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Abstract
The case of a virtual bosonic scalar field ϕ(x) gravitationally coupled in a conformally flat spacetime is investigated. 
The action S is known to be Weyl invariant only for specific expressions of the potential V(ϕ). In the conformally flat 
FLRW case the harmonic angular frequency ωk(η) becomes uniquely temporally independent. Therefore, any inertial 
observers embedded in a conformally flat FLRW spacetime all agree on the choice of virtual vacuum states. We pos-
tulate that the wavenumber k must be quantized in order to be able to regulate the vev by zeta regularization. Some 
fundamental implications of this result are derived, and likely conclusions drawn.
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1 Background

Consider the case of a conformally flat spacetime connected by a conformal transformation to Minkowski
space

gµν(x) = Ω2(x)ηµν = e2ω(x)ηµν (1)

For some Weyl transformation Ω(x) mapping one Riemannian manifold to another. Since it is possible to
relate the quantization of the field ϕ(x) in a Weyl invariant theory to the known quantization in Minkowski
space by conformal scaling, we require any action S to be invariant under Weyl transformations. The action
S of a virtual bosonic scalar field ϕ(x) coupled to gravity R gives an additional, effective mass squared term
in the potential V(ϕ) and is of the form [1]

S =

∫
ddx

√
|g|

(
1

2
gαβ∂αϕ∂βϕ− 1

2
(m2 + ξR)ϕ2

)
(2)

Which is Weyl invariant iff m = 0 and the scalar field is conformally coupled

ξ = ξd =
d− 2

4(d− 1)
(3)

For the case of a conformally flat FLRW metric the EoM for an auxilliary field χk(η) = a(η)ϕk(η) with scale
factor a and conformal time η reduces to a harmonic oscillator

χ
′′

k (η) + ω2
k(η)χk(η) = 0 (4)
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Where the effective, time-dependent, harmonic angular frequency ωk(η) isWhere the effective, time-dependent, harmonic angular frequency ωk(η) is

ω2
k(η) = k2 + (m2 + ξR)a2 − a

′′

a
(5)

Therefore, in general, two inertial observers do not agree on the choice of vacua. However, in the case of
a massless, conformally coupled, four dimensional scalar field ϕk(η), ωk(η) becomes independent of η

R= 6

(
ä

a
+

ȧ2

a2

)

ω2
k(η)= k2 + ξ4Ra

2 − a′′

a
= k2 + äa+ ȧ2 − a′′

a
= k2 + äa+ ȧ2 − 2aȧ2

a
= k2 + äa− ȧ2 = k2

(6)

Since

dη=
dt

a
−→ a =

dt

dη
−→ a′ =

da

dη
=

d

dη

dt

dη
=

da

dt

dt

dη
= ȧa

da

dt
=

d

dt

dt

dη
=

d

dη
−→ a′′ =

d

dη
(ȧa) = a

d2a

dηdt
+

da

dt

da

dη

= a
d

dη
ȧ+ ȧ(ȧa) = aȧȧ+ ȧȧa = 2aȧ2 = a′′

(7)

Where the last equality in (6) follows from the Friedmann equations [2]. Hence the angular frequency
ωk(η) = ωk = k becomes independent of the expansion of the universe. Therefore any inertial observers all
agree on the choice of virtual vacuum states in this specific instance.

2 Results

We postulate that the wavenumber k = ωk must be quantized

k =
2πn

R0
(8)

For some lengthscale R0, in order to be able to regularize the vev. Under the quantization postulate the vev
as measured by any inertial observers in a Weyl invariant, four dimensional, flat FLRW spacetime becomes

vev= ⟨0M|V(ϕ) |0M⟩ = ⟨0M|
∫

dVξ4Rϕ
2/2 |0M⟩ =

1

2
ωk(η) =

1

2
k =

πn

R0

=
2π

R0

∑
n∈N

n = − π

6R0

(9)

Integrating over the spatial volume V for dimensional consistency and n, the radial quantum number being
defined as positive. The analytic continuation of the Riemann zeta function ζ(s) evaluated at s = −1 is
used to regularize the summation. The polarization DoF yields a factor of two.

Notice that this summability method only works for a conformally flat FLRW spacetime. Otherwise the
angular frequency ω would not be time-independent. Which means that two inertial observers in general
would not agree on the choice of vacua, and the vev would not be background independent and therefore
not a Lagrange multiplier.

Therefore the Lagrange multiplier Λ as measured by any inertial observers becomes regularizable in flat
FLRW, even though the summability is unlikely covariant in general. Therefore we will remind ourselves of
this likely fact by adding a subscript ΛFLRW, which within a spatial V = R3

0 = 1 m3 unit in SI units becomes

ΛFLRW = vev2 =
π2

36
ℏ2c2 (10)

2
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Within an order of magnitude as compared with the Planck data [3]. The factor ℏ2c2 accounts for the scaling required in the relevant flat 
FLRW case, since it is likely that different spacetimes will yield different Lagrange multipliers.
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Under the plausible assumption that the cosmological event horizon is identical to a Schwarzschild horizon,
the repulsive pressure does work and gives a counter effect to the evaporative Hawking radiation. The
quadratic energy conservation with a holographic Bekenstein entropy yields a symmetry break with regards
to the baryonic mass-energy and gives observable cosmological scales

dQ= TdS+ pFLRWdV = 0 =
ℏc3

8πGkM

2πkR

l2p
dR− π

288

ℏ2c6

G
4πR2dR

−→ ℏc3

4GMl2p
=

π2

72

ℏ2c6

G
R −→ 18

l2p
= π2ℏc3RM

R=Rs−−−−→ 18c3

ℏG
= π2ℏc3

2GM2

c2
−→ M2 =

(
3

π

c

ℏG

)2

(12)

Therefore we arrive at a quadratic symmetry break with respect to the baryonic mass-energy. It is reasonable
to think that this is related to the baryon number asymmetry of the observable universe. Though the exact
relation remains unclear.

Regardless, the cosmological event horizon being assumed identical to a holographic Schwarzschild horizon
implies the observable cosmological scales
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With correct dimensions. Hence our plausible assumption of holography yields roughly empirically
compatible cosmological scales. On the other hand, an extensive DoF remains empirically incompatible
by the same methodology. In addition, the Bekenstein entropy implies the system considered must be
expanding with time at all times.

Finally, the repulsive acceleration aFLRW can be derived by the Friedmann equations [2] as

aFLRW =

√
ΛFLRW

3
c2 =
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(14)
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Therefore the baryonic Tully-Fisher relation [4] is of the form

v4 =
ℏGc3

2
√
27

M (16)

After which you may re-derive the cosmological scales independently of the assumption of holography by
setting v = c, up to a geometrical proportionality constant.

It is also clear that the singularity theorems do not hold in this case, since there exists an EoS w < − 1
3

which counteracts the gravitational collapse.

4 Conclusions

We have investigated the summability of virtual bosonic scalar fields ϕ(x) in a conformally flat FLRW space-
time, and realized that in the four dimensional, Weyl invariant case the angular frequency ωk(η) becomes
independent of the expansion of the universe. This allows any inertial observers at any time t in such a
spacetime to agree on the choice of virtual vacuum states, without the need for Bogolyubov coefficients.
We postulate a quantization of the wavenumber k in order to be able to regularize the vev by zeta function
regularization. Under such a postulate the Lagrange multiplier as measured by any inertial observers at
any time t, becomes within an order of magnitude of the Planck data. This strongly suggests that such
a summability remains valid for the case investigated, though likely not covariant in general since different
spacetimes likely yield different Lagrange multipliers.

Various implications emerge from this picture; it is likely that the cosmological event horizon is identical
to a holographic Schwarzschild horizon and gives a mechanism for the breaking of baryon mass-symmetry
by giving rise to a counter effect to the evaporative Hawking radiation. The baryonic Tully-Fisher relation
for rotating galaxies emerge as well, where you may re-derive the cosmological scales independently of the
assumption of holography up to an undetermined geometrical proportionality constant. It is also likely that
this picture gives rise to a mechanism for halting gravitational collapse. In general, more work is needed in
order to find all the implications of this emerging picture if they exist.
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evaporative Hawking radiation. The baryonic Tully-Fisher relation 
for rotating galaxies emerge as well, where you may re-derive the 
cosmological scales independently of the assumption of hologra-
phy up to an undetermined geometrical proportionality constant. It 
is also likely that this picture gives rise to a mechanism for halting 
gravitational collapse. In general, more work is needed in order to 
find all the implications of this emerging picture if they exist.
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