal of user u, principals[u], is the amount of the principal of user u.

• Interest/burn rate, rate, is an interest rate or burn rate in the reward distribution application.

• Virtual rewarding period, cycle, is a certain positive integer such that the interest/burn rate is described as
"an interest/burn as much as rate portion of the principal is credited from/debited to its destination account
every cycle block(s) that elapses." This is called a virtual because we don’t actually collect rewards every
cycle blocks.

The following abbreviations are used interchangeably for the remaining part of this paper:

• P for principals

• lB for lastBlock

• C for cycle

• R for rate

We introduce the following definitions:

• A reward distribution algorithm is said to be consistent for a principal-changing event e if and only if the
algorithm is consistent for any moment m over the moment interval [e+, en−] where en is the next coming
Principal-changing event. (See Section 2.3 for Consistency Criteria.)

• A reward distribution algorithm is said to be consistent if and only if the algorithm is consistent for any
principal-changing event e.

We prove that the Simple Interest activity tracker algorithm is consistent, by mathematical induction for principal-
changing events, as follows:

• The algorithm is consistent for the initial principal-changing event init.
We have to prove that the algorithm is consistent at any moment m over the moment interval [init+, n−]

where n is the next coming principal-chaining event. Firstly, all the four queries in the Consistency Criteria
return zero; which is its true value, because the principals of all users remain zero over the interval [init+, n−],
as there were no principal-changing actions at all after all principals were initialized to zero by the event init.

Secondly, the algorithm allows consistent transfers, because balance(user) is a zero for any user user, and
the algorithm can always transfer/debit a zero amount from the reward destination account of user.

• If we assume that the algorithm is consistent for a principal-changing event e, then it is also consistent
for the next coming principal-changing event ne .

See Section 2.3 for Consistency Criteria. Let u̇ be the user whose principal is changed by the event ne, then
this proposition is proved as follows.

□ pending(u)[(u.lastBlock[e+])+] = 0 for any user u.

14

Because, pending(u)[r], where r = (u.lastBlock[e+])+,

= principals[u][r] ∗ rate ∗ (B(r)− u.lastBlock[r]), by the algorithm

= P [u][r] ∗R ∗ (B((u.lB[e+])+)− u.lB[(u.lB[e+])+])

= P [u][r] ∗R ∗ (u.lB[e+] − u.lB[e+])

= 0

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ u.lastBlock[e+].
(See the algorithm state machine in Figure 7 for activity.)

Because, totalPending[e+]

=
∑

u∈U pending(u)[e+], because the algorithm is consistent at e+,

=
∑

u∈U{pending(u)[(u.lB
[e+])+] + P [u][(u.lB

[e+])+] ∗R ∗ (B(e+)− u.lB[e+])/C}

=
∑

u∈U{P [u][e+] ∗R ∗ (B(e+)− u.lB[e+])/C},

because

◦ pending(u)[(u.lB
[e+])+] = 0 for any user u;

◦ if (B(e+)− u.lB[e+]) = 0 and, so, P [u][(u.lB
[e+])+] does not yet exist at the moment e+, then we

can replace the multiplier P [u][(u.lB
[e+])+] with any value;

◦ if (B(e+)− u.lB[e+]) > 0, then the user’s principal didn’t change since its latest change and

P [u][(u.lB
[e+])+] = P [u][e+].

= (
∑

u∈U P [u][e+]) ∗B(e+) ∗R/C − (
∑

u∈U P [u][e+] ∗ u.lB[e+]) ∗R/C

= (totalPrincipal[e+] ∗B(e+)− (
∑

u∈U P [u][e+] ∗ u.lB[e+])) ∗R/C

On the other hand, the algorithm returns the following value to be totalPending[e+]:

(totalPrincipal[e+] ∗B(e+)− activity[e+]) ∗ rate/cycle.

Therefore, activity[e+] =
∑

u∈U P [u][e+] ∗ u.lB[e+].

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ u.lastBlock[ne+].

Because, activity[ne+]

= activity[ne−] − principals[u̇][ne−] ∗ u̇.lastBlock[ne−] + principals[u̇][ne+] ∗ u.lastBlock[ne+]

15

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 12

Because, pending(u)[r], where r = (u.lastBlock[e+])+,

= principals[u][r] ∗ rate ∗ (B(r)− u.lastBlock[r]), by the algorithm

= P [u][r] ∗R ∗ (B((u.lB[e+])+)− u.lB[(u.lB[e+])+])

= P [u][r] ∗R ∗ (u.lB[e+] − u.lB[e+])

= 0

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ u.lastBlock[e+].
(See the algorithm state machine in Figure 7 for activity.)

Because, totalPending[e+]

=
∑

u∈U pending(u)[e+], because the algorithm is consistent at e+,

=
∑

u∈U{pending(u)[(u.lB
[e+])+] + P [u][(u.lB

[e+])+] ∗R ∗ (B(e+)− u.lB[e+])/C}

=
∑

u∈U{P [u][e+] ∗R ∗ (B(e+)− u.lB[e+])/C},

because

◦ pending(u)[(u.lB
[e+])+] = 0 for any user u;

◦ if (B(e+)− u.lB[e+]) = 0 and, so, P [u][(u.lB
[e+])+] does not yet exist at the moment e+, then we

can replace the multiplier P [u][(u.lB
[e+])+] with any value;

◦ if (B(e+)− u.lB[e+]) > 0, then the user’s principal didn’t change since its latest change and

P [u][(u.lB
[e+])+] = P [u][e+].

= (
∑

u∈U P [u][e+]) ∗B(e+) ∗R/C − (
∑

u∈U P [u][e+] ∗ u.lB[e+]) ∗R/C

= (totalPrincipal[e+] ∗B(e+)− (
∑

u∈U P [u][e+] ∗ u.lB[e+])) ∗R/C

On the other hand, the algorithm returns the following value to be totalPending[e+]:

(totalPrincipal[e+] ∗B(e+)− activity[e+]) ∗ rate/cycle.

Therefore, activity[e+] =
∑

u∈U P [u][e+] ∗ u.lB[e+].

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ u.lastBlock[ne+].

Because, activity[ne+]

= activity[ne−] − principals[u̇][ne−] ∗ u̇.lastBlock[ne−] + principals[u̇][ne+] ∗ u.lastBlock[ne+]

15

= activity[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][e+] ∗ u.lB[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][e+] ∗ u.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][ne+] ∗ u.lB[ne+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][ne+] ∗ u.lB[ne+]

Below, we assume any moment r over the moment interval [en+, o−] where o is the next com-
ing principal-changing event after en, and prove that the algorithm is consistent at the moment
r.

□ pending(u)[r] returns its true value for any user u.

Because, pending(u)[r]

= principals[u][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u][e+] ∗R ∗ (B(r)− u.lB[r]), for u ̸= u̇

= P [u][e+] ∗R ∗ (B(e+)− u.lB[e+] +B(r)−B(e+)), for u ̸= u̇

= pending(u)[e+] + P [u][e+] ∗R ∗ (B(r)−B(e+)), for u ̸= u̇

where, from the assumption of induction, pending(u)[e+] returns its true value; and
P [u][e+] ∗ R ∗ (B(r) − B(m+)) is the true reward created after the moment e+. Therefore,
pending(u)[r] returns its true value for u ̸= u̇.

For the user u̇,

principals[u̇][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[e+] + P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[ne−] + P [u̇][ne+] ∗R(B(r)−B(ne+))

where pending(u̇)[e+] returns its true value, from the assumption of induction; −pending(u̇)[ne−] has
occurred by the changePrincipal(u, amount) function collecting the pending reward of the user u̇ at
the event ne; and principals[u̇][ne+] ∗R(B(r)−B(ne+)) is the true reward created after the moment
ne+. Therefore, we can say pending(u̇)[r] returns its true value.

□ totalPending[r] returns its true value.

Because, totalPending[r]

16

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 13

= activity[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][e+] ∗ u.lB[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][e+] ∗ u.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][ne+] ∗ u.lB[ne+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][ne+] ∗ u.lB[ne+]

Below, we assume any moment r over the moment interval [en+, o−] where o is the next com-
ing principal-changing event after en, and prove that the algorithm is consistent at the moment
r.

□ pending(u)[r] returns its true value for any user u.

Because, pending(u)[r]

= principals[u][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u][e+] ∗R ∗ (B(r)− u.lB[r]), for u ̸= u̇

= P [u][e+] ∗R ∗ (B(e+)− u.lB[e+] +B(r)−B(e+)), for u ̸= u̇

= pending(u)[e+] + P [u][e+] ∗R ∗ (B(r)−B(e+)), for u ̸= u̇

where, from the assumption of induction, pending(u)[e+] returns its true value; and
P [u][e+] ∗ R ∗ (B(r) − B(m+)) is the true reward created after the moment e+. Therefore,
pending(u)[r] returns its true value for u ̸= u̇.

For the user u̇,

principals[u̇][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[e+] + P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[ne−] + P [u̇][ne+] ∗R(B(r)−B(ne+))

where pending(u̇)[e+] returns its true value, from the assumption of induction; −pending(u̇)[ne−] has
occurred by the changePrincipal(u, amount) function collecting the pending reward of the user u̇ at
the event ne; and principals[u̇][ne+] ∗R(B(r)−B(ne+)) is the true reward created after the moment
ne+. Therefore, we can say pending(u̇)[r] returns its true value.

□ totalPending[r] returns its true value.

Because, totalPending[r]

16

= activity[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][e+] ∗ u.lB[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][e+] ∗ u.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][ne+] ∗ u.lB[ne+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][ne+] ∗ u.lB[ne+]

Below, we assume any moment r over the moment interval [en+, o−] where o is the next com-
ing principal-changing event after en, and prove that the algorithm is consistent at the moment
r.

□ pending(u)[r] returns its true value for any user u.

Because, pending(u)[r]

= principals[u][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u][e+] ∗R ∗ (B(r)− u.lB[r]), for u ̸= u̇

= P [u][e+] ∗R ∗ (B(e+)− u.lB[e+] +B(r)−B(e+)), for u ̸= u̇

= pending(u)[e+] + P [u][e+] ∗R ∗ (B(r)−B(e+)), for u ̸= u̇

where, from the assumption of induction, pending(u)[e+] returns its true value; and
P [u][e+] ∗ R ∗ (B(r) − B(m+)) is the true reward created after the moment e+. Therefore,
pending(u)[r] returns its true value for u ̸= u̇.

For the user u̇,

principals[u̇][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[e+] + P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[ne−] + P [u̇][ne+] ∗R(B(r)−B(ne+))

where pending(u̇)[e+] returns its true value, from the assumption of induction; −pending(u̇)[ne−] has
occurred by the changePrincipal(u, amount) function collecting the pending reward of the user u̇ at
the event ne; and principals[u̇][ne+] ∗R(B(r)−B(ne+)) is the true reward created after the moment
ne+. Therefore, we can say pending(u̇)[r] returns its true value.

□ totalPending[r] returns its true value.

Because, totalPending[r]

16

= activity[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][e+] ∗ u.lB[e+] − P [u̇][e+] ∗ u̇.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][e+] ∗ u.lB[e+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U\{u̇} P [u][ne+] ∗ u.lB[ne+] + P [u̇][ne+] ∗ u.lB[ne+]

=
∑

u∈U P [u][ne+] ∗ u.lB[ne+]

Below, we assume any moment r over the moment interval [en+, o−] where o is the next com-
ing principal-changing event after en, and prove that the algorithm is consistent at the moment
r.

□ pending(u)[r] returns its true value for any user u.

Because, pending(u)[r]

= principals[u][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u][e+] ∗R ∗ (B(r)− u.lB[r]), for u ̸= u̇

= P [u][e+] ∗R ∗ (B(e+)− u.lB[e+] +B(r)−B(e+)), for u ̸= u̇

= pending(u)[e+] + P [u][e+] ∗R ∗ (B(r)−B(e+)), for u ̸= u̇

where, from the assumption of induction, pending(u)[e+] returns its true value; and
P [u][e+] ∗ R ∗ (B(r) − B(m+)) is the true reward created after the moment e+. Therefore,
pending(u)[r] returns its true value for u ̸= u̇.

For the user u̇,

principals[u̇][r] ∗ rate ∗ (B(r)− u.lastBlock[r])

= P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[e+] + P [u̇][ne+] ∗R(B(r)−B(ne+))

= pending(u̇)[e+] − pending(u̇)[ne−] + P [u̇][ne+] ∗R(B(r)−B(ne+))

where pending(u̇)[e+] returns its true value, from the assumption of induction; −pending(u̇)[ne−] has
occurred by the changePrincipal(u, amount) function collecting the pending reward of the user u̇ at
the event ne; and principals[u̇][ne+] ∗R(B(r)−B(ne+)) is the true reward created after the moment
ne+. Therefore, we can say pending(u̇)[r] returns its true value.

□ totalPending[r] returns its true value.

Because, totalPending[r]

16

Below, we assume any moment r over the moment interval [en+, o−] where o is the next coming principal-changing event after en, and
prove that the algorithm is consistent at the moment r.

where, from the assumption of induction, pending(u)[e+] returns its true value; and P[u][e+] ∗ R ∗ (B(r) − B(m+)) is the true reward created
after the moment e+. Therefore, pending(u)[r] returns its true value for u ≠ u .˙

where pending(u)[e+] returns its true value, from the assumption of induction; −pending(u)[ne−] has occurred by the changePrincipal(u,
amount) function collecting the pending reward of the user u at the event ne; and principals[u][ne+] ∗ R(B(r) − B(ne+)) is the true reward
created after the moment ne+. Therefore, we can say pending(u)[r] returns its true value.

˙ ˙
˙˙

= (totalPrincipal[r] ∗B(r)− activity[r]) ∗ rate/cycle

= totalPrincipal[ne+] ∗B(r) ∗R/C − activity[ne+] ∗R/C

= ((
∑

u∈U P [u][ne+] ∗B(r))− (
∑

u∈U P [u][ne+] ∗ u.lB[ne+])) ∗R/C

=
∑

u∈U P [u][u.lB
[r]+] ∗ (B(r)− u.lB[r]) ∗R/C

=
∑

u∈U pending(u)[r],

where pending(u)[r] returns its true value for all users u. Therefore totalPending[r] also
returns its true value.

□ balance(u)[r] returns its true value for any user u.
Because, according to the algorithm, balance(u)[r] = reward[u][r]+pending(u)[r], where reward[u][r]

is its true value because it has been accumulated with historic true values {pending(u)}; and
pending(u)[r] is also proved above to be its true value.

□ totalBalance[r] returns its true value.
Because, according to the algorithm, totalBalance[r] = totalReward[r] + totalPending[r], where
totalReward[r] is its true value because it has been accumulated with historic true values pending(user);
and totalPending[r] is proved above to be its true value.

□ The algorithm allows consistent transfers.
Because the algorithm collects and adds pending(user) to the user’s actual balance so that the actual
balance becomes the same amount as balance(user) returns, before calling the requested transfer actions,
which can now transfer/debit up to balance(user) amount of asset from the actual balance.

Thus far, the Simple Interest pendency tracker algorithm is proved to be consistent, in the meaning defined in Section 3.5.

3.6 Simple Burn activity tracker algorithm

Figure 8. The UML State Machine of Simple Burn activity tracker algorithm.

See Equation 2 for the formula of Simple Burn tasks.

Figure 8 shows the state machine of the Simple Burn activity tracker algorithm.

This algorithm has symbolically the same state machine diagram and the same proof as the Simple Interest activity
tracker algorithm.

17

any user

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 14

= (totalPrincipal[r] ∗B(r)− activity[r]) ∗ rate/cycle

= totalPrincipal[ne+] ∗B(r) ∗R/C − activity[ne+] ∗R/C

= ((
∑

u∈U P [u][ne+] ∗B(r))− (
∑

u∈U P [u][ne+] ∗ u.lB[ne+])) ∗R/C

=
∑

u∈U P [u][u.lB
[r]+] ∗ (B(r)− u.lB[r]) ∗R/C

=
∑

u∈U pending(u)[r],

where pending(u)[r] returns its true value for all users u. Therefore totalPending[r] also
returns its true value.

□ balance(u)[r] returns its true value for any user u.
Because, according to the algorithm, balance(u)[r] = reward[u][r]+pending(u)[r], where reward[u][r]

is its true value because it has been accumulated with historic true values {pending(u)}; and
pending(u)[r] is also proved above to be its true value.

□ totalBalance[r] returns its true value.
Because, according to the algorithm, totalBalance[r] = totalReward[r] + totalPending[r], where
totalReward[r] is its true value because it has been accumulated with historic true values pending(user);
and totalPending[r] is proved above to be its true value.

□ The algorithm allows consistent transfers.
Because the algorithm collects and adds pending(user) to the user’s actual balance so that the actual
balance becomes the same amount as balance(user) returns, before calling the requested transfer actions,
which can now transfer/debit up to balance(user) amount of asset from the actual balance.

Thus far, the Simple Interest pendency tracker algorithm is proved to be consistent, in the meaning defined in Section 3.5.

3.6 Simple Burn activity tracker algorithm

Figure 8. The UML State Machine of Simple Burn activity tracker algorithm.

See Equation 2 for the formula of Simple Burn tasks.

Figure 8 shows the state machine of the Simple Burn activity tracker algorithm.

This algorithm has symbolically the same state machine diagram and the same proof as the Simple Interest activity
tracker algorithm.

17

= (totalPrincipal[r] ∗B(r)− activity[r]) ∗ rate/cycle

= totalPrincipal[ne+] ∗B(r) ∗R/C − activity[ne+] ∗R/C

= ((
∑

u∈U P [u][ne+] ∗B(r))− (
∑

u∈U P [u][ne+] ∗ u.lB[ne+])) ∗R/C

=
∑

u∈U P [u][u.lB
[r]+] ∗ (B(r)− u.lB[r]) ∗R/C

=
∑

u∈U pending(u)[r],

where pending(u)[r] returns its true value for all users u. Therefore totalPending[r] also
returns its true value.

□ balance(u)[r] returns its true value for any user u.
Because, according to the algorithm, balance(u)[r] = reward[u][r]+pending(u)[r], where reward[u][r]

is its true value because it has been accumulated with historic true values {pending(u)}; and
pending(u)[r] is also proved above to be its true value.

□ totalBalance[r] returns its true value.
Because, according to the algorithm, totalBalance[r] = totalReward[r] + totalPending[r], where
totalReward[r] is its true value because it has been accumulated with historic true values pending(user);
and totalPending[r] is proved above to be its true value.

□ The algorithm allows consistent transfers.
Because the algorithm collects and adds pending(user) to the user’s actual balance so that the actual
balance becomes the same amount as balance(user) returns, before calling the requested transfer actions,
which can now transfer/debit up to balance(user) amount of asset from the actual balance.

Thus far, the Simple Interest pendency tracker algorithm is proved to be consistent, in the meaning defined in Section 3.5.

3.6 Simple Burn activity tracker algorithm

Figure 8. The UML State Machine of Simple Burn activity tracker algorithm.

See Equation 2 for the formula of Simple Burn tasks.

Figure 8 shows the state machine of the Simple Burn activity tracker algorithm.

This algorithm has symbolically the same state machine diagram and the same proof as the Simple Interest activity
tracker algorithm.

17

Thus far, the Simple Interest pendency tracker algorithm is proved to be consistent, in the meaning defined in Section 3.5.

3.6 Simple Burn Activity Tracker Algorithm

Figure 8: The UML State Machine Diagram of Simple Burn Activity Tracker Algorithm

See Equation 2 for the formula of Simple Burn tasks.
Figure 8 shows the state machine of the Simple Burn activity tracker algorithm.
This algorithm has symbolically the same state machine diagram and the same proof as the Simple Interest activity tracker algorithm.

3.7 Compound Interest Activity Tracker Algorithm3.7 Compound Interest activity tracker algorithm

Figure 9. The UML State Machine of Compound Interest activity tracker algorithm.

See Equation 3 for the formula of Compound Interest tasks.

Figure 9 shows the state machine of the Compound Interest activity tracker algorithm.

With the same definitions, notations, and assumptions as in Simple Interest activity tracker depicted in Figure 7, we can
prove the main part of the algorithm by mathematical induction for principal-chaining moments, as follows:

• The algorithm is consistent for the initial principal-changing event init.
(See Section 2.3 for Consistency Criteria.) We have to prove that the algorithm is consistent for any moment
m over the moment interval [init+, n−] where n is the next coming principal-chaining event. Firstly, all the
four queries in the Consistency Criteria return zero; which is its true value, because the principals of all users
remained zero over the interval [init+,m], as there were no principal-changing actions after all principals
were initialized to zero at the moment init+.

Secondly, the algorithm allows consistent transfers, because balance(user) is zero and the algorithm can
always transfer/debit a zero amount from the asset balance of the user user.

• If we assume that the algorithm is consistent for a principal-changing event e, then it is also consistent
for the next coming principal-changing event ne .

(See Section 2.3 for Consistency Criteria.) If u̇ denotes the user whose principal is changed by the event ne,
this proposition is proved as follows:

□ pending(u)[(u.lastBlock[e+])+] = 0, for any u u.

Because, pending(u)[r], where r = (u.lastBlock[e+])+,

= principals[u][r] ∗ ((1 + rate)(B(r)−u.lastBlock[r]) − 1), by the algorithm,

P [u][r] ∗ ((1 +R)(B((u.lB[e+])+)−u.lB[(u.lB[e+])+]) − 1)

P [u][r] ∗ ((1 +R)0 − 1)

18

Figure 9: The UML State Machine Diagram of Compound Interest Activity Tracker Algorithm

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 15

See Equation 3 for the formula of Compound Interest tasks.
Figure 9 shows the state machine of the Compound Interest activity tracker algorithm.

With the same definitions, notations, and assumptions as in Simple Interest activity tracker depicted in Figure 7, we can prove the main
part of the algorithm by mathematical induction for principal-chaining moments, as follows:

• The algorithm is consistent for the initial principal-changing event init.
(See Section 2.3 for Consistency Criteria.) We have to prove that the algorithm is consistent for any moment m over the moment interval
[init+, n−] where n is the next coming principal-chaining event. Firstly, all the four queries in the Consistency Criteria return zero; which
is its true value, because the principals of all users remained zero over the interval [init+, m], as there were no principal-changing actions
after all principals were initialized to zero at the moment init+.
Secondly, the algorithm allows consistent transfers, because balance(user) is zero and the algorithm can always transfer/debit a zero
amount from the asset balance of the user user.
• If we assume that the algorithm is consistent for a principal-changing event e, then it is also consistent for the next coming
principal-changing event ne.
(See Section 2.3 for Consistency Criteria.) If u denotes the user whose principal is changed by the event ne, this proposition is proved
as follows:

˙

3.7 Compound Interest activity tracker algorithm

Figure 9. The UML State Machine of Compound Interest activity tracker algorithm.

See Equation 3 for the formula of Compound Interest tasks.

Figure 9 shows the state machine of the Compound Interest activity tracker algorithm.

With the same definitions, notations, and assumptions as in Simple Interest activity tracker depicted in Figure 7, we can
prove the main part of the algorithm by mathematical induction for principal-chaining moments, as follows:

• The algorithm is consistent for the initial principal-changing event init.
(See Section 2.3 for Consistency Criteria.) We have to prove that the algorithm is consistent for any moment
m over the moment interval [init+, n−] where n is the next coming principal-chaining event. Firstly, all the
four queries in the Consistency Criteria return zero; which is its true value, because the principals of all users
remained zero over the interval [init+,m], as there were no principal-changing actions after all principals
were initialized to zero at the moment init+.

Secondly, the algorithm allows consistent transfers, because balance(user) is zero and the algorithm can
always transfer/debit a zero amount from the asset balance of the user user.

• If we assume that the algorithm is consistent for a principal-changing event e, then it is also consistent
for the next coming principal-changing event ne .

(See Section 2.3 for Consistency Criteria.) If u̇ denotes the user whose principal is changed by the event ne,
this proposition is proved as follows:

□ pending(u)[(u.lastBlock[e+])+] = 0, for any u u.

Because, pending(u)[r], where r = (u.lastBlock[e+])+,

= principals[u][r] ∗ ((1 + rate)(B(r)−u.lastBlock[r]) − 1), by the algorithm,

P [u][r] ∗ ((1 +R)(B((u.lB[e+])+)−u.lB[(u.lB[e+])+]) − 1)

P [u][r] ∗ ((1 +R)0 − 1)

18= 0

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ (1 + rate)(B(e+)−u.lastBlock[e+])/cycle.
(See the algorithm state machine in Figure 9 for activity.)

Because, P [e+]

=
∑

u∈U pending(u)[e+], as the algorithm is consistent at e+,

=
∑

u∈U{pending(u)[(u.lB
[e+])+] + P [u][(u.lB

[e+])+] ∗ ((1 +R)(B(e+)−u.lB[e+])/C − 1)}

=
∑

u∈U{P [u][e+] ∗ ((1 +R)(B(e+)−u.lB[e+])/C − 1)},

because

◦ pending(u)[(u.lB
[e+])+] = 0, for any u u;

◦ if (B(e+)− u.lB[m+]) = 0 and, so, lB[u][(u.lB
[e+])+]

does not yet exist at the moment e+, which is the case for the user u̇, at least, then we can replace the
multiplier lB[u][(u.lB

[e+])+] with any value;
◦ if (B(e+)−u.lB[e+]) > 0, then the users principal didn’t change and lB[u][(u.lB

[e+])+] = lB[u][e+].

=
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C −
∑

u∈U P [u][e+]

=
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C − totalPrincipal[e+]

On the other hand, the algorithm returns the following value to be totalPending[e+]:

activity[e+] − totalPrincipal[e+].

Therefore, activity[e+] =
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C .

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ (1 + rate)(B(ne+)−u.lB[ne+])/cycle.

Because, activity[ne+]

= activity[ne−] ∗ (1 +R)(B(ne−)−B(e+))/C

− principals[u̇][ne−] ∗ (1 +R)(B(ne−)−u̇.lB[ne−])/C + principals[u̇][ne+]

= (
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C) ∗ (1 +R)(B(ne+)−B(e+))/C

− P [u̇][e+] ∗ (1 +R)(B(ne+)−u̇.lB[e+])/C + P [u̇][ne+]

= (
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C ∗ (1 +R)(B(ne+)−B(e+))/C)

− P [u̇][e+] ∗ (1 +R)(B(e+)−u̇.lB[e+])/C ∗ (1 +R)(B(ne+)−B(e+))/C + P [u̇][ne+]

= (
∑

u∈U\{u̇} P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C) ∗ (1 +R)(B(ne+)−B(e+))/C + P [u̇][ne+]

19

user u

user's

user u;

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 16

= 0

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ (1 + rate)(B(e+)−u.lastBlock[e+])/cycle.
(See the algorithm state machine in Figure 9 for activity.)

Because, P [e+]

=
∑

u∈U pending(u)[e+], as the algorithm is consistent at e+,

=
∑

u∈U{pending(u)[(u.lB
[e+])+] + P [u][(u.lB

[e+])+] ∗ ((1 +R)(B(e+)−u.lB[e+])/C − 1)}

=
∑

u∈U{P [u][e+] ∗ ((1 +R)(B(e+)−u.lB[e+])/C − 1)},

because

◦ pending(u)[(u.lB
[e+])+] = 0, for any u u;

◦ if (B(e+)− u.lB[m+]) = 0 and, so, lB[u][(u.lB
[e+])+]

does not yet exist at the moment e+, which is the case for the user u̇, at least, then we can replace the
multiplier lB[u][(u.lB

[e+])+] with any value;
◦ if (B(e+)−u.lB[e+]) > 0, then the users principal didn’t change and lB[u][(u.lB

[e+])+] = lB[u][e+].

=
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C −
∑

u∈U P [u][e+]

=
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C − totalPrincipal[e+]

On the other hand, the algorithm returns the following value to be totalPending[e+]:

activity[e+] − totalPrincipal[e+].

Therefore, activity[e+] =
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C .

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ (1 + rate)(B(ne+)−u.lB[ne+])/cycle.

Because, activity[ne+]

= activity[ne−] ∗ (1 +R)(B(ne−)−B(e+))/C

− principals[u̇][ne−] ∗ (1 +R)(B(ne−)−u̇.lB[ne−])/C + principals[u̇][ne+]

= (
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C) ∗ (1 +R)(B(ne+)−B(e+))/C

− P [u̇][e+] ∗ (1 +R)(B(ne+)−u̇.lB[e+])/C + P [u̇][ne+]

= (
∑

u∈U P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C ∗ (1 +R)(B(ne+)−B(e+))/C)

− P [u̇][e+] ∗ (1 +R)(B(e+)−u̇.lB[e+])/C ∗ (1 +R)(B(ne+)−B(e+))/C + P [u̇][ne+]

= (
∑

u∈U\{u̇} P [u][e+] ∗ (1 +R)(B(e+)−u.lB[e+])/C) ∗ (1 +R)(B(ne+)−B(e+))/C + P [u̇][ne+]

19
= (

∑
u∈U\{u̇} P [u][ne+] ∗ (1 +R)(B(ne+)−u.lB[e+])/C) + P [u̇][ne+] ∗ (1 +R)(B(ne+)−u̇.lB[ne+])/C

= (
∑

u∈U P [u][ne+] ∗ (1 +R)(B(ne+)−u.lB[e+])/C)

Below, we assume any moment r over the moment interval [en+, o−] where o is the next com-
ing principal-changing event after en, and prove that the algorithm is consistent at the moment
r.

□ pending(u)[r] returns its true value for any user u.

Because, pending(u)[r]

= principals[u][r] ∗ ((1 + rate)B(r)−u.lastBlock[r] − 1)

= P [u][(u.lB
[r])+] ∗ ((1 +R)B(r)−u.lB[e+] − 1)

= (P [u][(u.lB
[r])+] + 0) ∗ ((1 +R)B(r)−u.lB[e+] − 1)

= (P [u][(u.lB
[r])+] + pending(u)[(u.lB[r])+]) ∗ ((1 +R)B(r)−u.lB[e+] − 1)

= balance[u][(u.lB
[r])+] ∗ ((1 +R)B(r)−u.lB[e+] − 1)

which is the total interest created after the latest principal-changing block, after which the user’s interest
was not distributed. Therefore, this is the true pending interest of the user. (We note that for the user u̇,
the latest principal-changing event is ne, and the latest principal-changing block is B(ne+))

□ totalPending[r] returns its true value.

Because, totalPending[r]

= activity[r] ∗ (1 + rate)(B(r)−B(ne+))/cycle − totalPrincipal[r]

= activity[ne+] ∗ (1 +R)B(r)−B(ne+) − totalPrincipal[ne+]

= (
∑

u∈U P [u][ne+] ∗ (1 +R)(B(ne+)−u.lB[ne+])/C ∗ (1 +R)(B(r)−B(ne+))/C)−
∑

u∈U P [u][ne+]

=
∑

u∈U (P [u][ne+] ∗ ((1 +R)(B(ne+)−u.lB[ne+])/C ∗ (1 +R)B(r)−B(ne+) − 1))

=
∑

u∈U (P [u][(u.lB
[ne+])+] ∗ ((1 +R)(B(r)−u.lB[ne+])/C − 1))

=
∑

u∈U (P [u][(u.lB
[r])+] ∗ ((1 +R)(B(r)−u.lB[r])/C − 1))

=
∑

u∈U pending(u)[r]

where pending(u)[r] returns its true value for all users u. Therefore totalPending[r] also
returns its true value.

□ balance(u)[r] returns its true value for any user u.
Because, according to the algorithm, balance(u)[r] = principals[u][r] + pending(u)[r], where

20

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 17

= (
∑

u∈U\{u̇} P [u][ne+] ∗ (1 +R)(B(ne+)−u.lB[e+])/C) + P [u̇][ne+] ∗ (1 +R)(B(ne+)−u̇.lB[ne+])/C

= (
∑

u∈U P [u][ne+] ∗ (1 +R)(B(ne+)−u.lB[e+])/C)

Below, we assume any moment r over the moment interval [en+, o−] where o is the next com-
ing principal-changing event after en, and prove that the algorithm is consistent at the moment
r.

□ pending(u)[r] returns its true value for any user u.

Because, pending(u)[r]

= principals[u][r] ∗ ((1 + rate)B(r)−u.lastBlock[r] − 1)

= P [u][(u.lB
[r])+] ∗ ((1 +R)B(r)−u.lB[e+] − 1)

= (P [u][(u.lB
[r])+] + 0) ∗ ((1 +R)B(r)−u.lB[e+] − 1)

= (P [u][(u.lB
[r])+] + pending(u)[(u.lB[r])+]) ∗ ((1 +R)B(r)−u.lB[e+] − 1)

= balance[u][(u.lB
[r])+] ∗ ((1 +R)B(r)−u.lB[e+] − 1)

which is the total interest created after the latest principal-changing block, after which the user’s interest
was not distributed. Therefore, this is the true pending interest of the user. (We note that for the user u̇,
the latest principal-changing event is ne, and the latest principal-changing block is B(ne+))

□ totalPending[r] returns its true value.

Because, totalPending[r]

= activity[r] ∗ (1 + rate)(B(r)−B(ne+))/cycle − totalPrincipal[r]

= activity[ne+] ∗ (1 +R)B(r)−B(ne+) − totalPrincipal[ne+]

= (
∑

u∈U P [u][ne+] ∗ (1 +R)(B(ne+)−u.lB[ne+])/C ∗ (1 +R)(B(r)−B(ne+))/C)−
∑

u∈U P [u][ne+]

=
∑

u∈U (P [u][ne+] ∗ ((1 +R)(B(ne+)−u.lB[ne+])/C ∗ (1 +R)B(r)−B(ne+) − 1))

=
∑

u∈U (P [u][(u.lB
[ne+])+] ∗ ((1 +R)(B(r)−u.lB[ne+])/C − 1))

=
∑

u∈U (P [u][(u.lB
[r])+] ∗ ((1 +R)(B(r)−u.lB[r])/C − 1))

=
∑

u∈U pending(u)[r]

where pending(u)[r] returns its true value for all users u. Therefore totalPending[r] also
returns its true value.

□ balance(u)[r] returns its true value for any user u.
Because, according to the algorithm, balance(u)[r] = principals[u][r] + pending(u)[r], where

20

principals[u][r] is its true value because it has been accumulated with historic true values pending(u);
and pending(u)[r] is proved above to be its true value.

□ totalBalance[r] returns its true value.
Because, according to the algorithm, totalBalance[r] = totalPrincipal[r] + totalPending[r],
where totalPrincipal[r] is its true value because it has been accumulated with historic true values
pending(user); and totalPending[r] is proved above to be its true value.

□ The algorithm allows consistent transfers.
Because the algorithm collects and add pending(user) to the user’s actual balance so that the actual
balance becomes the same amount as balance(user) returns, before calling the requested transfer actions,
which can now transfer/debit up to balance(user) amount of asset from the actual balance.

3.8 Compound Burn activity tracker algorithm

Figure 10. The UML State Machine of Compound Burn activity tracker algorithm.

See Equation 4 for the formula of Compound Burn tasks.

Figure 10 shows the state machine of the Compound Burn activity tracker algorithm.

Similarly to the Compound Interest activity tracker, we can prove the following properties:

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ (1− rate)(B(e+)−u.lastBlock[e+])/cycle.

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ (1− rate)(B(ne+)−u.lastBlock[ne+])/cycle.

□ pending(user)[r] returns its true value for any user user.

□ totalPending[r] returns its true value.

These propositions can be used to prove the consistency of the algorithm by induction for principal-changing moments,
as in Section 3.7

21

principals[u][r] is its true value because it has been accumulated with historic true values pending(u);
and pending(u)[r] is proved above to be its true value.

□ totalBalance[r] returns its true value.
Because, according to the algorithm, totalBalance[r] = totalPrincipal[r] + totalPending[r],
where totalPrincipal[r] is its true value because it has been accumulated with historic true values
pending(user); and totalPending[r] is proved above to be its true value.

□ The algorithm allows consistent transfers.
Because the algorithm collects and add pending(user) to the user’s actual balance so that the actual
balance becomes the same amount as balance(user) returns, before calling the requested transfer actions,
which can now transfer/debit up to balance(user) amount of asset from the actual balance.

3.8 Compound Burn activity tracker algorithm

Figure 10. The UML State Machine of Compound Burn activity tracker algorithm.

See Equation 4 for the formula of Compound Burn tasks.

Figure 10 shows the state machine of the Compound Burn activity tracker algorithm.

Similarly to the Compound Interest activity tracker, we can prove the following properties:

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ (1− rate)(B(e+)−u.lastBlock[e+])/cycle.

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ (1− rate)(B(ne+)−u.lastBlock[ne+])/cycle.

□ pending(user)[r] returns its true value for any user user.

□ totalPending[r] returns its true value.

These propositions can be used to prove the consistency of the algorithm by induction for principal-changing moments,
as in Section 3.7

21

3.8 Compound Burn Activity Tracker Algorithm

Figure 10: The UML State Machine Diagram of Compound Burn Activity Tracker Algorithm

any

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 18

See Equation 4 for the formula of Compound Burn tasks.
Figure 10 shows the state machine of the Compound Burn activity tracker algorithm.
Similarly to the Compound Interest activity tracker, we can prove the following properties:

principals[u][r] is its true value because it has been accumulated with historic true values pending(u);
and pending(u)[r] is proved above to be its true value.

□ totalBalance[r] returns its true value.
Because, according to the algorithm, totalBalance[r] = totalPrincipal[r] + totalPending[r],
where totalPrincipal[r] is its true value because it has been accumulated with historic true values
pending(user); and totalPending[r] is proved above to be its true value.

□ The algorithm allows consistent transfers.
Because the algorithm collects and add pending(user) to the user’s actual balance so that the actual
balance becomes the same amount as balance(user) returns, before calling the requested transfer actions,
which can now transfer/debit up to balance(user) amount of asset from the actual balance.

3.8 Compound Burn activity tracker algorithm

Figure 10. The UML State Machine of Compound Burn activity tracker algorithm.

See Equation 4 for the formula of Compound Burn tasks.

Figure 10 shows the state machine of the Compound Burn activity tracker algorithm.

Similarly to the Compound Interest activity tracker, we can prove the following properties:

□ activity[e+] =
∑

u∈U principals[u][e+] ∗ (1− rate)(B(e+)−u.lastBlock[e+])/cycle.

□ activity[ne+] =
∑

u∈U principals[u][ne+] ∗ (1− rate)(B(ne+)−u.lastBlock[ne+])/cycle.

□ pending(user)[r] returns its true value for any user user.

□ totalPending[r] returns its true value.

These propositions can be used to prove the consistency of the algorithm by induction for principal-changing moments,
as in Section 3.7

21

These propositions can be used to prove the consistency of the
algorithm by induction for principal-changing moments, as in
Section 3.7

3.9 Random Algorithms
The algorithms have been proved to be consistent at any moment
assuming there are no computer numerical errors, which is not
the case. This section discusses mitigating accumulated computer
numerical errors.

Losses coming from fitting exponentiation of real numbers into
a quotient of unsigned integers are exponentiation errors, while
losses coming from fitting division of integers into an unsigned
integer are division errors. We propose an idea of improved
algorithms that can mitigate accumulated division errors below.

See Listing 2 for how we identify and handle numerical errors in
our Solidity implementation of algorithms.

3.9 Random algorithms

The algorithms have been proved to be consistent at any moment assuming there are no computer numerical errors,
which is not the case. This section discusses mitigating accumulated computer numerical errors.

Losses coming from fitting exponentiation of real numbers into a quotient of unsigned integers are exponentiation
errors, while losses coming from fitting division of integers into an unsigned integer are division errors. We propose an
idea of improved algorithms that can mitigate accumulated division errors below.

See Listing 2 for how we identify and handle numerical errors in our Solidity implementation of algorithms.

f u n c t i o n pending (address user) p u b l i c view re tu rns () {
u i n t pending = 0;

u i n t b locks = block . number − i n i t B l o c k − users [user] . l a s t B l o c k

i f (b locks > 0) {
Exponent ia t ion e r r o r source : p / q = (1+ r) * * (b locks / cyc le) , r = ra te / sca le .
(u i n t p , u i n t q) = ana ly t i cMath .pow(sca le + rate , scale , blocks , cyc le) ;

D i v i s i o n e r r o r source :
pending = p r i n c i p a l s [user] − p r i n c i p a l s [user] * p / q ;

We handle the d i v i s i o n e r r o r source by rep lac ing i t w i th t h i s a l t e r n a t i n g block .
i f (b lock . number % 2 == 0) {

pending = p r i n c i p a l s [user] − In teg ra lMath . mulDivF (p r i n c i p a l s [user] , p , q) ;
} else {

pending = p r i n c i p a l s [user] , In teg ra lMath . mulDivC (p r i n c i p a l s [user] , p , q) ;
}
mulDivF , or m u l t i p l y _ a n d _ d i v i d e _ r e t u r n i n g _ f l o o r , r e tu rns l e f t −biased quot ien ts ,
wh i le mulDivC , or m u l t i p l y _ a n d _ d i v i d e _ r e t u r n i n g _ c e i l i n g , re tu rns r i g h t −biased quo t i en t s .

}

return pending ; # The re turned values are accumulated to balance (user)
}

Listing 2. Handling division errors in our Solidity implementation of algorithm. We identify two numerical error sources: the
exponentiation error and the division error. When rate = 0.000474, the whole 377,000 accumulated exponentiation errors are
collectively small enough if users change their principal frequently and, so, if their exponents are small. As for the division errors, we
adopt a technique that alternatingly chooses between a quotient biased to a smaller value and a quotient biased to a larger value,
allowing the hidden division errors to cancel each other.

There are two types of numerical errors for our algorithms when computers are operating in integers, as is the case in
Solidity programing language:

• Exponentiation.
Exponentiation errors come in two folds:

⋄ Interest exponentiation errors: |(1 + r)blocks/cycle − {(1 + r)blocks/cycle}|
⋄ Burn exponentiation errors: |(1− r)blocks/cycle − {(1− r)blocks/cycle}|

• Division error.
|i/j − {i/j}| for any positive integers i and j ̸= 0.

where {operation} means the, theoretically existing, true return value of the computer operation operation, whereas
operation means the actual return value of the computer operation operation. The true value is achieved only if there
are no numerical errors, which is often not the case.

In order to mitigate exponentiation errors, we incorporate a 3rd-party mathematics library, called AnalyticMath, as
shown in Listing 2.

The library is used as follows:

22

Listing 2. Handling division errors in our Solidity implementation of algorithm. We identify two numerical error sources: the
exponentiation error and the division error. When rate = 0.000474, the whole 377,000 accumulated exponentiation errors are collectively
small enough if users change their principal frequently and, so, if their exponents are small. As for the division errors, we adopt a
technique that alternatingly chooses between a quotient biased to a smaller value and a quotient biased to a larger value, allowing the
hidden division errors to cancel each other.

There are two types of numerical errors for our algorithms when computers are operating in integers, as is the case in Solidity programing
language:
• Exponentiation.
Exponentiation errors come in two folds:

3.9 Random algorithms

The algorithms have been proved to be consistent at any moment assuming there are no computer numerical errors,
which is not the case. This section discusses mitigating accumulated computer numerical errors.

Losses coming from fitting exponentiation of real numbers into a quotient of unsigned integers are exponentiation
errors, while losses coming from fitting division of integers into an unsigned integer are division errors. We propose an
idea of improved algorithms that can mitigate accumulated division errors below.

See Listing 2 for how we identify and handle numerical errors in our Solidity implementation of algorithms.

f u n c t i o n pending (address user) p u b l i c view re tu rns () {
u i n t pending = 0;

u i n t b locks = block . number − i n i t B l o c k − users [user] . l a s t B l o c k

i f (b locks > 0) {
Exponent ia t ion e r r o r source : p / q = (1+ r) * * (b locks / cyc le) , r = ra te / sca le .
(u i n t p , u i n t q) = ana ly t i cMath .pow(sca le + rate , scale , blocks , cyc le) ;

D i v i s i o n e r r o r source :
pending = p r i n c i p a l s [user] − p r i n c i p a l s [user] * p / q ;

We handle the d i v i s i o n e r r o r source by rep lac ing i t w i th t h i s a l t e r n a t i n g block .
i f (b lock . number % 2 == 0) {

pending = p r i n c i p a l s [user] − In teg ra lMath . mulDivF (p r i n c i p a l s [user] , p , q) ;
} else {

pending = p r i n c i p a l s [user] , In teg ra lMath . mulDivC (p r i n c i p a l s [user] , p , q) ;
}
mulDivF , or m u l t i p l y _ a n d _ d i v i d e _ r e t u r n i n g _ f l o o r , r e tu rns l e f t −biased quot ien ts ,
wh i le mulDivC , or m u l t i p l y _ a n d _ d i v i d e _ r e t u r n i n g _ c e i l i n g , re tu rns r i g h t −biased quo t i en t s .

}

return pending ; # The re turned values are accumulated to balance (user)
}

Listing 2. Handling division errors in our Solidity implementation of algorithm. We identify two numerical error sources: the
exponentiation error and the division error. When rate = 0.000474, the whole 377,000 accumulated exponentiation errors are
collectively small enough if users change their principal frequently and, so, if their exponents are small. As for the division errors, we
adopt a technique that alternatingly chooses between a quotient biased to a smaller value and a quotient biased to a larger value,
allowing the hidden division errors to cancel each other.

There are two types of numerical errors for our algorithms when computers are operating in integers, as is the case in
Solidity programing language:

• Exponentiation.
Exponentiation errors come in two folds:

⋄ Interest exponentiation errors: |(1 + r)blocks/cycle − {(1 + r)blocks/cycle}|
⋄ Burn exponentiation errors: |(1− r)blocks/cycle − {(1− r)blocks/cycle}|

• Division error.
|i/j − {i/j}| for any positive integers i and j ̸= 0.

where {operation} means the, theoretically existing, true return value of the computer operation operation, whereas
operation means the actual return value of the computer operation operation. The true value is achieved only if there
are no numerical errors, which is often not the case.

In order to mitigate exponentiation errors, we incorporate a 3rd-party mathematics library, called AnalyticMath, as
shown in Listing 2.

The library is used as follows:

22

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 19

3.9 Random algorithms

The algorithms have been proved to be consistent at any moment assuming there are no computer numerical errors,
which is not the case. This section discusses mitigating accumulated computer numerical errors.

Losses coming from fitting exponentiation of real numbers into a quotient of unsigned integers are exponentiation
errors, while losses coming from fitting division of integers into an unsigned integer are division errors. We propose an
idea of improved algorithms that can mitigate accumulated division errors below.

See Listing 2 for how we identify and handle numerical errors in our Solidity implementation of algorithms.

f u n c t i o n pending (address user) p u b l i c view re tu rns () {
u i n t pending = 0;

u i n t b locks = block . number − i n i t B l o c k − users [user] . l a s t B l o c k

i f (b locks > 0) {
Exponent ia t ion e r r o r source : p / q = (1+ r) * * (b locks / cyc le) , r = ra te / sca le .
(u i n t p , u i n t q) = ana ly t i cMath .pow(sca le + rate , scale , blocks , cyc le) ;

D i v i s i o n e r r o r source :
pending = p r i n c i p a l s [user] − p r i n c i p a l s [user] * p / q ;

We handle the d i v i s i o n e r r o r source by rep lac ing i t w i th t h i s a l t e r n a t i n g block .
i f (b lock . number % 2 == 0) {

pending = p r i n c i p a l s [user] − In teg ra lMath . mulDivF (p r i n c i p a l s [user] , p , q) ;
} else {

pending = p r i n c i p a l s [user] , In teg ra lMath . mulDivC (p r i n c i p a l s [user] , p , q) ;
}
mulDivF , or m u l t i p l y _ a n d _ d i v i d e _ r e t u r n i n g _ f l o o r , r e tu rns l e f t −biased quot ien ts ,
wh i le mulDivC , or m u l t i p l y _ a n d _ d i v i d e _ r e t u r n i n g _ c e i l i n g , re tu rns r i g h t −biased quo t i en t s .

}

return pending ; # The re turned values are accumulated to balance (user)
}

Listing 2. Handling division errors in our Solidity implementation of algorithm. We identify two numerical error sources: the
exponentiation error and the division error. When rate = 0.000474, the whole 377,000 accumulated exponentiation errors are
collectively small enough if users change their principal frequently and, so, if their exponents are small. As for the division errors, we
adopt a technique that alternatingly chooses between a quotient biased to a smaller value and a quotient biased to a larger value,
allowing the hidden division errors to cancel each other.

There are two types of numerical errors for our algorithms when computers are operating in integers, as is the case in
Solidity programing language:

• Exponentiation.
Exponentiation errors come in two folds:

⋄ Interest exponentiation errors: |(1 + r)blocks/cycle − {(1 + r)blocks/cycle}|
⋄ Burn exponentiation errors: |(1− r)blocks/cycle − {(1− r)blocks/cycle}|

• Division error.
|i/j − {i/j}| for any positive integers i and j ̸= 0.

where {operation} means the, theoretically existing, true return value of the computer operation operation, whereas
operation means the actual return value of the computer operation operation. The true value is achieved only if there
are no numerical errors, which is often not the case.

In order to mitigate exponentiation errors, we incorporate a 3rd-party mathematics library, called AnalyticMath, as
shown in Listing 2.

The library is used as follows:

22

• Division error.

where {operation} means the, theoretically existing, true return value of the computer operation operation, whereas operation means
the actual return value of the computer operation operation. The true value is achieved only if there are no numerical errors, which is
often not the case.

In order to mitigate exponentiation errors, we incorporate a 3rd-party mathematics library, called AnalyticMath, as shown in Listing 2.

The library is used as follows:
(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

The provider of the library analyticMath assures that their found p and q only satisfy:

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel each other when
they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated through the same number of
transactions, give an insignificant collective error when exponents are small. Exponents are usually small if most users change their
principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as follows:

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions, to future
research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The IntegralMath library provides
mulDivF and mulDivC operations, which, respectively, returns the floor integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a positively biased value, so
that the errors can cancel each other when they are accumulated to balance(user) throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If Σu∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number of accumulation of
pending(user), then

• If Σu∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 20

where denotes the expected value and N is the number of
principal-changing transactions. Equation 16 indicates that the
floor-returning integer division gives errors that diverge slowly
linearly, while Equation 17 means the alternating integer divisions
give errors that converge to zero, both in an appropriate meaning.
As for totalBalance(), the proof should be similar as for Σu∈U
balance(u).

Algorithms that mitigate division errors by using the 3rd-party
alternating integer divisions are called random algorithms. In
random algorithms, the long-term behavior of errors should solely
be determined by the exponentiation error source. See Table 2 for
the classification of algorithms.

(p , q) = ana ly t i cMath .pow(a , b , c , d)

for unsigned integers a, b, c, d, p and q, where p and q are intended to satisfy:

{ p / q } is as c lose to { (a / b) ^ (c / d) } as poss ib le

The provider of the library analyticMath assures that their found p and q only satisfy:

I f a > b , then { p / q } < { (a / b) ^ (c / d) }
I f a < b , then { p / q } > { (a / b) ^ (c / d) }

Errors that are always less than zero or always larger than zero, like exponentiation errors, have no chance to cancel
each other when they are accumulated. Our algorithms demonstrate that 377,000 exponentiation errors, accumulated
through the same number of transactions, give an insignificant collective error when exponents are small. Exponents
are usually small if most users change their principal frequently.

Exponentiation errors are discussed more in Section 4, where test results suggest an intuition of exponentiation error as
follows:

|{p/q} − {(a/b)(c/d)}| = {alpha ∗ (a/b)(c/d)} (15)

for some small constant alpha.

We leave mitigating exponential errors over an extensively long operation and an extremely large number of transactions,
to future research, because it requires significantly more work.

In order to mitigate division errors:

• We choose a 3rd party integer division algorithm, rather than Solidity’s unsigned integer division. The
IntegralMath library provides mulDivF and mulDivC operations, which, respectively, returns the floor
integer and ceiling integer of {integerA ∗ integerP/integerQ}.

• We then alternatingly choose between mulDivF and mulDivC, or between a negatively biased value and a
positively biased value, so that the errors can cancel each other when they are accumulated to balance(user)

throughout the application’s operation.

After some mathematical work, we can achieve the following equations:

• If
∑

u∈U balance(u) is evaluated with Solidity’s floor-returning integer division, and if N denotes the number
of accumulation of pending(user), then

N/4 < E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) < N (16)

• If
∑

u∈U balance(u) is evaluated with the 3rd-party alternating integer divisions, then

E(|
∑
u∈U

balance(u)− {
∑
u∈U

balance(u)}|) ≤ 1 (17)

where E denotes the expected value and N is the number of principal-changing transactions. Equation 16 indicates that
the floor-returning integer division gives errors that diverge slowly linearly, while Equation 17 means the alternating
integer divisions give errors that converge to zero, both in an appropriate meaning. As for totalBalance(), the proof
should be similar as for

∑
u∈U balance(u).

Algorithms that mitigate division errors by using the 3rd-party alternating integer divisions are called random
algorithms. In random algorithms, the long-term behavior of errors should solely be determined by the exponentiation

23

error source. See Table 2 for the classification of algorithms.

Task type Algorithms that don’t handle errors Random algorithms that handle division errors

Simple Interest
Simple Interest Pendency tracker

Simple Interest Activity tracker

Simple Interest Pendency random tracker

Simple Interest Activity random tracker

Simple Burn
Simple Burn Pendency tracker

Simple Burn Activity tracker

Simple Interest Burn random tracker

Simple Burn Activity random tracker

Compound Interest
Compound Interest Pendency tracker

Compound Interest Activity tracker

Compound Interest Pendency random tracker

Compound Interest Activity random tracker

Compound Burn
Compound Burn Pendency tracker

Compound Burn Activity tracker

Compound Interest Burn random tracker

Compound Burn Activity random tracker

Table 2. Classification of algorithms

We note, however, N , as both the number of principal-changing transactions and the upper limit of accumulated division
errors, is a negligibly small number compared to the magnitude of totalBalance(). Looking at the existing busiest
DeFies, the total number of transactions during their past existence is less than a couple of millions (106), while the
magnitude of totalBalance(), which acts as the denominator in Relative Errors A and B, is usually over 1018+5.
This means the accumulated division errors will have trivial effect on Relative Consistency Errors, which is the main
performance measure. Therefore the random algorithms will not give a significant improvement of accuracy, if we
don’t have extensively many transactions. We just propose random algorithms and do not concentrate on them in our
test, as our future work is expected to concentrate on errors.

4 Tests

See Section 2.1 for the definitions of task types. See Section 3.5 for the concepts of pendency and activity. See
Section 3.9 for random algorithms.

We perform simple stress tests for them, for the purpose of checking if the algorithms can operate in diversified
environments for longer periods and consistently. The diversity is achieved by using randomly generated transactions in
various test modes, the longevity is tested by running tests a long time, and the consistency is checked by using our
Consistency Criteria defined in Section 2.3. The single most important concept in testing is Consistency Errors, defined
in Equation 10 through Equation 12.

4.1 Baseline

We introduce javascriptTruth and solidityTruth for testing our algorithms. Our tests aim to assess Consistency
Errors, which by and large come from accumulating pending(user), pendency, and activity. Exponentiation errors
and division errors identified above, which are trivial individually, should be concerned because they are accumulated
over transactions, with their values biased harmfully in a single direction. For example, totalBalance() is essentially
an accumulation formulated as

totalBalance()i = totalBalance()i−1 ∗ (1 + rate)(B(ei+)−B(ei−1+))/cycle, (18)

in Compound Interest tasks, where ei is ith principal-changing events. Every round of the successive accumulation
brings a numerical error into balance(user) and totalBalance(), and the errors are harmfully biased in a single

24

Table 2: Classification of Algorithms

We note, however, N, as both the number of principal-changing
transactions and the upper limit of accumulated division errors,
is a negligibly small number compared to the magnitude of
totalBalance(). Looking at the existing busiest DeFies, the total
number of transactions during their past existence is less than a
couple of millions (106), while the magnitude of totalBalance(),
which acts as the denominator in Relative Errors A and B, is
usually over 1018+5. This means the accumulated division errors
will have trivial effect on Relative Consistency Errors, which is the
main performance measure. Therefore the random algorithms will
not give a significant improvement of accuracy, if we don’t have
extensively many transactions. We just propose random algorithms
and do not concentrate on them in our test, as our future work is
expected to concentrate on errors.

4. Tests
See Section 2.1 for the definitions of task types. See Section 3.5 for
the concepts of pendency and activity. See Section 3.9 for random
algorithms.

We perform simple stress tests for them, for the purpose of
checking if the algorithms can operate in diversified environments
for longer periods and consistently. The diversity is achieved by
using randomly generated transactions in various test modes, the
longevity is tested by running tests a long time, and the consistency
is checked by using our Consistency Criteria defined in Section
2.3. The single most important concept in testing is Consistency
Errors, defined in Equation 10 through Equation 12.

4.1 Baseline
We introduce javascriptTruth and solidity Truth for testing our
algorithms. Our tests aim to assess Consistency Errors, which
by and large come from accumulating pending(user), pendency,
and activity. Exponentiation errors and division errors identified
above, which are trivial individually, should be concerned because
they are accumulated over transactions, with their values biased
harmfully in a single direction. For example, totalBalance() is
essentially an accumulation formulated as

error source. See Table 2 for the classification of algorithms.

Task type Algorithms that don’t handle errors Random algorithms that handle division errors

Simple Interest
Simple Interest Pendency tracker

Simple Interest Activity tracker

Simple Interest Pendency random tracker

Simple Interest Activity random tracker

Simple Burn
Simple Burn Pendency tracker

Simple Burn Activity tracker

Simple Interest Burn random tracker

Simple Burn Activity random tracker

Compound Interest
Compound Interest Pendency tracker

Compound Interest Activity tracker

Compound Interest Pendency random tracker

Compound Interest Activity random tracker

Compound Burn
Compound Burn Pendency tracker

Compound Burn Activity tracker

Compound Interest Burn random tracker

Compound Burn Activity random tracker

Table 2. Classification of algorithms

We note, however, N , as both the number of principal-changing transactions and the upper limit of accumulated division
errors, is a negligibly small number compared to the magnitude of totalBalance(). Looking at the existing busiest
DeFies, the total number of transactions during their past existence is less than a couple of millions (106), while the
magnitude of totalBalance(), which acts as the denominator in Relative Errors A and B, is usually over 1018+5.
This means the accumulated division errors will have trivial effect on Relative Consistency Errors, which is the main
performance measure. Therefore the random algorithms will not give a significant improvement of accuracy, if we
don’t have extensively many transactions. We just propose random algorithms and do not concentrate on them in our
test, as our future work is expected to concentrate on errors.

4 Tests

See Section 2.1 for the definitions of task types. See Section 3.5 for the concepts of pendency and activity. See
Section 3.9 for random algorithms.

We perform simple stress tests for them, for the purpose of checking if the algorithms can operate in diversified
environments for longer periods and consistently. The diversity is achieved by using randomly generated transactions in
various test modes, the longevity is tested by running tests a long time, and the consistency is checked by using our
Consistency Criteria defined in Section 2.3. The single most important concept in testing is Consistency Errors, defined
in Equation 10 through Equation 12.

4.1 Baseline

We introduce javascriptTruth and solidityTruth for testing our algorithms. Our tests aim to assess Consistency
Errors, which by and large come from accumulating pending(user), pendency, and activity. Exponentiation errors
and division errors identified above, which are trivial individually, should be concerned because they are accumulated
over transactions, with their values biased harmfully in a single direction. For example, totalBalance() is essentially
an accumulation formulated as

totalBalance()i = totalBalance()i−1 ∗ (1 + rate)(B(ei+)−B(ei−1+))/cycle, (18)

in Compound Interest tasks, where ei is ith principal-changing events. Every round of the successive accumulation
brings a numerical error into balance(user) and totalBalance(), and the errors are harmfully biased in a single

24

in Compound Interest tasks, where ei is ith principal-changing events. Every round of the successive accumulation brings a numerical
error into balance(user) and totalBalance(), and the errors are harmfully biased in a single direction not canceling each other. If there
are no numerical errors, then Equation 18 can be simplified to:direction not canceling each other. If there are no numerical errors, then Equation 18 can be simplified to:

totalBalance()i = totalBalance()0 ∗ (1 + rate)(B(ei+)−B(e0+))/cycle (19)

In Simple Interest tasks, the corresponding two equations are, respectively:

totalBalance()i = InitTotal ∗
N∑
i=1

(1 + rate) ∗ (B(ei+)−B(ei−1+))/cycle (20)

totalBalance()i = InitTotal ∗ (1 + rate) ∗ (B(eN+)−B(e0+))/cycle (21)

The Equations 18 and 20 are a return value of the algorithms, while Equations 19 and 21, which have no accumulation,
are almost free of error and very near the true value of query totalBalance(). We use Equations 19 and 21 as a
substitute for TrueTotal defined in Equation 10, in their respective task types. To further reduce errors, we calculate the
TrueTotal’s substitutes in Javascript programing language, rather than in Solidity language, which operates in unsigned
integers creating larger errors. The Javascript version of the TrueTotal’s substitutes is called javascripTruth below.
For the comparison purpose, we also have the Solidity version of TrueTotal’s substitutes and call them solidityTruth.

4.2 Testing Procedure

To generate simulated diversified environments, we create an automatic testing program that acts as follows:

• Four simulated users - Owner, Alice, Bob, and Carol; are created on a private block chain, each with enough
cryptocurrency for gas fee payment.

• A smart contract that implements the target algorithm, as well as the four queries in Consistency Criteria, is
deployed on the block chainwork, with 18 decimal places as usual. See Section 2.3 for Consistency Criteria.

• The smart contract implements transfer, mint, and burn functions on the principal amount of users, by using
the changePrincipal(user, amount) function offered by the algorithm.

• The smart contract’s constructor mints 108 tokens to Owner as the initial amount for the principal of Owner.
An interest/burn rate of 0.0474 % a simulated day is assumed, which is equivalent to 1 % interest every 21
days in Compound Interest tasks. One simulated day spans 10 blockchain blocks.

• transfer, mint, and burn transactions (called simply a function below) are raised randomly from the off-
chain part with randomly chosen arguments, like user and amount, while the mintBlocks function is called
intermittently to advance the block number (or, the internal time) in the block chain, again with a randomly
chosen number of blocks to advance. Fixed probability distributions over the functions’ occurrences, over
user, and over amount, respectively, are assumed.

Once a randomly chosen function is called, the function repeatedly tries randomly changing user and amount,
up to 50 times until it succeeds, thus adhering to the given probability distribution over function occurrences.
We note the transfer transaction, for example, may well fail, because the principal amounts for all users may
become almost zero after a Compound Burn task runs a long time with a significant burn rate.

• Typically, 200,000 calls are made in a test. Transfer transactions account for 90 % of the total calls, and
the remaining part is accounted for by mint, burn, and mintBlocks. In each test, up to 468,000 blocks
representing 46,800 simulated days or 128 simulated years are minted by mintBlocks calls. 1 to 50 blocks
are minted by a mintBlocks call, representing 1 tenth day to 5 days minted by a mintBlocks call.

25

direction not canceling each other. If there are no numerical errors, then Equation 18 can be simplified to:

totalBalance()i = totalBalance()0 ∗ (1 + rate)(B(ei+)−B(e0+))/cycle (19)

In Simple Interest tasks, the corresponding two equations are, respectively:

totalBalance()i = InitTotal ∗
N∑
i=1

(1 + rate) ∗ (B(ei+)−B(ei−1+))/cycle (20)

totalBalance()i = InitTotal ∗ (1 + rate) ∗ (B(eN+)−B(e0+))/cycle (21)

The Equations 18 and 20 are a return value of the algorithms, while Equations 19 and 21, which have no accumulation,
are almost free of error and very near the true value of query totalBalance(). We use Equations 19 and 21 as a
substitute for TrueTotal defined in Equation 10, in their respective task types. To further reduce errors, we calculate the
TrueTotal’s substitutes in Javascript programing language, rather than in Solidity language, which operates in unsigned
integers creating larger errors. The Javascript version of the TrueTotal’s substitutes is called javascripTruth below.
For the comparison purpose, we also have the Solidity version of TrueTotal’s substitutes and call them solidityTruth.

4.2 Testing Procedure

To generate simulated diversified environments, we create an automatic testing program that acts as follows:

• Four simulated users - Owner, Alice, Bob, and Carol; are created on a private block chain, each with enough
cryptocurrency for gas fee payment.

• A smart contract that implements the target algorithm, as well as the four queries in Consistency Criteria, is
deployed on the block chainwork, with 18 decimal places as usual. See Section 2.3 for Consistency Criteria.

• The smart contract implements transfer, mint, and burn functions on the principal amount of users, by using
the changePrincipal(user, amount) function offered by the algorithm.

• The smart contract’s constructor mints 108 tokens to Owner as the initial amount for the principal of Owner.
An interest/burn rate of 0.0474 % a simulated day is assumed, which is equivalent to 1 % interest every 21
days in Compound Interest tasks. One simulated day spans 10 blockchain blocks.

• transfer, mint, and burn transactions (called simply a function below) are raised randomly from the off-
chain part with randomly chosen arguments, like user and amount, while the mintBlocks function is called
intermittently to advance the block number (or, the internal time) in the block chain, again with a randomly
chosen number of blocks to advance. Fixed probability distributions over the functions’ occurrences, over
user, and over amount, respectively, are assumed.

Once a randomly chosen function is called, the function repeatedly tries randomly changing user and amount,
up to 50 times until it succeeds, thus adhering to the given probability distribution over function occurrences.
We note the transfer transaction, for example, may well fail, because the principal amounts for all users may
become almost zero after a Compound Burn task runs a long time with a significant burn rate.

• Typically, 200,000 calls are made in a test. Transfer transactions account for 90 % of the total calls, and
the remaining part is accounted for by mint, burn, and mintBlocks. In each test, up to 468,000 blocks
representing 46,800 simulated days or 128 simulated years are minted by mintBlocks calls. 1 to 50 blocks
are minted by a mintBlocks call, representing 1 tenth day to 5 days minted by a mintBlocks call.

25

In Simple Interest tasks, the corresponding two equations are, respectively:

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 21

direction not canceling each other. If there are no numerical errors, then Equation 18 can be simplified to:

totalBalance()i = totalBalance()0 ∗ (1 + rate)(B(ei+)−B(e0+))/cycle (19)

In Simple Interest tasks, the corresponding two equations are, respectively:

totalBalance()i = InitTotal ∗
N∑
i=1

(1 + rate) ∗ (B(ei+)−B(ei−1+))/cycle (20)

totalBalance()i = InitTotal ∗ (1 + rate) ∗ (B(eN+)−B(e0+))/cycle (21)

The Equations 18 and 20 are a return value of the algorithms, while Equations 19 and 21, which have no accumulation,
are almost free of error and very near the true value of query totalBalance(). We use Equations 19 and 21 as a
substitute for TrueTotal defined in Equation 10, in their respective task types. To further reduce errors, we calculate the
TrueTotal’s substitutes in Javascript programing language, rather than in Solidity language, which operates in unsigned
integers creating larger errors. The Javascript version of the TrueTotal’s substitutes is called javascripTruth below.
For the comparison purpose, we also have the Solidity version of TrueTotal’s substitutes and call them solidityTruth.

4.2 Testing Procedure

To generate simulated diversified environments, we create an automatic testing program that acts as follows:

• Four simulated users - Owner, Alice, Bob, and Carol; are created on a private block chain, each with enough
cryptocurrency for gas fee payment.

• A smart contract that implements the target algorithm, as well as the four queries in Consistency Criteria, is
deployed on the block chainwork, with 18 decimal places as usual. See Section 2.3 for Consistency Criteria.

• The smart contract implements transfer, mint, and burn functions on the principal amount of users, by using
the changePrincipal(user, amount) function offered by the algorithm.

• The smart contract’s constructor mints 108 tokens to Owner as the initial amount for the principal of Owner.
An interest/burn rate of 0.0474 % a simulated day is assumed, which is equivalent to 1 % interest every 21
days in Compound Interest tasks. One simulated day spans 10 blockchain blocks.

• transfer, mint, and burn transactions (called simply a function below) are raised randomly from the off-
chain part with randomly chosen arguments, like user and amount, while the mintBlocks function is called
intermittently to advance the block number (or, the internal time) in the block chain, again with a randomly
chosen number of blocks to advance. Fixed probability distributions over the functions’ occurrences, over
user, and over amount, respectively, are assumed.

Once a randomly chosen function is called, the function repeatedly tries randomly changing user and amount,
up to 50 times until it succeeds, thus adhering to the given probability distribution over function occurrences.
We note the transfer transaction, for example, may well fail, because the principal amounts for all users may
become almost zero after a Compound Burn task runs a long time with a significant burn rate.

• Typically, 200,000 calls are made in a test. Transfer transactions account for 90 % of the total calls, and
the remaining part is accounted for by mint, burn, and mintBlocks. In each test, up to 468,000 blocks
representing 46,800 simulated days or 128 simulated years are minted by mintBlocks calls. 1 to 50 blocks
are minted by a mintBlocks call, representing 1 tenth day to 5 days minted by a mintBlocks call.

25

The Equations 18 and 20 are a return value of the algorithms, while
Equations 19 and 21, which have no accumulation, are almost free
of error and very near the true value of query totalBalance(). We
use Equations 19 and 21 as a substitute for TrueTotal defined in
Equation 10, in their respective task types. To further reduce errors,
we calculate the TrueTotal’s substitutes in Javascript programing
language, rather than in Solidity language, which operates in
unsigned integers creating larger errors. The Javascript version
of the TrueTotal’s substitutes is called javascripTruth below. For
the comparison purpose, we also have the Solidity version of
TrueTotal’s substitutes and call them solidityTruth.

4.2 Testing Procedure
To generate simulated diversified environments, we create an
automatic testing program that acts as follows:
• Four simulated users - Owner, Alice, Bob, and Carol; are created
on a private block chain, each with enough cryptocurrency for gas
fee payment.
• A smart contract that implements the target algorithm, as well
as the four queries in Consistency Criteria, is deployed on the
blockchain, with 18 decimal places as usual. See Section 2.3 for
Consistency Criteria.
• The smart contract implements transfer, mint, and burn functions
on the principal amount of users, by using the changePrincipal(user,
amount) function offered by the algorithm.
• The smart contract’s constructor mints 108 tokens to Owner as the
initial amount for the principal of Owner. An interest/burn rate of
0.0474 % a simulated day is assumed, which is equivalent to 1 %
interest every 21 days in Compound Interest tasks. One simulated
day spans 10 blockchain blocks.
• transfer, mint, and burn transactions (called simply a function
below) are raised randomly from the off- chain part with randomly

chosen arguments, like user and amount, while the mintBlocks
function is called intermittently to advance the block number (or,
the internal time) in the block chain, again with a randomly chosen
number of blocks to advance. Fixed probability distributions
over the functions’ occurrences, over user, and over amount,
respectively, are assumed.

Once a randomly chosen function is called, the function repeatedly
tries randomly changing user and amount, up to 50 times until
it succeeds, thus adhering to the given probability distribution
over function occurrences. We note the transfer transaction, for
example, may well fail, because the principal amounts for all users
may become almost zero after a Compound Burn task runs a long
time with a significant burn rate.
• Typically, 200,000 calls are made in a test. Transfer transactions
account for 90 % of the total calls, and the remaining part is
accounted for by mint, burn, and mintBlocks. In each test, up
to 468,000 blocks representing 46,800 simulated days or 128
simulated years are minted by mintBlocks calls. 1 to 50 blocks are
minted by a mintBlocks call, representing 1 tenth day to 5 days
minted by a mintBlocks call.
• As random functions are called, the smart contract and testing
program cooperate to calculate solidityTruth, javascripTruth,
and Consistency Errors. Sec Section 4.1 for solidityTruth and
javascripTruth, and Section 2.3 for Consistency Errors.
The testing program has two modes: Free Total Principal test mode
and Fixed Total Principal test mode.
• Free Total Principal test mode

In this mode, the testing program does not call mint and burn
transactions, leaving the total principal or reward amount to freely
change according to their formulas shown in Section 2.1.

• As random functions are called, the smart contract and testing program cooperate to calculate solidityTruth,
javascripTruth, and Consistency Errors. Sec Section 4.1 for solidityTruth and javascripTruth, and
Section 2.3 for Consistency Errors.

The testing program has two modes: Free Total Principal test mode and Fixed Total Principal test mode.

• Free Total Principal test mode

In this mode, the testing program does not call mint and burn transactions, leaving the total principal or
reward amount to freely change according to their formulas shown in Section 2.1.

Figure 11. For a simple task in the Free Total Principal test mode, totalPrincipal keeps constantly to its initial value.

Figure 12. For a simple task in the Free Total Principal test mode, totalRewards grows freely linearly, because the time-linear
interest or burn is additively accumulated to reward[user].

Figure 13. totalBalance() for compound tasks in Free Total Principal test mode grows/shrinks freely exponentially from its
initial total principal as much as time goes and rate allows, because the time-exponential interest/burn is compounded to/from
principals[user].

We note TrueTotal, defined in Equation 10, acting as the denominator in Relative Errors A and B, may get
extremely large in a Compound Interest tasks or get extremely small in a Compound Burn task, affecting the
Relative Errors to diminish or diverge (unless their numerators change faster in the same direction.) This
mode aims to simulate an extreme operation where the total principal is not managed/limited by system
administrators and observe how consistent the algorithms are in those harsh conditions.

• Fixed Total Principal test mode

In this mode, the testing program resists change of total principal by choosing a suitable value for the amount

argument of randomly called mint or burn transactions. The incremental changes to the total principal amount
in Compound Interest tasks or the decremental changes of the total principal in Compound Burn tasks are

26

• As random functions are called, the smart contract and testing program cooperate to calculate solidityTruth,
javascripTruth, and Consistency Errors. Sec Section 4.1 for solidityTruth and javascripTruth, and
Section 2.3 for Consistency Errors.

The testing program has two modes: Free Total Principal test mode and Fixed Total Principal test mode.

• Free Total Principal test mode

In this mode, the testing program does not call mint and burn transactions, leaving the total principal or
reward amount to freely change according to their formulas shown in Section 2.1.

Figure 11. For a simple task in the Free Total Principal test mode, totalPrincipal keeps constantly to its initial value.

Figure 12. For a simple task in the Free Total Principal test mode, totalRewards grows freely linearly, because the time-linear
interest or burn is additively accumulated to reward[user].

Figure 13. totalBalance() for compound tasks in Free Total Principal test mode grows/shrinks freely exponentially from its
initial total principal as much as time goes and rate allows, because the time-exponential interest/burn is compounded to/from
principals[user].

We note TrueTotal, defined in Equation 10, acting as the denominator in Relative Errors A and B, may get
extremely large in a Compound Interest tasks or get extremely small in a Compound Burn task, affecting the
Relative Errors to diminish or diverge (unless their numerators change faster in the same direction.) This
mode aims to simulate an extreme operation where the total principal is not managed/limited by system
administrators and observe how consistent the algorithms are in those harsh conditions.

• Fixed Total Principal test mode

In this mode, the testing program resists change of total principal by choosing a suitable value for the amount

argument of randomly called mint or burn transactions. The incremental changes to the total principal amount
in Compound Interest tasks or the decremental changes of the total principal in Compound Burn tasks are

26

Figure 11: For a simple task in the Free Total Principal test mode, totalPrincipal keeps constantly to its initial value.

Figure 12: For a simple task in the Free Total Principal test mode, totalRewards grows freely linearly, because the time-linear interest
or burn is additively accumulated to reward[user].

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 22

• As random functions are called, the smart contract and testing program cooperate to calculate solidityTruth,
javascripTruth, and Consistency Errors. Sec Section 4.1 for solidityTruth and javascripTruth, and
Section 2.3 for Consistency Errors.

The testing program has two modes: Free Total Principal test mode and Fixed Total Principal test mode.

• Free Total Principal test mode

In this mode, the testing program does not call mint and burn transactions, leaving the total principal or
reward amount to freely change according to their formulas shown in Section 2.1.

Figure 11. For a simple task in the Free Total Principal test mode, totalPrincipal keeps constantly to its initial value.

Figure 12. For a simple task in the Free Total Principal test mode, totalRewards grows freely linearly, because the time-linear
interest or burn is additively accumulated to reward[user].

Figure 13. totalBalance() for compound tasks in Free Total Principal test mode grows/shrinks freely exponentially from its
initial total principal as much as time goes and rate allows, because the time-exponential interest/burn is compounded to/from
principals[user].

We note TrueTotal, defined in Equation 10, acting as the denominator in Relative Errors A and B, may get
extremely large in a Compound Interest tasks or get extremely small in a Compound Burn task, affecting the
Relative Errors to diminish or diverge (unless their numerators change faster in the same direction.) This
mode aims to simulate an extreme operation where the total principal is not managed/limited by system
administrators and observe how consistent the algorithms are in those harsh conditions.

• Fixed Total Principal test mode

In this mode, the testing program resists change of total principal by choosing a suitable value for the amount

argument of randomly called mint or burn transactions. The incremental changes to the total principal amount
in Compound Interest tasks or the decremental changes of the total principal in Compound Burn tasks are

26

Figure 13: totalBalance() for compound tasks in Free Total Principal test mode grows/shrinks freely exponentially from its initial total
principal as much as time goes and rate allows, because the time-exponential interest/burn is compounded to/from principals[user].

We note TrueTotal, defined in Equation 10, acting as the
denominator in Relative Errors A and B, may get extremely
large in a Compound Interest tasks or get extremely small in a
Compound Burn task, affecting the Relative Errors to diminish
or diverge (unless their numerators change faster in the same
direction.) This mode aims to simulate an extreme operation where
the total principal is not managed/limited by system administrators
and observe how consistent the algorithms are in those harsh
conditions.

•	 Fixed Total Principal test mode

In this mode, the testing program resists change of total principal
by choosing a suitable value for the amount argument of randomly
called mint or burn transactions. The incremental changes to
the total principal amount in Compound Interest tasks or the
decremental changes of the total principal in Compound Burn
tasks are compensated by the suitable amount arguments passed
to the mint or burn transactions, keeping the total principal to its
initial value.

compensated by the suitable amount arguments passed to the mint or burn transactions, keeping the total
principal to its initial value.

Figure 14. For a simple task in the Fixed Total Principal test mode, totalPrincipal keeps constant to its initial value. While the
testing program tries to keep totalPrincipal fixed (with mint or burn transactions from offchain), every principals[user], so
totalPrincipal too, is already fixed, because the (linear) interest or burn is not compounded to principals[user].

Figure 15. For a simple task in the Fixed Total Principal test mode, totalRewards grows freely linearly, because the linear interest
or burn is additively accumulated to reward[user].

Figure 16. For compound tasks in the Fixed Total Principal test mode, totalBalance is regulated by the testing program with mint

or burn transactions, so that totalBalance reverts to its initial value frequently.

Figure 17. For compound tasks in the Fixed Total Principal test mode, the testing program regulates totalBalance, which would
otherwise grow/shrink freely as in Figure 13, by pulling it down/up to its initial value intermittently.

This mode aims to simulate a modest operation where the total principal is completely managed to be stable,
as will be the case in many applications, by system administrators, and confirm how consistent the algorithms
are in those typical conditions.

4.3 Test cases

Test cases are as follows:

• Simple tasks in Free Total Principal mode
Simple tasks types, which are Simple Interest and Simple Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Free Total Principal test mode.

27

compensated by the suitable amount arguments passed to the mint or burn transactions, keeping the total
principal to its initial value.

Figure 14. For a simple task in the Fixed Total Principal test mode, totalPrincipal keeps constant to its initial value. While the
testing program tries to keep totalPrincipal fixed (with mint or burn transactions from offchain), every principals[user], so
totalPrincipal too, is already fixed, because the (linear) interest or burn is not compounded to principals[user].

Figure 15. For a simple task in the Fixed Total Principal test mode, totalRewards grows freely linearly, because the linear interest
or burn is additively accumulated to reward[user].

Figure 16. For compound tasks in the Fixed Total Principal test mode, totalBalance is regulated by the testing program with mint

or burn transactions, so that totalBalance reverts to its initial value frequently.

Figure 17. For compound tasks in the Fixed Total Principal test mode, the testing program regulates totalBalance, which would
otherwise grow/shrink freely as in Figure 13, by pulling it down/up to its initial value intermittently.

This mode aims to simulate a modest operation where the total principal is completely managed to be stable,
as will be the case in many applications, by system administrators, and confirm how consistent the algorithms
are in those typical conditions.

4.3 Test cases

Test cases are as follows:

• Simple tasks in Free Total Principal mode
Simple tasks types, which are Simple Interest and Simple Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Free Total Principal test mode.

27

compensated by the suitable amount arguments passed to the mint or burn transactions, keeping the total
principal to its initial value.

Figure 14. For a simple task in the Fixed Total Principal test mode, totalPrincipal keeps constant to its initial value. While the
testing program tries to keep totalPrincipal fixed (with mint or burn transactions from offchain), every principals[user], so
totalPrincipal too, is already fixed, because the (linear) interest or burn is not compounded to principals[user].

Figure 15. For a simple task in the Fixed Total Principal test mode, totalRewards grows freely linearly, because the linear interest
or burn is additively accumulated to reward[user].

Figure 16. For compound tasks in the Fixed Total Principal test mode, totalBalance is regulated by the testing program with mint

or burn transactions, so that totalBalance reverts to its initial value frequently.

Figure 17. For compound tasks in the Fixed Total Principal test mode, the testing program regulates totalBalance, which would
otherwise grow/shrink freely as in Figure 13, by pulling it down/up to its initial value intermittently.

This mode aims to simulate a modest operation where the total principal is completely managed to be stable,
as will be the case in many applications, by system administrators, and confirm how consistent the algorithms
are in those typical conditions.

4.3 Test cases

Test cases are as follows:

• Simple tasks in Free Total Principal mode
Simple tasks types, which are Simple Interest and Simple Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Free Total Principal test mode.

27

Figure 14: For a simple task in the Fixed Total Principal test mode, totalPrincipal keeps constant to its initial value. While the testing
program tries to keep totalPrincipal fixed (with mint or burn transactions from offchain), every principals[user], so totalPrincipal too,
is already fixed, because the (linear) interest or burn is not compounded to principals[user].

Figure 15: For a simple task in the Fixed Total Principal test mode, totalRewards grows freely linearly, because the linear interest or
burn is additively accumulated to reward[user].

Figure 16: For compound tasks in the Fixed Total Principal test mode, totalBalance is regulated by the testing program with mint or
burn transactions, so that totalBalance reverts to its initial value frequently.

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 23

compensated by the suitable amount arguments passed to the mint or burn transactions, keeping the total
principal to its initial value.

Figure 14. For a simple task in the Fixed Total Principal test mode, totalPrincipal keeps constant to its initial value. While the
testing program tries to keep totalPrincipal fixed (with mint or burn transactions from offchain), every principals[user], so
totalPrincipal too, is already fixed, because the (linear) interest or burn is not compounded to principals[user].

Figure 15. For a simple task in the Fixed Total Principal test mode, totalRewards grows freely linearly, because the linear interest
or burn is additively accumulated to reward[user].

Figure 16. For compound tasks in the Fixed Total Principal test mode, totalBalance is regulated by the testing program with mint

or burn transactions, so that totalBalance reverts to its initial value frequently.

Figure 17. For compound tasks in the Fixed Total Principal test mode, the testing program regulates totalBalance, which would
otherwise grow/shrink freely as in Figure 13, by pulling it down/up to its initial value intermittently.

This mode aims to simulate a modest operation where the total principal is completely managed to be stable,
as will be the case in many applications, by system administrators, and confirm how consistent the algorithms
are in those typical conditions.

4.3 Test cases

Test cases are as follows:

• Simple tasks in Free Total Principal mode
Simple tasks types, which are Simple Interest and Simple Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Free Total Principal test mode.

27

Figure 17: For compound tasks in the Fixed Total Principal test mode, the testing program regulates totalBalance, which would otherwise
grow/shrink freely as in Figure 13, by pulling it down/up to its initial value intermittently.

This mode aims to simulate a modest operation where the total
principal is completely managed to be stable, as will be the case
in many applications, by system administrators, and confirm how
consistent the algorithms are in those typical conditions.

4.3 Test Cases
Test cases are as follows:
• Simple tasks in Free Total Principal mode
Simple tasks types, which are Simple Interest and Simple Burn,
are tested each in its two alternative algorithms: pendency tracker
and activity tracker, in the Free Total Principal test mode.
• Compound tasks in Free Total Principal mode
Compound tasks types, which are Compound Interest and

Compound Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Free Total Principal
test mode.
• Simple tasks in Fixed Total Principal mode
Simple task types, which are Simple Interest and Simple Burn, are
tested each in its two alternative algorithms: pendency tracker and
activity tracker, in the Fixed Total Principal test mode.
• Compound tasks in Fixed Total Principal mode
Compound task types, which are Compound Interest and
Compound Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Fixed Total Principal
test mode.

4.4 Test Case: Simple Tasks in Free Total Principal Mode

• Compound tasks in Free Total Principal mode
Compound tasks types, which are Compound Interest and Compound Burn, are tested each in its two alternative
algorithms: pendency tracker and activity tracker, in the Free Total Principal test mode.

• Simple tasks in Fixed Total Principal mode
Simple task types, which are Simple Interest and Simple Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Fixed Total Principal test mode.

• Compound tasks in Fixed Total Principal mode
Compound task types, which are Compound Interest and Compound Burn, are tested each in its two alternative
algorithms: pendency tracker and activity tracker, in the Fixed Total Principal test mode.

4.4 Test case: Simple Tasks in Free Total Principal mode

Figure 18. Relative Errors A and B in simple tasks in Free Total Principal test mode. The Relative Errors converge and are less than
10−22 during 128 simulated years and 180,000 transfer transactions.

Figure 19. Relative Errors A and B, after a long run, for simple tasks in Free Total Principal test mode. For pendency trackers,
totalBalance and

∑
u∈U balance(u) reveal significant deviation from their shared substitute true value javascriptTruth. For

activity trackers, the two values are fluctuating.

28

• Compound tasks in Free Total Principal mode
Compound tasks types, which are Compound Interest and Compound Burn, are tested each in its two alternative
algorithms: pendency tracker and activity tracker, in the Free Total Principal test mode.

• Simple tasks in Fixed Total Principal mode
Simple task types, which are Simple Interest and Simple Burn, are tested each in its two alternative algorithms:
pendency tracker and activity tracker, in the Fixed Total Principal test mode.

• Compound tasks in Fixed Total Principal mode
Compound task types, which are Compound Interest and Compound Burn, are tested each in its two alternative
algorithms: pendency tracker and activity tracker, in the Fixed Total Principal test mode.

4.4 Test case: Simple Tasks in Free Total Principal mode

Figure 18. Relative Errors A and B in simple tasks in Free Total Principal test mode. The Relative Errors converge and are less than
10−22 during 128 simulated years and 180,000 transfer transactions.

Figure 19. Relative Errors A and B, after a long run, for simple tasks in Free Total Principal test mode. For pendency trackers,
totalBalance and

∑
u∈U balance(u) reveal significant deviation from their shared substitute true value javascriptTruth. For

activity trackers, the two values are fluctuating.

28

Figure 18: Relative Errors A and B in simple tasks in Free Total Principal test mode. The Relative Errors converge and are less than 10−22
during 128 simulated years and 180,000 transfer transactions.

Figure 19: Relative Errors A and B, after a long run, for simple tasks in Free Total Principal test mode. For pendency trackers, totalBalance
and Σu∈U balance(u) reveal significant deviation from their shared substitute true value javascriptTruth. For activity trackers, the two
values are fluctuating

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 24

4.5 Test case: Compound Tasks in Free Total Principal Mode
Figure 20. Relative Errors A and B for compound tasks in Free Total Principal test mode. The Relative Errors grow linearly over time
and are less than 10−11 during 128 simulated years and 180,000 transfer transactions.4.5 Test case: Compound Tasks in Free Total Principal mode

Figure 20. Relative Errors A and B for compound tasks in Free Total Principal test mode. The Relative Errors grow linearly over time
and are less than 10−11 during 128 simulated years and 180,000 transfer transactions.

Figure 21. Absolute Consistency Errors for compound tasks in Free Total Principal test mode. They have exponential growth as
suggested by the linearity of Relative Errors A and B.

Figure 22. Relative Errors A and B, during the starting period, for compound tasks in Free Total Principal test mode. The two Relative
Errors are not distinguishable from each other on this small-resolution plot.

Figure 23. Relative Errors A and B, after a long run, for compound tasks in Free Total Principal test mode. The two Relative Errors
are barely distinguishable from each other for burn tasks.

29

4.5 Test case: Compound Tasks in Free Total Principal mode

Figure 20. Relative Errors A and B for compound tasks in Free Total Principal test mode. The Relative Errors grow linearly over time
and are less than 10−11 during 128 simulated years and 180,000 transfer transactions.

Figure 21. Absolute Consistency Errors for compound tasks in Free Total Principal test mode. They have exponential growth as
suggested by the linearity of Relative Errors A and B.

Figure 22. Relative Errors A and B, during the starting period, for compound tasks in Free Total Principal test mode. The two Relative
Errors are not distinguishable from each other on this small-resolution plot.

Figure 23. Relative Errors A and B, after a long run, for compound tasks in Free Total Principal test mode. The two Relative Errors
are barely distinguishable from each other for burn tasks.

29

4.5 Test case: Compound Tasks in Free Total Principal mode

Figure 20. Relative Errors A and B for compound tasks in Free Total Principal test mode. The Relative Errors grow linearly over time
and are less than 10−11 during 128 simulated years and 180,000 transfer transactions.

Figure 21. Absolute Consistency Errors for compound tasks in Free Total Principal test mode. They have exponential growth as
suggested by the linearity of Relative Errors A and B.

Figure 22. Relative Errors A and B, during the starting period, for compound tasks in Free Total Principal test mode. The two Relative
Errors are not distinguishable from each other on this small-resolution plot.

Figure 23. Relative Errors A and B, after a long run, for compound tasks in Free Total Principal test mode. The two Relative Errors
are barely distinguishable from each other for burn tasks.

29

4.5 Test case: Compound Tasks in Free Total Principal mode

Figure 20. Relative Errors A and B for compound tasks in Free Total Principal test mode. The Relative Errors grow linearly over time
and are less than 10−11 during 128 simulated years and 180,000 transfer transactions.

Figure 21. Absolute Consistency Errors for compound tasks in Free Total Principal test mode. They have exponential growth as
suggested by the linearity of Relative Errors A and B.

Figure 22. Relative Errors A and B, during the starting period, for compound tasks in Free Total Principal test mode. The two Relative
Errors are not distinguishable from each other on this small-resolution plot.

Figure 23. Relative Errors A and B, after a long run, for compound tasks in Free Total Principal test mode. The two Relative Errors
are barely distinguishable from each other for burn tasks.

29

Figure 20. Relative Errors A and B for compound tasks in Free Total Principal test mode. The Relative Errors grow linearly over time
and are less than 10−11 during 128 simulated years and 180,000 transfer transactions.

Figure 21: Absolute Consistency Errors for compound tasks in Free Total Principal test mode. They have exponential growth as
suggested by the linearity of Relative Errors A and B.

Figure 22: Relative Errors A and B, during the starting period, for compound tasks in Free Total Principal test mode. The two Relative
Errors are not distinguishable from each other on this small-resolution plot.

Figure 23: Relative Errors A and B, after a long run, for compound tasks in Free Total Principal test mode. The two Relative Errors are
barely distinguishable from each other for burn tasks.

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 25

4.6 Test Case: Simple Tasks in Fixed Total Principal Mode4.6 Test case: Simple Tasks in Fixed Total Principal mode

Figure 24. Relative Errors A and B for simple tasks in Fixed Total Principal test mode.

Figure 25. Absolute Consistency Errors for simple tasks in Fixed Total Principal test mode. Activity tracker algorithms show little, if
not no, absolute errors.

Figure 26. Relative Errors A and B, during the starting period, for simple tasks in Fixed Total Principal test mode.

4.7 Test case: Compound Tasks in Fixed Total Principal mode

Figure 27. Relative Errors A and B for compound tasks in Fixed Total Principal test mode. While Relative Errors are not growing and
lower than 10−12 in burn tasks, they are diverging and as high as 0.002, after a 128-year-long simulated run.

30

4.6 Test case: Simple Tasks in Fixed Total Principal mode

Figure 24. Relative Errors A and B for simple tasks in Fixed Total Principal test mode.

Figure 25. Absolute Consistency Errors for simple tasks in Fixed Total Principal test mode. Activity tracker algorithms show little, if
not no, absolute errors.

Figure 26. Relative Errors A and B, during the starting period, for simple tasks in Fixed Total Principal test mode.

4.7 Test case: Compound Tasks in Fixed Total Principal mode

Figure 27. Relative Errors A and B for compound tasks in Fixed Total Principal test mode. While Relative Errors are not growing and
lower than 10−12 in burn tasks, they are diverging and as high as 0.002, after a 128-year-long simulated run.

30

4.6 Test case: Simple Tasks in Fixed Total Principal mode

Figure 24. Relative Errors A and B for simple tasks in Fixed Total Principal test mode.

Figure 25. Absolute Consistency Errors for simple tasks in Fixed Total Principal test mode. Activity tracker algorithms show little, if
not no, absolute errors.

Figure 26. Relative Errors A and B, during the starting period, for simple tasks in Fixed Total Principal test mode.

4.7 Test case: Compound Tasks in Fixed Total Principal mode

Figure 27. Relative Errors A and B for compound tasks in Fixed Total Principal test mode. While Relative Errors are not growing and
lower than 10−12 in burn tasks, they are diverging and as high as 0.002, after a 128-year-long simulated run.

30

4.6 Test case: Simple Tasks in Fixed Total Principal mode

Figure 24. Relative Errors A and B for simple tasks in Fixed Total Principal test mode.

Figure 25. Absolute Consistency Errors for simple tasks in Fixed Total Principal test mode. Activity tracker algorithms show little, if
not no, absolute errors.

Figure 26. Relative Errors A and B, during the starting period, for simple tasks in Fixed Total Principal test mode.

4.7 Test case: Compound Tasks in Fixed Total Principal mode

Figure 27. Relative Errors A and B for compound tasks in Fixed Total Principal test mode. While Relative Errors are not growing and
lower than 10−12 in burn tasks, they are diverging and as high as 0.002, after a 128-year-long simulated run.

30

Figure 24: Relative Errors A and B for simple tasks in Fixed Total Principal test mode

Figure 25: Absolute Consistency Errors for simple tasks in Fixed Total Principal test mode. Activity tracker algorithms show little, if
not no, absolute errors

Figure 26: Relative Errors A and B, during the starting period, for simple tasks in Fixed Total Principal test mode

4.7 Test Case: Compound Tasks in Fixed Total Principal Mode

Figure 27: Relative Errors A and B for compound tasks in Fixed Total Principal test mode. While Relative Errors are not growing and
lower than 10−12 in burn tasks, they are diverging and as high as 0.002, after a 128-year-long simulated run

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 26

We guess the errors diverge, in the above chart, if the exponent is more than 1, as in interest tasks, where the exponent is 1 + rate; and
converge if the exponent is less than 1, as in burn tasks, where the exponent is 1 − rate. The interest rate rate in this test scenario is
0.000474, which is equivalent to about 1% every 21 days.

We guess the errors diverge, in the above chart, if the exponent is more than 1, as in interest tasks, where the exponent is
1 + rate; and converge if the exponent is less than 1, as in burn tasks, where the exponent is 1− rate. The interest rate
rate in this test scenario is 0.000474, which is equivalent to about 1% every 21 days.

Figure 28. Relative Errors A and B for compound tasks in Fixed Total Principal test mode.

Unlike in Figure 27, where the time span is 128 years, the above chart spans only 60 simulated years. The Relative
Errors A and B for interest tasks are lower than 10−8, which is within the safe level.

Figure 29. Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode.

We guess, on the left of the above chart, that the exponentiation errors are time-exponential, which are successively
accumulated to form new time-exponential errors.

Figure 30. Log Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode. The straight log lines on the left
of the chart confirms that the exponentiation errors are time-exponential.

5 Conclusion

We proposed, proved, and demonstrated algorithms that solve Simple Interest, Simple Burn, Compound Interest, and
Compound Burn reward distribution tasks. The algorithms can distribute rewards to an unknown number of users,
adhering to the computational quota if there are no computer numerical errors. Although computer numerical errors

31

We guess the errors diverge, in the above chart, if the exponent is more than 1, as in interest tasks, where the exponent is
1 + rate; and converge if the exponent is less than 1, as in burn tasks, where the exponent is 1− rate. The interest rate
rate in this test scenario is 0.000474, which is equivalent to about 1% every 21 days.

Figure 28. Relative Errors A and B for compound tasks in Fixed Total Principal test mode.

Unlike in Figure 27, where the time span is 128 years, the above chart spans only 60 simulated years. The Relative
Errors A and B for interest tasks are lower than 10−8, which is within the safe level.

Figure 29. Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode.

We guess, on the left of the above chart, that the exponentiation errors are time-exponential, which are successively
accumulated to form new time-exponential errors.

Figure 30. Log Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode. The straight log lines on the left
of the chart confirms that the exponentiation errors are time-exponential.

5 Conclusion

We proposed, proved, and demonstrated algorithms that solve Simple Interest, Simple Burn, Compound Interest, and
Compound Burn reward distribution tasks. The algorithms can distribute rewards to an unknown number of users,
adhering to the computational quota if there are no computer numerical errors. Although computer numerical errors

31

We guess the errors diverge, in the above chart, if the exponent is more than 1, as in interest tasks, where the exponent is
1 + rate; and converge if the exponent is less than 1, as in burn tasks, where the exponent is 1− rate. The interest rate
rate in this test scenario is 0.000474, which is equivalent to about 1% every 21 days.

Figure 28. Relative Errors A and B for compound tasks in Fixed Total Principal test mode.

Unlike in Figure 27, where the time span is 128 years, the above chart spans only 60 simulated years. The Relative
Errors A and B for interest tasks are lower than 10−8, which is within the safe level.

Figure 29. Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode.

We guess, on the left of the above chart, that the exponentiation errors are time-exponential, which are successively
accumulated to form new time-exponential errors.

Figure 30. Log Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode. The straight log lines on the left
of the chart confirms that the exponentiation errors are time-exponential.

5 Conclusion

We proposed, proved, and demonstrated algorithms that solve Simple Interest, Simple Burn, Compound Interest, and
Compound Burn reward distribution tasks. The algorithms can distribute rewards to an unknown number of users,
adhering to the computational quota if there are no computer numerical errors. Although computer numerical errors

31

Figure 28: Relative Errors A and B for compound tasks in Fixed Total Principal test mode

Unlike in Figure 27, where the time span is 128 years, the above chart spans only 60 simulated years. The Relative Errors A and B for
interest tasks are lower than 10−8, which is within the safe level.

Figure 29: Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode

We guess, on the left of the above chart, that the exponentiation errors are time-exponential, which are successively accumulated to form
new time-exponential errors.

Figure 30: Log Absolute Consistency Errors for compound tasks in Fixed Total Principal test mode. The straight log lines on the left of
the chart confirms that the exponentiation errors are time-exponential

5. Conclusion
We proposed, proved, and demonstrated algorithms that solve
Simple Interest, Simple Burn, Compound Interest, and Compound
Burn reward distribution tasks. The algorithms can distribute
rewards to an unknown number of users, adhering to the
computational quota if there are no computer numerical errors.
Although computer numerical errors are individually trivial,
they collectively create a large deviation because the algorithms
inherently and constantly accumulate amount figures that have

numerical errors. Table 3 shows Relative Errors A and B in various
types of task and test modes.

Exponentiation errors turn out to be small if users’ rewards are
collected frequently, but grow harmful if they are accumulated
over an extensively long period or a large number of transactions.
Division errors are also proved to be small enough to ignore
compared to the huge magnitude of asset amount figures, unless
we have an extremely large number of transactions.

J Math Techniques Comput Math, 2024 Volume 3 | Issue 7 | 27

Copyright: ©2024 Chun-Hu Cui , et al. This is an open-access
article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author
and source are credited.

https://opastpublishers.com/

are individually trivial, they collectively create a large deviation because the algorithms inherently and constantly
accumulate amount figures that have numerical errors. Table 3 shows Relative Errors A and B in various types of task
and test modes.

Exponentiation errors turn out to be small if users’ rewards are collected frequently, but grow harmful if they are
accumulated over an extensively long period or a large number of transactions. Division errors are also proved to be
small enough to ignore compared to the huge magnitude of asset amount figures, unless we have an extremely large
number of transactions.

Task type Free Total Principal test mode Fixed Total Principal test mode

Simple Interest Keeps around tiny values, below 10−22 Keeps around a value, below 10−22

Simple Burn Keeps around tiny values, below 10−22 Keeps around tiny values, below 10−22

Compound Interest Diverges slowly linearly, 4∗10−12 after 128 years
Diverges slowly but exponentially,

2 ∗ 10−2 after 128 years, 5 ∗ 10−9 after 60 years

Compound Burn Diverges slowly linearly, 10−12 after 128 years Converges to a small value, below 10−12

Table 3. Relative Errors A and B in our test scenario.

We leave mitigating numerical errors to future work, because that will require a significant amount of extra time.

We introduced new concepts and notations that can be reused in rigorous reasoning of decentralized techniques. We
compared verbal proof and symbolic proof of decentralized algorithms and demonstrated symbolic proof may be more
thorough and effective.

Acknowledgments

We are deeply indebted to Calum Roberts, Dong-Zhe Lian, and Xavier Mitchell-Diggens for their professional reviews
and proofreading, and excellent expertise in Decentralized Applications and academic writing. This endeavor would not
have been possible without Zheng-Yu Cai, who provided continuing administrative support and heartfelt encouragement.
I, the 1st author, would like to express my deepest gratitude to my Mom, Dad, siblings, and wife for their wholehearted
support.

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. URL: https://bitcoin.org/bitcoin.
pdf.

[2] PancakeSwap. Distributed trading protocol on BNB Smart Chain. URL: https://github.com/pancakeswap/
pancake-farm/blob/master/contracts/MasterChef.sol.

[3] Barak Manos. Solidity Math Utilities. URL: https://github.com/barakman/solidity-math-utils#
integralmath.

[4] Igor Makarov and Antoinette Schoar. “Cryptocurrencies and Decentralized Finance (DeFi)”. In: SSRN Electronic
Journal (Jan. 2022). DOI: 10.2139/ssrn.4104550.

32

Table 3: Relative Errors A and B in our Test Scenario

We leave mitigating numerical errors to future work, because that
will require a significant amount of extra time.

We introduced new concepts and notations that can be reused in
rigorous reasoning of decentralized techniques. We compared
verbal proof and symbolic proof of decentralized algorithms and
demonstrated symbolic proof may be more thorough and effective.

Acknowledgments
We are deeply indebted to Calum Roberts, Dong-Zhe Lian, and
Xavier Mitchell-Diggens for their professional reviews and
proofreading, and excellent expertise in Decentralized Applications
and academic writing. This endeavor would not have been possible
without Zheng-Yu Cai, who provided continuing administrative

support and heartfelt encouragement. I, the 1st author, would like
to express my deepest gratitude to my Mom, Dad, siblings, and
wife for their wholehearted support.

References
1.	 Nakamoto, S., & Bitcoin, A. (2008). A peer-to-peer electronic

cash system. Bitcoin, 4(2), 15.
2.	 PancakeSwap. Distributed trading protocol on BNB Smart

Chain.
3.	 Barak Manos. Solidity Math Utilities.
4.	 Makarov, I., & Schoar, A. (2022). Cryptocurrencies and

decentralized finance (DeFi). Brookings Papers on Economic
Activity, 2022(1), 141-215.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1353/eca.2022.0014
https://doi.org/10.1353/eca.2022.0014
https://doi.org/10.1353/eca.2022.0014

