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Abstract
The increasing demand for data has driven the advancement of optical networks from traditional architectures to 
more flexible, dynamic and efficient solutions. This includes technologies like flexgrid reconfigurable optical add-drop 
multiplexers (ROADMs), variable bandwidth transponders (VBTs) providing different modulation, coding schemes 
and baud rates. These advancements have brought about new challenges that concerns to the routing and spectrum 
allocation (RSA), fragmented spectrum, need for rapid and efficient channel restoration, and operation and maintenance 
management of optical networks. To address these challenges, a dynamic and flexible network requires a highly advanced 
network operational system (OS) capable of efficiently managing and allocating network resources. It relies on network 
abstraction, sensors, actuators, and software-defined networking (SDN) to enable algorithms, management, control, and 
decision-making. Improving the sensing capabilities of the network is crucial. Modern hardware and sensor technology 
can help forecast fiber breaks, equipment failures, and other potential issues in advance, allowing for proactive actions 
to be taken. Machine learning (ML) methods have been proposed in the literature to enhance the accuracy of quality 
of transmission (QoT) estimation, mitigate nonlinearities and provide decisions. This reduces the need for conservative 
design margins, maximizes the capacity of optical network systems and reduces the investment in infrastructure. Failure 
management is a critical aspect of optical networks. Providing early-warning and proactive protection is essential. This 
includes detecting failures, localizing them, identifying the root causes, and estimating their magnitude. Quick response 
to failures is vital to maintaining network reliability.
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1. Introduction
In this paper I will provide a survey about machine learning ap-
plications and algorithms in Optical networks, including themes 
such as elastic optical networks (EONs), SDN, network abstrac-
tion, network data collection (modulation format, OSNR, fiber po-
larization sensors), algorithms for quality of transmission (QoT) 
and also optical networks failure management from failure pre-
diction and early detection, failure detection, failure localization, 
failure identification and failure magnitude estimation. Optical 
networks have been widely used for traffic transport for several 
advantages, such as wide bandwidth, low latency, and high an-
ti-interference capability. It links the upper layer services and the 
underlying physical resources: on one hand, it needs to provision 
the bandwidth for different service needs; and on the other hand, 
optical networks involve resources allocation problem in multiples 
dimensions, such as wavelengths, spectrum slot, and time slot.

This scenario makes optical network operation and maintenance 
more complicated than other communication networks. If you take 

into account the convergence of optical network with 5G mobile 
network and IP networks, it will become more serious. In general, 
there are mainly three challenges faced by development and oper-
ation of optical networks: 
• Network Complexity: Support to new services, applications and 
different types of network elements to meet the requirements of 5G 
networks, cloud computing and IoT (internet of things) [1].
• Service Complexity: Support to a wide range of different ser-
vices such as voice, video, data and cloud computing. Each service 
has different requirements in terms of bandwidth, latency and reli-
ability. So, different QoS (Quality of Service) requirements make 
the network design and operation very difficult and challenging.
• Resource Management Complexity: Optical networks use a 
variety of resources such as spectrum, fiber, wavelength, modu-
lation format and baud rate. These resources need to be managed 
efficiently to meet services demand and reasonable QoT.

Traditional networks’ scalability and efficiency are limited by 
largely static operational and optimization approaches [2]. ML of-
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fers a range of methods for essentially adapting to the dynamic 
network behavior. Although the use of ML in optical networks is 
still in its infancy, these learning-based techniques offer a prom-
ising framework for fault management and end-to-end network 
automation [2].

The exponential traffic increase from a variety of sources (internet, 
gaming, Internet IoT, streaming, etc), makes it very challenging 
for optical networks to handle all this heterogeneous traffic de-
mand. This new great demand cannot be supported by the conven-
tional optical networks. Efficiency, flexibility, and scalability are 
the requirements for the new optical network. These requirements 
are met by the EON. The ability to assign spectrum to lightpaths in 
accordance with client bandwidth needs is present in an EON [3]. 
The spectrum is split into small slots, and each optical connection 
is assigned a different number of frequency slots. As a result, com-
pared to the traditional Dense Wavelength Division Multiplexing 
(DWDM) optical networks, network usage efficiency is signifi-
cantly improved.

For managing and allocating network resources in a dynamic 
network environment, a sophisticated network OS is necessary. 
Optimization of capacity, security and reliability of the network 
should all be included in the design of such OS. Furthermore, so-
phisticated machine learning algorithms will be necessary to be 
implemented on top of the network OS in order to sense and con-
trol the network. As a result, the network will be able to perform 
a variety of functions that are essential for the future network, 
including self-configuration, self-optimization and self-healing. 
The network will need sensors to collect data about the network, 
network abstraction (to hide some aspects while providing crucial 
data), algorithms to process and analyze the data, and actuators for 
network control and implementation of actions based on decisions 
of the algorithms. Abstraction is crucial because it allows the net-
work to streamline complex data and only provide the information 
that is pertinent to the algorithms that are operating on top of it.

Many options for enhanced performance and optimization are pre-
sented by dynamic and flexible optical networks. The presence of 
VBTs, flexgrid ROADMs, different modulation schemes, coding 
schemes, symbol rates, all these different parameters provide great 
flexibility in assigning and managing network resources. Howev-
er, greater intelligence and decision-making capabilities are re-
quired as flexibility increases. To achieve optimum performance, 
all these different and free knobs require intelligent systems and 
sophisticated algorithms.

To permit early identification of potential disruptions or impair-
ments, such as a backhoe digging close to the fiber network, net-
work sensing capabilities must also be improved. Early detection 
of such disturbances enables preemptive action to minimize the 
huge effects of a potential fiber cut and prevent network outages. 
Consequently, it can be understood how crucial failure manage-
ment is in optical networks. It is essential to guarantee the stable 
operation, ensure the service status, and, in the event of a failure, 

recover it quickly. Despite its significance, failure recovery still 
needs intricate and time-consuming human involvement. So, fail-
ure recovery automation is a critical component of operators’ long-
term plans. Optical networks are subject to a few failure modes, 
divided into soft and hard failure in a general sense.
 
Soft failures may affect the quality of the services provided on top 
of such networks by lowering the transmission quality of light-
paths and introducing errors at the optical layer [2]. Filter shifting, 
filter tightening, filter blocking, and loss increase are examples of 
soft failures [4].

Fiber cuts, equipment failure, power outages, and/or optical com-
ponent failures are examples of hard failures (connectors, cou-
plers, splitters, or defects in manufacturing).

In the field of optical networks, artificial intelligence (AI) ap-
proaches are being explored and used more often to handle a va-
riety of issues, including traffic prediction, topology design, path 
calculation, resource allocation, and failure management [2,4]. A 
direction that shows promise involves using ML to automate fail-
ure management operations.

As previously commented, tasks in failure management are sep-
arated into two broad categories: active approaches and passive 
approach methods. Alarm analysis, failure prediction, failure de-
tection, failure identification, failure diagnosis, and failure local-
ization are a few of the sub-tasks that these methodologies can be 
further broken down into. The following are recent trends that are 
paving the way towards successful and effective ML applications 
in optical networks: 
• Modern Optical Equipment (ROADMs, transceivers, amplifiers) 
is now installed with embedded monitoring capabilities  such as 
digital signal processing (DSP) units with embedded neural net-
works (NN) to combat and/or mitigate nonlinear distortions [5,6]. 
• The large amount of data available from the optical performance 
monitoring (OPM) interfaces from this new instrumented network 
can now be collected and processed in centralized locations thanks 
to SDN [7]. 
 
2. Optical Communications Background
The further an optical signal travels, the more the signal degrades 
through attenuation, distortion, and loss of timing. Optical signal 
degradation is caused by many factors including impairments, re-
flections, linear and nonlinear effects that occur in the fiber cable. 
Linear impairments include chromatic dispersion (CD), polariza-
tion mode dispersion (PMD), polarization dependent loss (PDL) 
and fiber attenuation. Nonlinear impairments are based on Kerr ef-
fect and Inelastic scattering. The CD establishes a phase shift that 
is dependent of the frequency to the signals, causing the light to 
spread and creating inter-symbol interference. The imperfections 
in the fiberoptics cause the two possible polarizations to propagate 
at different phase velocities. This behavior is mentioned as PMD.

In modern networks, the DSP unit that is present in the coherent 
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transceivers can mitigate both CD and PMD allowing high rates 
lightpaths to propagate over long distances. Polarization depen-
dent loss (PDL) is the variation of transmitted power based on 
the values of the signal polarization states. Fiber loss or fiber at-
tenuation is the decrease in signal strength as a function of the 
transmission distance. There are different types of losses such as 
absorption (presence of impurities in the fiber), scattering (inter-
action between light waves with small particles in the fiber), dis-
persion (caused by CD and PMD), bending and connector loss-
es. There are basically two types of scattering: stimulated Raman 
scattering (SRS) and stimulated Brillouin scattering (SBS) which 
will be explained afterwards. The Kerr effect causes the refractive 
index of the fiber material to change proportionally to the intensity 
of the electromagnetic field. Nonlinear impairments include cross 
phase modulation (XPM), self-phase modulation (SPM), XPolM 
(cross-polarization modulation) and four wave mixing (FWM).

SPM refers to the phenomenon caused by the interaction of the 
laser beam with the medium which introduces a phase modulation 
on itself [8]. This is caused by the different speeds of the laser 
beam components. The index of refraction is changed with opti-
cal power level inducing a frequency chirp. The interaction of this 
frequency chirp with the fiber’s dispersion makes the optical pulse 
spectrum to be broadened.

The XPM is a nonlinear effect due to interactions of copropagating 
channels. The XPM induces frequency chirping and pulse broad-
ening causing overlapping between channels [9].

XPolM consists in channel crosstalk in DWDM systems due to 
irregular propagation of state of polarization (SOP) in the core of 
the fiber due to PMD [9].

FWM in DWDM systems is generated by the nonlinear interaction 
between two or more co-propagating channels [9]. This interaction 
creates an additional wave. It occurs in dispersion-shifted fiber 
(DSF) whose CD is zero at a specific wavelength used for optical 
transmission.

Inelastic scattering refers to the transfer of energy between the in-
teracting field and the dielectric medium. There are basically two 
types of inelastic scattering: stimulated Brillouin scattering (SBS) 
and stimulated Raman scattering (SRS). SRS transfers optical en-
ergy from a shorter wavelength to a higher wavelength channel.

SBS consists of a backward scattering. As a wavelength travels 
along the fiber, there are acoustic vibrations that provide oscilla-
tions in the fiber refractive index, causing back-scattering of the 
transmitted power. So, SBS limits the channel power in optical 
communication systems.

To increase the system’s range in a fiber communication link, 
several fiber segments with optical amplifiers (OA) are frequent-
ly used. Lump amplification is a style of architecture that is fre-
quently employed in long-haul optical networks with more than 

10 amplifiers [10].

The Kerr effect, which is how OA noise interacts with the fiber, 
causes phase variations at the receiver and shortens the transmis-
sion range, since SPM can degrade SNR [10,11].

The Gordon-Mollenauer effect or simply nonlinear phase noise 
(NLPN) are terms used to describe this nonlinear source of noise 
[12]. The most frequent impairment that makes radio-over-fiber 
networks perform worse is NLPN. When employing a traditional 
demodulation grid, the effect of NLPN in the constellation dia-
gram is a shape distortion of the symbols due to symbol overlap-
ping, causing symbol error rate.

Figure 1 provides a summary view of different optical fiber im-
pairments [13]. 
 
3. Machine Learning Overview 
Machine Learning algorithms may be classified into three different 
learning families: Supervised Learning, Unsupervised Learning 
and Reinforcement Learning. 
 
3.1. Supervised Learning 
Aiming to identify a function that maps input to output, an agent 
observes certain input-output pairings in supervised learning. 
Techniques include logistic regression (predict categories) and lin-
ear regression (create continuous predictions, such as an OSNR of 
a lightpath). The goal is to train a predictive model from a set of 
input-output pairs which are called labeled examples. A predictive 
model is a program that is able to guess the output value for a 
new unseen input. The more common types of supervised learning 
techniques are: 
• Neural Networks: It works by trying to mimic the human brain 
through layers of nodes that are based on inputs, weights, and bias. 
Application in optical networks range from DSPs with embedded 
neural networks to combat and/or mitigate for nonlinear distor-
tions, OSNR estimation based on eye-diagram power. An example 
of an artificial neural network (ANN) consists of an input layer, 
one hidden layer, and an output layer [1]. Neurons make up the 
hidden layer and output layer, which compute the output value 
using the input vector and a nonlinear activation function, respec-
tively. Figure 2 shows an example of ANN. Where x is the input, h 
is the hidden layer and y is the predicted output. 
• Naive Bayes: Based on decision trees, the existence of one fea-
ture does not impact the presence of another feature in the prob-
ability of a particular result. It is used in text classification and 
recommendation systems. A naive Bayes classifier was employed 
in optical networks to detect multiple fiber damages, including 
bending, shaking, tiny hits, and up and down events. It learned 
from the properties of the observed SOP. 
• Random Forest (RF): Use multiple supervised learning tech-
niques to make a conclusion. A random forest consists of many 
decision trees. In optical networks may be used to predict QoT for 
lightpaths and OSNR monitoring. 
• SVM (Support Vector Machine): Generally used for data clas-
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sification and regression. It is based on a hyperplane that sepa-
rates the classes of data points. In fiber optic networks SVM has 
been demonstrated to be effective in reducing NLPN (Non Linear 
Phase Noise), fiber Kerr effect, laser phase noise, modulator lin-
earity, amplified spontaneous emission (ASE) noise, and linear/
non-linear signal detection [14,15]. SVM has a low level of deci-
sion complexity and is capable of detecting and de-mapping high 
order modulations with rotating constellations. 
• K-Nearest Neighbor (KNN): Data points are categorized ac-
cording to how closely they are related to other pieces of available 
data. It is used for recommendation engines, pattern recognition 
and image recognition. In optical networks can be used to mitigate 
fiber nonlinearities. 
• The Goal of Multitask Learning (MLT): A learning paradigm 
used in machine learning, is to enhance the performance of many 
tasks when they are generalized. A special type of recurrent neu-
ral network (RNN) called long short- term memory (LSTM), first 
proposed by Hochreiter and Schmidhuber in 1997, is used to han-
dle long time series or sequence data, achieving state-of-the-art 
performance in many sequence classification problems like speech 
recognition or natural language processing. 
 

3.2. Unsupervised Learning 
Unsupervised learning uses only the input x, whereas supervised 
learning uses both the input x and the output label y. The algorithm 
must uncover some kind of structure, trend, or intriguing aspect in 
the data. In other words, there are neither inputs nor outputs. The 
data is just a set of examples.

Unsupervised learning has three main objectives: clustering (us-
ing K-means to group data into different groups or clusters based 
on how similar they are), dimensionality reduction which consists 
in projecting high-dimensional data into a low dimensional space 
such as principal component analysis (PCA), and anomaly detec-
tion.

K-means clustering provides an effective and straightforward 
unsupervised classification algorithm [16]. With unlabeled data, 
K-means clustering is frequently used to solve classification chal-
lenges. Here, the "K" stands for the number of clusters. In order to 
reduce the total of the squared error data distance to the centroid, 
the K-means algorithm divides data into k clusters and assigns 
each data point to the nearest mean cluster. Figure 3 shows clus-
tered data points grouped into 3 clusters based on their similarity 
or closeness.
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distance to the centroid, the K-means algorithm divides data 
into k clusters and assigns each data point to the nearest mean 
cluster. Fig. 3 shows clustered data points grouped into 3 
clusters based on their similarity or closeness. 

Almost every industry can benefit from the usage of K- 
means clustering, from banking to cyber security, document 
clustering to segmentation of image. It is often used with 
continuous, quantitative data that has few dimensions. Cus- 
tomer segmentation, document classification, and image seg- 
mentation (by attempting to group similar pixels in the image 
together and producing clusters) are some application cases for 
K-means. 

In optical networks, k-means may be used to mitigate the 
effects of non-linear impairments on constellation diagrams. 
Anomaly detection is another task that can be addressed 
with unsupervised learning. Anomaly is something that differs 
from the standard. Anomaly is something different from the 
norm when concerning about it features. In machine learning, 
anomaly detection is the process of detecting outliers or rare 
occurrences. It is generally used to detect fraudulent credit 

card transactions and failures in manufacturing process. In 
optical networks, anomaly detection shows great potential to 
detect fiber events, amplifier mal-functioning and spectrum 
anomaly detection based on constellation images. I personally 
consider anomaly detection one of the key points for the 
management of modern optical networks. 

 
 

C. Reinforcement Learning 

Algorithms that learn through rewards for preferred actions 
are known as reinforcement learning (RL) algorithms [17]. It is 
based on the mathematical decision-making model known as 
the Markov decision process. The agent’s goal is to choose 
activities that will maximize a long-term indicator of total 
reward [18]. A series of reinforcements (rewards) or penalties 
acquired through interactions with the environment help an 
agent develop an optimal (or nearly optimal) policy [19]. 
Finding the series of actions that results in the best reward is 
the goal of training [17]. Training entails learning from one’s 
own experiences rather than from a supervisor or a system. 
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Almost every industry can benefit from the usage of K-means clus-
tering, from banking to cyber security, document clustering to seg-
mentation of image. It is often used with continuous, quantitative 
data that has few dimensions. Customer segmentation, document 
classification, and image segmentation (by attempting to group 
similar pixels in the image together and producing clusters) are 
some application cases for K-means.

In optical networks, k-means may be used to mitigate the effects 
of non-linear impairments on constellation diagrams. Anomaly 
detection is another task that can be addressed with unsupervised 
learning. Anomaly is something that differs from the standard. 
Anomaly is something different from the norm when concerning 
about it features. In machine learning, anomaly detection is the 
process of detecting outliers or rare occurrences. It is generally 
used to detect fraudulent credit card transactions and failures in 
manufacturing process. In optical networks, anomaly detection 

shows great potential to detect fiber events, amplifier mal-func-
tioning and spectrum anomaly detection based on constellation 
images. I personally consider anomaly detection one of the key 
points for the management of modern optical networks. 
 
3.3. Reinforcement Learning 
Algorithms that learn through rewards for preferred actions are 
known as reinforcement learning (RL) algorithms [17]. It is based 
on the mathematical decision-making model known as the Markov 
decision process. The agent’s goal is to choose activities that will 
maximize a long-term indicator of total reward [18]. A series of re-
inforcements (rewards) or penalties acquired through interactions 
with the environment help an agent develop an optimal (or nearly 
optimal) policy [19]. Finding the series of actions that results in 
the best reward is the goal of training [17]. Training entails learn-
ing from one’s own experiences rather than from a supervisor or 
a system. 
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Finding the best policy that maximizes the expected return is the 
aim of interactions with the environment.

A trajectory in RL is the progression of states, behaviors, and re-
wards or penalties (punishments) that an agent encounters. The 
agent begins in one state, then after performing an action, it chang-
es to a different state. The agent receives a reward or punishment 
for its action, and this process repeats. The trajectory ends when 
the agent reaches a terminal state. By analyzing the rewards it re-
ceives for its actions, the agent can learn which actions are more 
likely to lead to high rewards. The Figure 4 summarizes the idea 
explained above.

In the case of an SDN controller, the agent is the controller itself 
and the environment is the network. The controller keeps an eye on 
the network and develops decision-making skills. Since RL is par-
ticularly helpful for network automation and control in the context 
of optical communication, it has been used at the network layer to 
automate the resolution of routing, resource allocation, orchestra-
tion, and configuration issues. 
 
4. Optical Networks 
Existing flexible-grid photonics networks are based on coherent 
transceivers equipped with DSP (digital signal processing) capa-
bilities. Coherent transceivers rate varies from 100 Gbps to 800 
Gbps for medium to long haul distances. These networks are based 
on photonic control plane in a distributed or centralized approach. 
The photonic control plane is responsible in setting up and tearing 

down connections and also responsible in providing means for re-
storing connections in a backup path due to failures in the network.

Until recently optical networks used to be fixed-grid with fixed 
spectrum space between channels, typically 50 GHz or 100 GHz. 
In this scenario, the maximum capacity was of 88 or 96 channels 
for 50 GHz spacing. Some years ago emerged the flexible-grid 
networks with the intention of allowing wider spectrum channels 
to propagate in optical systems as well as minimize the waste of 
spectrum due to the fixed nature of the fixed-grid networks. With 
the evolution of the optical coherent transceivers, the transmission 
rates can vary from 100 Gbps to 800 Gbps depending on the type 
of the transceiver. A 100 Gbps transceiver can be transmitted in 
a 50 GHz frequency grid while a 400 GHz transceiver requires 
112.5 GHz frequency grid to be accommodated. So, convention-
al optical networks cannot support this type of transceivers. Only 
flexible-grid systems can support them.

Current optical networks monitoring are basically limited to the 
alarms management and performance of the channels are limited 
to Pre-forward error correction (Pre-FEC) bit error rate (BER) in-
formation. There is no visibility for an optical channel or lighpath 
what and where are the impairments (linear and nonlinear) that 
most degrade the performance. Network planning is based on of-
fline prediction and not on instantaneous or quasi-instantaneous 
information. So, QoT of new channels or restoration paths deci-
sions are based on predicted information. So, network planners 
usually add margins to predictions to minimize risks. This leads 
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to overprovisioning of resources and it is clear that there is limited 
network automation. In the sequence of this article I will describe 
what is available on literature to accelerate optical network auto-
mation. 
 
5. Optical Networks Automation 
In this section it will be described cognitive networks, network 
OS, sensors, QoT and failure management. First of all, there is 
a brief description about how ML agents are incorporated in an 
optical network.

Figure 5 shows the system architecture of optical networks incor-
porating ML [1]. It is based on an intelligent module made up of 
Functional Elements (FEs) and a ML agent. The FEs are respon-
sible for information exchange between the network environment 
and the ML agent where the training is done.

In FEs, the raw data from the optical network is collected by the 
data collection module, which then preprocesses it into a specific 
data structure for usage by ML models. ML agents are trained us-
ing the gathered, preprocessed network data as well as the network 
state data from FEs. In optical networks, an ML agent can pri-
marily operate in three paradigms: regression, classification, and 
decision-making. 
 
5.1. Cognitive Network and Network OS 
Recently, it has been suggested that optical networks use cognition 
to improve network performance [20,21]. By integrating machine 
learning and reasoning processes into the network’s control plane, 

cognition offers a solution to improve network performance. This 
allows the network to operate quickly and independently with con-
nection lifetimes as little as a minute. A cognitive network man-
agement system senses the current network state conditions, such 
as traffic and flow patterns, and uses this data to determine how to 
adjust the network or improve overall performance and offer quick 
replies to transaction requests. Figure 6 shows how the cognitive 
network module is a component of the control plane, which affects 
all network levels [22] (It may reside at distributed or centralized 
controllers as well as network nodes).

Due to the huge increase in data volume, future network manage-
ment control systems need to be flexible and quick to adapt. In 
contrast to the minutes and hours of conventional networks, these 
dynamics will require network management and control on a time 
scale as quick as 10ms [22]. Sensing schemes will be implemented 
where each link and node senses the network (from layers 1 to 3). 
A centralized or distributed controller can use this information to 
combine data from various nodes to perform scheduling, complex 
statistical inference, network reconfigurations, load-balancing, 
and even more drastic operations like isolating suspicious subnet 
upon detection of anomalies.

By removing humans from the network management process, 
cognitive approaches can quickly estimate network state trajec-
tories and optimize network setups and configurations. Learning 
algorithms can be used to infer the nominal traffic statistics from 
historical data.
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Fig. 6. Cognitive engine as part of network control plane 

 
hope for changing the limits of existing network infrastruc- 
tures. First, by separating the network’s control logic (the con- 
trol plane) from the underlying routers and switches that for- 
ward traffic (the data plane), it breaks the vertical integration. 
Second, network switches become simple forwarding devices 
as a result of the separation of the control and data planes, and 
the control logic is implemented in a logically centralized 
controller (or network operating system), simplifying network 
administration, configuration and policy enforcement [25]. 

 

B. 5.2 Sensors 

Using a single photodiode and estimating OSNR after pho- 
todetection without signal demodulating is one of the simplest 
methods for performing OSNR monitoring on sensors [26]. The 
goal is to identify the properties that change as the OSNR and 
modulation format change. Directly detected (DD) data are 
used by the OSNR estimator and the modulation format 
classifier. Several features can be extracted from the power 
eyediagram that is generated after the photodetector. 

The key takeaway is that you don’t need all the network’s 
nodes to be equipped with these high-priced optical spectrum 
analyzers. You can measure something like the variance of the 
eye diagram and determine how that variation transforms into 
an OSNR in case you just use a photodiode to capture the eye 
diagram. One hidden layer of a neural network can be used 
to estimate OSNR. 

Fiber optic sensors have gained considerable interest over the 
past three decades for their wide range of monitoring 
applications in a number of sectors, including aerospace, de- 
fense, security, civil engineering, communications, and energy. 
Compared to other forms of sensors, optical fiber sensors offer 
a number of benefits. These benefits are mostly related to the 
characteristics of optical fiber, which include its tiny size, light 
weight, resistance to high pressure and temperatures, 
electromagnetic passiveness, and others. By examining the 
characteristics of light, one can measure many quantities, such 
as strain, temperature, or angular velocity [27]. 

Actions (such as re-routing the wavelengths) could be made 
in advance to lessen the effects of a fiber break in the network 

Figure 6: Cognitive Engine as part of Network Control Plane.

A new networking paradigm called Software-Defined Network-
ing (SDN) offers hope for changing the limits of existing network 
infrastructures [23,24]. First, by separating the network’s control 
logic (the control plane) from the underlying routers and switches 
that forward traffic (the data plane), it breaks the vertical integra-
tion. Second, network switches become simple forwarding devices 
as a result of the separation of the control and data planes, and the 
control logic is implemented in a logically centralized controller 
(or network operating system), simplifying network administra-
tion, configuration and policy enforcement [25]. 
 
5.2. Sensors 
Using a single photodiode and estimating OSNR after photodetec-
tion without signal demodulating is one of the simplest methods 
for performing OSNR monitoring on sensors [26]. The goal is to 
identify the properties that change as the OSNR and modulation 
format change. Directly detected (DD) data are used by the OSNR 
estimator and the modulation format classifier. Several features 

can be extracted from the power eyediagram that is generated after 
the photodetector.

The key takeaway is that you don’t need all the network’s nodes 
to be equipped with these high-priced optical spectrum analyzers. 
You can measure something like the variance of the eye diagram 
and determine how that variation transforms into an OSNR in case 
you just use a photodiode to capture the eye diagram. One hidden 
layer of a neural network can be used to estimate OSNR.

Fiber optic sensors have gained considerable interest over the past 
three decades for their wide range of monitoring applications in a 
number of sectors, including aerospace, defense, security, civil en-
gineering, communications, and energy. Compared to other forms 
of sensors, optical fiber sensors offer a number of benefits. These 
benefits are mostly related to the characteristics of optical fiber, 
which include its tiny size, light weight, resistance to high pres-
sure and temperatures, electromagnetic passiveness, and others. 
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By examining the characteristics of light, one can measure many 
quantities, such as strain, temperature, or angular velocity [27].

Actions (such as re-routing the wavelengths) could be made in 
advance to lessen the effects of a fiber break in the network in 
optical communications if there is a sign that the fiber is about to 
be broken (for example a mechanical excavator is digging close to 
the fiber plant).

For monitoring on a span-by-span basis, the optical supervisory 
channel (OSC) can be employed [28]. Customer data is not trans-
ported by the OSC. It is only transmitted system maintenance in-
formation from the carriers. However, in this single polarization 
signal, it is feasible to detect the rotation of the OSC channel if 
the fiber is disturbed. The placement of a single polarization beam 
splitter is proposed. Consider the two polarization outputs and sub-
tract them. A signal indicates that the polarization is rotating if it is 
present. You will be able to identify the span that is having issues 
because this is ended at each amplifier site. This is a cost-effective 
option.

A coherent receiver was used to implement a proactive fiber dam-
age detection method [29]. Coherent technologies, where the light 
is frequency and polarization multiplexed by improved modula-
tion formats that carries information not only by the light’s am-
plitude but also by its phase, are the foundation of contemporary 
high-speed optical communication systems [30]. 

Many DSP algorithms have been developed and are now frequent-
ly used in commercial devices to recover received signal from 
physical impairments occurring during propagation in the fiber. A 
naive Bayes classifier was utilized to detect multiple fiber damag-
es, including bending, shaking, tiny hits, and up and down events, 
with 95% reliability after learning from the characteristics of the 
monitored SOP. The idea is to make DSP suitable for inexpensive 
inclusion into coherent terminals. Algorithms that can simultane-
ously decode data and track SOP were developed to reduce the 
need for additional hardware in a real-time receiver. DSP is used in 
coherent technologies with polarization de-multiplexing to com-
pensate for SOP fluctuations and other optical impairments such 
as CD and PMD.

A threshold is defined, monitored and compared to the Stokes co-
ordinates fiber SOP rotation speed. Pre-trigger and post-trigger 
samples are given to an ML naive-Bayes classifier if the threshold 
is surpassed, and it then returns the most likely cause (for example, 
fiber bending, shaking, hit, or up and down events).

In other work using a threshold-based methodology, anomalous 
BER trends are identified. To find abnormal BER patterns indicat-
ing potential failures along the monitored lightpath, a BER anoma-
ly detection algorithm operating at each network node is proposed. 
The algorithm uses historical and monitoring BER data statistics 
as input and returns various forms of warnings and alerts based 
on whether the current BER exceeds predefined criteria or stays 

within the boundaries that were predefined [5,31].

LSTM was used in [4, 32] for multitask learning to identify fiber 
reflection faults that typically arise in connectors or mechanical 
splices. The LSTM outperformed the conventional OTDR analy-
sis technique in detecting reflecting events with 93% accuracy by 
learning from the noisy data acquired by the OTDR (Optical Time 
Domain Reflectometer) and a sequence of signal power levels.

5.3. Quality of Transmission (QoT)
To ensure reliable optical connectivity in real optical network op-
erations, significant system margins are assigned to address all 
network uncertainties. A lot of network resources are wasted due 
to these redundancies. Cutting the margins improves network ef-
ficiency but calls for precise QoT estimation. As a result, accurate 
lightpath QoT monitoring can lower performance uncertainty and, 
as a result, lower the required redundant system margin.

A traditional analytical model that uses a lot of processing power 
to estimate physical layer impairments yields reliable findings. Re-
garding the analytical model’s complexity, it should be noted that 
the complex interactions of numerous system parameters, such as 
input signal power, number of channels, link type, modulation for-
mat, symbol rate, and channel spacing, as well as the effects of lin-
ear and nonlinear signal (Linear ASE noise of amplifiers, nonlin-
ear noise caused by the fiber Kerr effects, filtering penalties, etc.) 
propagation impairments, make it more challenging and difficult 
to predict a precise analytical model [33].

Additionally, if you are not very good at predicting, you will not 
be able to determine what is your lightpath’s quality. Therefore, 
there will be a lot of spread between your expected performance 
and the real performance. You must increase your margin to take 
that spread into account. In its simplest form, the margin is the 
difference between the pre-FEC BER at the system working point 
and the pre-FEC BER at the FEC correction threshold. In case it is 
possible to have an improved and tuned model, the spread between 
predicted and actual performance is reduced.

And right now, you may apply supervised learning to establish a di-
rect input-output relationship between the quality of the transmis-
sion (QoT) measured at the receiver and the corresponding config-
uration of the lightpath in terms of modulation format, baud rate, 
and route [33]. Additionally, you can now run with a small margin 
and just above the FEC correction level. Therefore, ML techniques 
offer a viable way to automatically forecast if unestablished light-
paths will reach the necessary QoT threshold. Consequently, capi-
tal expenditures (CAPEX) can be reduced with ML-based precise 
QoT estimation. Additionally, every decibel (dB) you have in the 
planning accuracy is just as useful as a dB in coding gain [28].

OPM is also desired in order to develop accurate ML algorithms 
that can handle low-margin networks. To prevent major system 
deterioration and find abnormalities, controllers should be able to 
access the real-time status of networks via OPM. The monitoring 
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techniques should be able to locate, identify, and recognize optical 
network faults if they do occur.

Other point with QoT estimatation is the routing and spectrum 
assignment (RSA) or routing and wavelength assignment (RWA) 
issues in fixed-grid networks. In addition to ensuring the quality 
of transmission for the lightpaths, the algorithm that chooses an 
appropriate path and wavelength/frequency must act quickly to 
avoid assigning two paths sharing a link with the same wavelength 
or frequency.

There are several different metrics for the QoT modeling, includ-
ing BER, Q-factor, signal to noise ratio (SNR), OSNR, and margin 
[34]. The goal of QoT modeling is to estimate the link performance 
accurately and build networks with low margin. The QoT estima-
tion requirements differ based on the scenario. Some must deter-
mine whether or not one light path can be established, while others 
require the precise value of the QoT measurements [35,36,37]. For 
the former, ML classification techniques as KNN, RF, SVM, lo-
gistic regression (LR), ANN can be utilized [26]. Convolutional 
neural networks (CNN), ANN, Gaussian process (GP), network 
Kriging (NK), and other ML regression techniques can be used for 
the latter [34].

A summary of the ML-based QoT modeling techniques is present-
ed in the form of a table, along with the modeling targets (OSNR, 
Q-factor, BER, SNR, margin), the algorithms used to achieve each 
modeling target, and the input features (modulation format, traffic 
volume, number of links, link length, FEC, baud rate, CD, average 
PMD, SPM, noise figure, power, attenuation, etc.) [34].

An ML classifier that predicts whether the BER of unestablished 
lightpaths satisfies the requirements based on traffic, number of 
links, route length, and modulation format is examined in [35]. 
One may think of the proposed classifier as being incorporated into 
the RSA decision algorithm.

The following methodology was developed in [38]. The required 
resources (links,wavelengths) are first allocated using a QoT es-
timator that is based on a mathematical model of the physics of 
propagation for the deployment of initial demands (greenfield 
planning). Initially a significant margin m is added. All of the mon-
itored data are collected when lightpaths for the initial demands 
were established. The QoT prediction for new demands (predic-
tion phase) is improved as a result of the machine-learning algo-
rithm’s enhanced input parameters for the QoT model. The margin 
m’ for the design could be lower than the margin m for the original 
requests. And as new requirements are introduced into the system, 
the ML algorithm begins to do the training once more, increasing 
the accuracy of the parameters.

It is demonstrated that it is possible to reduce design margins by 
feeding a learning process based on a gradient descent algorithm 
with a collection of measured/monitored data (SNR, power levels, 
noise figures). Using the SAMBA (semi-analytical model for risk 

assessment) model and the EGN (extended Gaussian) model, it 
has been calculated that the QoT prediction error in the brownfield 
scenario of a Euro- pean backbone network can be reduced from 
1.8 dB to 0.1 dB and from 4.2 dB to 0.02 dB, respectively [37]. By 
expanding this approach, overprovisioning may be further reduced 
and consequently the associated cost of optical network hardware.

A QoT estimator is proposed by [39]. It is trained using a collection 
of established lightpaths obtained from earlier off-line simulations 
over the network under investigation. Compared to conventional 
analytical/numerical methods, this model lowered the amount of 
time needed to compute to determine the QoT of a given light-
path. As a result, the magnitude of the typical RWA problem is re-
duced. For example, a route and available wavelength to establish 
a lightpath can be handled quickly with a guarantee of QoT for the 
chosen path. The length of a lightpath is likely to have the biggest 
impact on the many variables that can affect a lightpath’s QoT. 
As a result, the length of a lightpath is the first factor considered 
when classifying it. And the SVM-based module only takes over 
prediction duties if this variable insufficiently determinant. Finally, 
three areas are defined: 
• The lightpath length that is shorter than a predetermined length 
(inferior threshold) defines the first area. All lightpaths are regard-
ed as high quality in this region. 
• The second area is the one that is deemed low quality and is 
defined over a predetermined threshold for path length (superior 
threshold).
• The SVM-based module must solve the lightpath performance 
between the two limitations.

Learning a mapping function between the input features and target 
values is the aim of SVM. As a result, training, validation, and 
testing datasets were used to develop SVM. Running prior off-line 
simulations of an IA-RWA (impact aware routing and wavelength 
assignment) yielded the training dataset. A radial basis function 
kernel (RBF) was taken into consideration in order to nonlinearly 
transfer samples into a higher dimensional space because the rela-
tionship between the QoT categories and the lighpaths attributes is 
nonlinear. The performance of the model was assessed once it had 
been developed and characterized using various new data subsets.

A long-distance Deutsche Telekom network with 14 nodes was 
used to evaluate the model. The model improved the R-CBR (Reg-
ular Case-based Reasoning) technique by approximately two mag-
nitude orders and reached up to 99.95% success in classification 
of lightpaths. CBR (Case-based reasoning) is a method for solving 
new problems by adapting previously solutions that were success-
ful to solve similar problems.

In summary, the idea is to collect data, process it using analytics al-
gorithms in order to provide the actionable intelligence for the pro-
cess decisions. When all this process were done in hardware and 
software, those decisions can be moved to the actuators and we 
have an optical network automation. Based on all described infor-
mation, the QoT estimation is one inputs to the RSA (Routing and 
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spectrum algorithm flexible networks). The RSA is the algorithm 
whose function is to find the appropriate route for a channel and al-
locate the required spectrum for this lightpath. So, an efficient RSA 
takes into account the physical impairments of the optical channel 
and selects a route and spectrum information in a timely manner 
for new channels and for restoration of existing channels. So, in 
order to plan, deploy and operate the next generation of intelligent 
optical networks, a simple straightforward and agile QoT estima-
tion before connections and restorations are provisioned is crucial 
and necessary. The cognitive approach can be based on NN, RF, 
NK, SVM or any other model previously described. The method 
basically considers the OSNR, SNR, BER or any other parameter 
of current lightpaths in a network. So, the measured parameter is 
compared with the expected/calculated values. So, it is possible to 
build a cost function and perform a gradient descent algorithm to 
minimize the cost function. After the calculation converges, the 
minimized cost function is ready. So, the new lightpath can now 
be added in the network with lower margins. 

Figure 7 illustrates a basic QoT estimator for margin reduction.

By including new variables like lightpath length, amplifier model-
ing, traffic volume, input from analytical models, and other data, 
this basic model can be enhanced. The model can also be used to 
mitigate the chromatic dispersion, polarization mode dispersion, 
Kerr effect, and other linear and non-linear impairments that alter 
the shape of symbol points in the constellation diagram of coher-
ent optical signals and establish direct input-output relationships 
between monitored parameters and desired outputs. 
 
5.4. Failure Management 
Failure management’s goals include detecting, isolating, and fix-
ing all types of network faults, ensuring the stable and reliable 
network operation, and meet the service level agreement with the 
customer [4]. Tasks in failure management can basically be classi-
fied into alarm analysis, failure prediction, failure detection, fail-
ure identification, failure diagnosis, and failure localization, which 
are divided into active and passive approaches [40]. Monitoring 
the network and taking measures to address problems before they 
become more serious constitute an active strategy. Examples of 
active methods include: 
• Alarm Analysis: Examining alarms and alerts produced by the 
network to spot possible problems before they cause interruptions. 
• Failure Prediction: Identifying when failures are most likely to 
occur and taking preventive action to avoid them using data ana-
lytics and other tools. 
• Failure Detection: Identifying when failures occur and respond-
ing to them using monitoring tools and techniques. On the oth-
er hand, passive approaches involve corrective actions that are 
carried out following a failure. When using these techniques, the 
damaged equipment is often diagnosed as having a problem and is 
then either repaired or replaced (examples include failure identifi-
cation, failure diagnosis, and failure localization). 
Examples of passive methods include: 
• Failure Identification: identifies the root cause of a failure and 

pinpoints the machinery or components that require maintenance 
or replacement. 
• Failure Diagnosis: involves identifying the problem and choos-
ing the best course of action for fixing or replacing the harmed 
equipment. 
• Failure Localization: Finding the precise location where the 
failure occurred inside the network and responding to it. 

A passive approach with minimal extra complexity is shown for 
localizing errors in optical networks [41]. It is based on raw mon-
itoring information from optical coherent transponders. The fun-
damental goal of this methodology is to increase availability by 
speeding up fault localization. As a result, the MTTR (mean time 
to repair), which takes into account both the time needed to locate 
the defect and the time needed to remedy it, can be reduced. A 
list of potential failure scenarios, segment (link) exclusion, and 
scenario rating by likelihood form the basis of the localization ap-
proach known as SFL (streamlined failure localization) which is 
the localization technique.

According to the approach, more than 90% of failures can be pin-
pointed without ambiguity. Because a failure can have such severe 
repercussions in optical networks, failure management is extreme-
ly important. Optical networks are essential to many businesses 
and industries because they efficiently transmit enormous amounts 
of data over great distances. An optical network failure may result 
in service interruptions that impact many users, which may result 
in lost sales, reduced productivity, or even harm to a company’s 
reputation.

Network operators are increasingly looking at improved automa-
tion of failure recovery as a critical aspect of their roadmaps for 
the future since, despite its importance, optical networks failure 
management still frequently requires complex and time-consum-
ing human intervention [5]. Using advanced statistical and math-
ematical tools of ML to automate failure management duties is 
one potential avenue in this area. ML algorithms can be trained to 
evaluate optical network data in real-time, identify patterns, detect 
anomalies that could sign possible early stage of failures.

ML algorithms can drastically reduce the amount of time need-
ed to resolve network issues by automating the detection and di-
agnosis of failures, enabling operators to react to incidents more 
rapidly and efficiently [4,5,42]. As a result, service outages may 
be reduced, and optical networks may operate more reliably and 
effectively overall. In addition, ML can be used to optimize re-
source allocation and network designs, lowering failure rates and 
boosting network performance. As a result, ML is turning into a 
more crucial tool for network operators wanting to increase the 
performance and reliability of their optical networks.

In summary, using sophisticated statistical and mathematical ma-
chine learning tools to automate failure management tasks in op-
tical networks is a promising area. By leveraging ML algorithms, 
network operators can drastically reduce the time needed to detect 
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and diagnose failures, thereby enhancing network performance 
and reliability and, ultimately, providing their customers with 
better service. The use of machine learning (ML) to solve optical 
network problems has demonstrated considerable potential. Partic-
ularly, machine learning (ML) techniques can assist in processing 
significant amounts of monitoring data and extracting meaningful 
information from it, such as finding trends and anomalies that can 
be used for proactive maintenance and fault detection.

For instance, using historical data and current network circum-
stances, ML algorithms can be used to predict the likelihood of 

fiber cuts or network equipment failures [43,44]. So, ML algo-
rithms can enable operators to take proactive steps to prevent these 
problems, such rerouting traffic or carrying out preventative main-
tenance.

In [44] is presented a methodology for event classification that 
precede a fiber break based on SOP events. Three ML methods 
were finally chosen: Kernel SVM, NN and LSTM. Accuracy of 
the events classification is above 99% for all ML methods with at-
tention to Kernel SVM and LSTM regarding their robustness with 
smaller training set size. 12 

 

 

 
 
 
 

Fig. 7. Basic approach to estimate the QoT of an Optical DWDM system. 

 
the point that transceivers, ROADMs, and amplifiers that have 
built-in monitoring features produce a large amount of data. 
Using machine learning, this data can be used to automate 
optical network failure management that is not only based on 
threshold-based criteria [45]. This architecture is founded on 
the extensive availability of advanced OPM data and SDN, 
where a hybrid learning solution is given. This approach 
combines the benefits of cooperative, unsupervised, and 
supervised machine learning. 

The proof of concept was made based on the typical 
approach for automated fault management which consists in 
three main phases in a cycle: 

• Observe: the NM (network manager) collects telemetry 
data (OPM data e.g. signal power, chromatic dispersion, PMD) 
from the nodes on demand 

• Analyze: ML models analyze the data and identify pat- 
terns associated with a specific type of fault such as detection, 
identification and localization. This phase may also be named 
Decide. The desired outcome is fed to Act block. 

• Act: the SDN controller takes action to mitigate the fault. 
It is responsible to convert the intent into deployment. 

The hybrid learning design is explained in the sequence. The 
data preprocessing block extracts and formats the features to be 
processed by the ML blocks. Firstly, the features are submitted 
to the clustering block for pattern analysis where clusters and 
outliers are identified. Outliers are an indication 

of probable faults. The learned pattern is fed to the NN block 
(or other algorithm type) that predicts if the pattern is abnormal 
or not. In this example a Bayesian neural network (BNN) is 
applied to the data with the aim of minimizing uncertainties and 
avoid overfitting. The proposed design can achieve 95% 
accuracy with just 20% abnormal data for training. Fig. 8 
represents this design. 

So, thanks to recent developments in logically/management 
solutions such as telemetry, SDN, and/or orchestration frame- 
works, these centralized locations can now collect, process and 
elaborate this large amount of data. So, these advancements 
make machine learning training models easier to be imple- 
mented. Furthermore, by utilizing Network Function Virtu- 
alization (NFV) and/or Mobile Edge Computing (MEC) [5], 
network intelligence (computing capabilities) can now be 
virtually deployed anywhere. As a result, ML models can 
be deployed closer to the data source, reducing latency and 
enhancing the system’s real-time response. 

In conclusion, these technological advances in optical com- 
munication systems have driven new opportunities for efficient 
and successful machine learning applications in optical net- 
work failure management and other related fields. 

In [34] ML algorithms are used to identify patterns from data 
generated by modern optical network elements. Other parts in 
the optical network failure management process can 
subsequently be guided by the outputs of these algorithms (re- 

Figure 7: Basic approach to estimate the QoT of an Optical DWDM system.

Effective machine learning applications are being made possible 
by the most recent technology developments in optical communi-
cations. Modern optical equipment has advanced to the point that 
transceivers, ROADMs, and amplifiers that have built-in mon-
itoring features produce a large amount of data. Using machine 
learning, this data can be used to automate optical network fail-
ure management that is not only based on threshold-based criteria 
[45]. This architecture is founded on the extensive availability of 
advanced OPM data and SDN, where a hybrid learning solution is 
given. This approach combines the benefits of cooperative, unsu-
pervised, and supervised machine learning.

The proof of concept was made based on the typical approach for 

automated fault management which consists in three main phases 
in a cycle: 
• Observe: the NM (network manager) collects telemetry data 
(OPM data e.g. signal power, chromatic dispersion, PMD) from 
the nodes on demand 
• Analyze: ML models analyze the data and identify patterns asso-
ciated with a specific type of fault such as detection, identification 
and localization. This phase may also be named Decide. The de-
sired outcome is fed to Act block. 
• Act: the SDN controller takes action to mitigate the fault. It is 
responsible to convert the intent into deployment. 

The hybrid learning design is explained in the sequence. The data 
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preprocessing block extracts and formats the features to be pro-
cessed by the ML blocks. Firstly, the features are submitted to the 
clustering block for pattern analysis where clusters and outliers 
are identified. Outliers are an indication of probable faults. The 
learned pattern is fed to the NN block (or other algorithm type) 
that predicts if the pattern is abnormal or not. In this example a 
Bayesian neural network (BNN) is applied to the data with the aim 
of minimizing uncertainties and avoid overfitting. The proposed 
design can achieve 95% accuracy with just 20% abnormal data for 
training. Fig. 8 represents this design.

So, thanks to recent developments in logically/management solu-
tions such as telemetry, SDN, and/or orchestration frameworks, 
these centralized locations can now collect, process and elaborate 
this large amount of data. So, these advancements make machine 
learning training models easier to be implemented. Furthermore, 

by utilizing Network Function Virtualization (NFV) and/or Mobile 
Edge Computing (MEC), network intelligence (computing capa-
bilities) can now be virtually deployed anywhere [5]. As a result, 
ML models can be deployed closer to the data source, reducing 
latency and enhancing the system’s real-time response. 

In conclusion, these technological advances in optical commu-
nication systems have driven new opportunities for efficient and 
successful machine learning applications in optical network failure 
management and other related fields.

In [34] ML algorithms are used to identify patterns from data 
generated by modern optical network elements. Other parts in the 
optical network failure management process can subsequently be 
guided by the outputs of these algorithms (regression, classifica-
tion, or clustering).
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Fig. 8. Hybrid learning solution employing unsupervised and supervised ML algorithms to automate network failure management. 

 
gression, classification, or clustering). For instance, a machine 
learning system may be developed to precisely identify the 
location of a network failure. The operator can use lightpath re-
routing or other approaches to address the issue once the fault 
location is identified. By identifying patterns and trends in the 
data, ML can be used to predict and also prevent future failures. 

It’s important to keep in mind that machine learning is really 
a part of a more comprehensive optical network failure 
management process [5]. To make accurate decisions and take 
the right actions, various pieces of information and expert 
knowledge must be coupled with the insights and outputs from 
machine learning algorithms. Optical network failure 
management (ONFM) covers a variety of tasks that can be 
broadly divided into proactive and reactive techniques, as 
shown [5] in Fig. 9. By anticipating failures and taking 
preventative measures to avoid them, proactive techniques seek 
to avoid service interruption. These approaches involve real-
time monitoring of the network for possible issues and 
proactively addressing them. For instance, ML algorithms can 
be used to identify data patterns that indicate a failure is likely 
to occur, and the network traffic can then be rerouted, or 
the network can be reconfigured to prevent the failure from 
happening. 

In [46] was developed and tested several ML methods to 
perform early soft-failure detection and identification in optical 
networks. The numerical results were obtained based on the 
experimental setup shown in Fig. 10. 

Different types of ML anomaly detection classification 
algorithms, including Binary SVM (B-SVM), RF, Multiclass 
SVM, and NN with single hidden layer, were utilized to train 
the failure detection module. The NN method has the lowest 
complexity, but it provides the lowest accuracy (98.2%) of 

the three models. In contrast, SVM significantly outperforms 
NN in terms of accuracy, reaching 99however because of the 
complexity of the SVM algorithm, training the model takes 
longer. The best accuracy (99.1%) and lowest computational 
complexity (relative to SVM) are provided by RF, which 
represents the ideal balance between accuracy and complexity. 
A multilayer NN that provided 100% accuracy was employed 
to identify failures. 

On the other hand, reactive approaches react to a failure af- 
ter or while it is happening by immediately initiating recovery 
procedures to quickly repair or replace the failing equipment. 
To ensure that service is restored as soon as possible, these ap- 
proaches may leverage failover and redundancy mechanisms. 
Reactive strategies can also make use of machine learning 
(ML) techniques to identify the failure’s primary causes and 
determine the best course of action for recovery. 

For failure prevention, continuous monitoring of 
transmission-quality indicators like BER and OSNR is usually 
employed. These parameters offer important insight about the 
network’s health and can be used to optimize or fine-tune 
transmission parameters to keep the required degree of 
transmission quality. However, merely optimizing the 
transmission parameters might not always be sufficient to 
prevent network failures. In some circumstances, it might be 
necessary to predict failures and implement preventative 
measures in place before they happen. 

In case of a failure, the data retrieved by network monitors 
and alarms can be used to execute lightpath restoration right 
away. Using pre-planned or dynamically discovered alter- nate 
routes, the process involves promptly identifying and 
determining the nature of the failure before re-establishing 
connection along the affected area of the network. Using pre- 
planned schemes that establish static associations between 

Figure 8: Hybrid Learning Solution Employing Unsupervised and Supervised ML Algorithms to Automate Network Failure Manage-
ment. 

For instance, a machine learning system may be developed to pre-
cisely identify the location of a network failure. The operator can 
use lightpath rerouting or other approaches to address the issue 
once the fault location is identified. By identifying patterns and 
trends in the data, ML can be used to predict and also prevent fu-
ture failures.

It’s important to keep in mind that machine learning is really a 
part of a more comprehensive optical network failure manage-
ment process [5]. To make accurate decisions and take the right 
actions, various pieces of information and expert knowledge must 
be coupled with the insights and outputs from machine learning 
algorithms. Optical network failure management (ONFM) covers 

a variety of tasks that can be broadly divided into proactive and 
reactive techniques, as shown in Figure 9 [5]. By anticipating fail-
ures and taking preventative measures to avoid them, proactive 
techniques seek to avoid service interruption. These approaches 
involve realtime monitoring of the network for possible issues and 
proactively addressing them. For instance, ML algorithms can be 
used to identify data patterns that indicate a failure is likely to oc-
cur, and the network traffic can then be rerouted, or the network 
can be reconfigured to prevent the failure from happening.

It was developed and tested several ML methods to perform early 
soft-failure detection and identification in optical networks [46]. 
The numerical results were obtained based on the experimental 



  Volume 3 | Issue 1 | 158J Sen Net Data Comm, 2023

setup shown in Figure 10. 

Different types of ML anomaly detection classification algorithms, 
including Binary SVM (B-SVM), RF, Multiclass SVM, and NN 
with single hidden layer, were utilized to train the failure detection 
module. The NN method has the lowest complexity, but it pro-
vides the lowest accuracy (98.2%) of the three models. In contrast, 
SVM significantly outperforms NN in terms of accuracy, reaching 
99%, however because of the complexity of the SVM algorithm, 
training the model takes longer. The best accuracy (99.1%) and 
lowest computational complexity (relative to SVM) are provided 
by RF, which represents the ideal balance between accuracy and 
complexity. A multilayer NN that provided 100% accuracy was 
employed to identify failures.

On the other hand, reactive approaches react to a failure after or 
while it is happening by immediately initiating recovery proce-
dures to quickly repair or replace the failing equipment. To ensure 
that service is restored as soon as possible, these approaches may 
leverage failover and redundancy mechanisms. Reactive strategies 

can also make use of machine learning (ML) techniques to iden-
tify the failure’s primary causes and determine the best course of 
action for recovery.

For failure prevention, continuous monitoring of transmis-
sion-quality indicators like BER and OSNR is usually employed. 
These parameters offer important insight about the network’s 
health and can be used to optimize or fine-tune transmission pa-
rameters to keep the required degree of transmission quality. How-
ever, merely optimizing the transmission parameters might not 
always be sufficient to prevent network failures. In some circum-
stances, it might be necessary to predict failures and implement 
preventative measures in place before they happen.

In case of a failure, the data retrieved by network monitors and 
alarms can be used to execute lightpath restoration right away. 
Using pre-planned or dynamically discovered alternate routes, the 
process involves promptly identifying and determining the nature 
of the failure before re-establishing connection along the affected 
area of the network.
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Fig. 10. Testbed setup 

 
the primary and backup route is one common approach of 
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Using pre-planned schemes that establish static associations be-
tween the primary and backup route is one common approach 
of lightpath restoration that was outlined in [47]. In this method, 
backup paths are pre-provisioned with the intention of taking over 
in the case of a failure. The network automatically switches traffic 
to the backup link in case of a failure, minimizing the impact on 
network performance. Pre-planned schemes, nevertheless, might 
not always be adequate to deal with all failure scenarios, espe-
cially those that involve multiple failures or complex and/or mesh 
network topologies. In these cases, traffic can be rapidly rerout-
ed along available routes through dynamic discovery of alternate 
paths. This approach consists in a continuous network monitoring 
and in an identification of alternate paths (alternate routes that are 
associated with specific fault scenario) that can be selected to by-
pass failed components or fault segments. The network selects the 
best available alternate path in case of a failure and reroutes wave-
length traffic appropriately [48]. 

Also, the RSA needs to decide the available path and optimal fre-
quency (considering end-to-end resources and future actions) in 
seconds and ensure that this path will provide a required OSNR 
(estimated in real-time based on real-time fiber conditions) for the 
selected baud rate and modulation.

In summary, tasks in failure management are divided into active 
and passive approaches. Active methods include alarm analysis, 
failure prediction and failure detection (identify when failures 
occur). Passive methods include failure identification, diagnosis, 
localization and also corrective actions after failure detection. In 
general sense, ML algorithms reduce the time spent to resolve 
network issues by automating the detection and diagnosis of 
fault. Applications range from prediction of fiber cuts likelihood 
to equipment failure. Also range from failure prevention (BER, 
OSNR monitoring through OPM) to reactive techniques (failure 
detection, localization, identification, and magnitude estimation).

Regarding ML techniques, unsupervised learning via anomaly de-
tection seems to be the preferred option for early detection (based 
on signal power level, BER trends and other metrics). Also, after a 
failure is detected, ML algorithms can recommend the best course 
of action (for example: wavelength restoration or retuning). All 
this is done in a cycle of observation, analysis, and action under 

supervision of a SDN controller.

5.5. Network Automation and Power Consumption 
According to [49], machine learning is on track to use up all the 
energy being produced, which is an expensive, ineffective, and un-
sustainable strategy. For instance, it is estimated that during the 
next five years, the amount of computing power needed for AI 
would expand by more than a million times, or by a factor of 100, 
every 100 days [50]. In terms of a sustainable future, what does 
this mean? Will network automation help to reduce energy use or 
will it result in higher energy use? AI and ML systems require 
connectivity within data centers and between data centers. Addi-
tionally, more equipment and software running on optical network 
systems will be necessary. Consequently, more power will be used. 
However, network automation can help you use resources and en-
ergy more effectively. For example, with efficient RWA/RSA algo-
rithms (impairment-aware), new wavelength services or services 
restoration will only occur if the assignment route is capable to 
provide services with adequate quality of transmission. In case of 
not impairment-aware RSA/RWA algorithms, there will be spec-
trum usage with no service quality and consequently an inefficient 
use of the optical spectrum.

So, it is necessary to have in mind the energy efficiency criteria 
when implementing optical network automation. Given the so-
called embedded carbon emissions that are produced during the 
manufacturing of computing gear and optical transport technolo-
gy, a very well-reasoned solution should be implemented.

In conclusion, there are many obstacles to overcome in the fields 
of AI/ML and optical transport systems, including the need to con-
sume less energy, less memory, deployment of energy-efficient AI/
ML algorithms, use of energy-efficient optical modulation tech-
niques, and make better use of the optical spectrum. All these chal-
lenges will foster innovation in hardware architecture, solutions, 
and also in the field of AI. 
 
6. Results
Table I provides an overview of each described ML algorithm and 
corresponding reference and metrics. 
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TABLE I 
ML ALGORITHMS AND METRICS 

Name Ref Algorithm Metric 
Scheme for proactively detecting fiber damage 
using a coherent DSP receiver 

 
Proactive fiber break detection based on SOP 
monitoring through digital signal processing in 
a coherent receiver 

[29] Naïve Bayes classi- 
fier 

 
[42] Naïve Bayes classi- 

fier 

could successfully identify “shaking”, “bending”, “small hit”, 
“up and down” events with >95% reliability over a real-time 
PDM-QPSK system 
event classification can achieve more 
than 99% accuracy for the testbed 
conditions 

BER analysis for overall failure management 
(detection, identification, magnitude estimation) 

 
Detection of fiber reflective faults in connectors 
and/or mechanical splices with multitask learning 
based on noisy OTDR data processing 
ML classifier for BER and QoT prediction 
of unestablished lightpath based 
on traffic, chosen route and modulation 
format 
QoT prediction based on mathematical model of 
the physics plus gradient descent algorithm and 
learning process 
with two approaches: SAMBA and EG 
Lightpath QoT estimation based on a SVM ap- 
proach for Optical Networks 
Failure localization in optical networks based on 
a passive method 

[5] SVM classification accuracy depends on 
window size and overall results may 
reach 100% accuracy 

[24] LSTM Reflective events detection with an accuracy of up to 93%. 
The model performs better than a traditional OTDR event 
analysis method 

[35] KNN, RF Based on the reported results, the proposed 
classifier can be integrated into 
RSA decision algorithm 

 
[38] SAMBA, EGN SAMBA reduced QoT prediction error 

from 1.8 dB to 0.1 dB, while the 
EGN reduced QoT prediction error 
from 4.2 dB to 0.02 dB 

[39] SVM 99.95% success in lightpath classification, improving R-CBR 
technique by over two magnitude orders 

[41] SFL more than 90% of the faults may be 
directly recognized without ambiguity 

Polarization Event Classification based on field 
measurements 

 
 

Hybrid learning solution employing unsuper- 
vised, supervised and cooperative 
ML to automate optical network 
failure management 
Early soft failure detection ML methods 
based on BER anomaly detection 

[43] Kernel SVM, NN, 
LSTM 

 
 

[45] Clustering, 
NN, BNN 

 

[46] SVM, RF, 
NN 

Accuracy of the events classification 
is above 99% for all ML methods 
with attention to Kernel SVM 
and LSTM regarding their robustness 
with smaller training set size 
With just 20% abnormal data for 
training, the proposed approach can 
reach 95% accuracy 

 
NN: 98.2% accuracy but low complexity;SVM: 99% accuracy 
but more complexity ; RF: 99.1% accuracy and shows optimal 
compromise between accuracy and complexity 
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Table 1: ML Algorithms and Metrics

7. Conclusions 
In this paper, it was shown that eye diagrams, constellation dia-
grams, spectrum information, state of polarization, all this informa-
tion can be used to implement QoT estimation, combatting NLPN, 
laser phase noise, non-linearities, margin reduction, equalization, 
adjusting optical amplification gain, selecting optimal symbol rate 
and modulation format and optical link failure prediction and fail-
ure management. New generation of coherent receivers can pro-
vide separated measurement of linear and non-linear noise and 
also provide power spectrum analysis. Embedded OTDR provides 
continuously measurement and operation map of the fiber losses 
and also vibration events based on phase variations. Network auto-
mation requires efficient collection and analysis of telemetry infor-
mation. SDN brings the capability for streaming telemetry which 
retrieves data directly from devices based on YANG models. So, 
ML algorithms are able to analyze a large amount of data, make 
decisions, learn from experience, optimize and make the networks 
robust, agile, dynamic, and smarter. The availability of accurate 
and real-time performance assessment and prediction provides 
us the capability to operate the network with minimum margin. 
The RSA decision process is being improved and now considers 

network resources in an end-to-end basis, providing optimum re-
sources provisioning for new services. Services restoration should 
now consider spectrum, modulation, baud-rate and channel per-
formance all in real-time. The real-time network information also 
allow us to work with minimum margin and permit the system to 
raise future or early degradations both for soft and hard failures. 
In summary, ML algorithms can deal with network control and 
automation, resource management, QoT estimation, monitoring 
and survivability. Regarding survivability, some algorithms for 
failure management were described such as fault localization to 
reduce MTTR, early detection and failure prediction, failure de-
tection, failure identification and magnitude estimation. For future 
research, I understand that scientists must consider the impact net-
work automation in the increase of energy consumption and the 
carbon emissions. It should be considered a model that is ener-
gy-efficient, not costly, and sustainable. 
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