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Abstract
Noise measurements analysis in this paper is associated with degradation in materials. In particular, one type is called 
1/f noise and is not fully understood. In the time domain, the signal has a random noise appearance. However, in the 
frequency domain, the spectrum goes as 1/f in intensity at low frequencies; noise issues, of course, occur at all frequencies. 
In reviewing the literature, we note that 1/f noise in particular seems to be strongly related to aspects in materials that can 
be interpreted in terms of aging degradation in materials (i.e. disorder). In this paper, some key aspects of 1/f noise found 
in the literature are described and discussed how these observations are related to generated entropy. We can conclude 
from the literature, that the 1/f noise region is of paramount importance to observing subtle aging degradation occurring in 
materials. A thermodynamic framework is then used to help interpret the entropy-noise view. A 1/f spectral region entropy 
model is provided.  We suggest two types of analyses.  Results help to provide a broader understanding of 1/f noise, identify 
the region of the spectrum related to the onset of degradation, and show how it can be used to do prognostics. Experiments 
are suggested to demonstrate how 1/f noise measurements can be used as a prognostic tool for reliability testing to identify 
and predict degradation over time. 
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1. Introduction 
In this paper, we build a case that 1/f noise (also called flicker noise), is a sensitive measure of degradation. As well, we suggest 
experiments to investigate the possibility of using flicker noise as a prognostic tool for making reliability predictions of degradation 
occurring in materials. We will initially look at the literature and illustrate why it likely makes sense to explain flicker noise in terms 
of generated entropy. 

The typical argument of entropy change (∆s) occurring due to current flow is
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The typical argument of entropy change (s) 
occurring due to current flow is 

 
  0resistor Environments s s           (1)  

 
Fundamentally, one can view this as a current 
flowing through a resistor to illustrate the entropy 
production and how it can create a noise current. 
 
In detail, the entropy change to the environment is 
the heat dissipated 
 

2

Environment
Q i R ts

T T
 

  
      

(2) 

 
The entropy change to the resistor is often considered 
negligible since the average current may be taken as 
constant (i=0) as is the average temperature. 
Therefore, no net change to heat Q and 0 resistors
. 
 
However, in noise measurements, higher resolution 
occurs, and we can observe small voltage noise 

fluctuations occurring across the resistor. Therefore, 
the current is not constant, a temperature gradient 
exists to dissipate heat and current fluctuation must 
generate complex entropy at the microscopic level. 
This is not a reversible process. We have the 
possibility that resistor entropy could increase sR≠0, 
and the current itself becomes noisy and somewhat 
disorganized (sCurrent≠0). A basic model for the 
perturbed entropy change is, 
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The s Environment (with small s for entropy) in general 
represents the entropy flow of heat to the 
environment and is not of immediate interest. Here 
we can focus on the resistor and its internal disorder 
that may cause disorder in the measurement current 
which generates entropy in the current flow. Often in 
thermodynamics entropy flow (heat for example) is 
distinguished from generated entropy which causes 
permanent damage or disorder to the material from 
thermodynamic work W and in this case to the 
disruption of current flow. Note that generated 
entropy due to irreversible damage in the material is 
also termed in this paper, damage entropy. 
 
Many of the features of flicker noise in resistors are 
illustrated by the phenomenological equation due to 
Hooge [1] 
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Fundamentally, one can view this as a current flowing through a resistor to illustrate the entropy production and how it can create a 
noise current.

In detail, the entropy change to the environment is the heat dissipated

The entropy change to the resistor is often considered negligible since the average current may be taken as constant (∆i=0) as is the 
average temperature. Therefore, no net change to heat ∆Q and                   .

Conversely, no process is truly reversible, a common thermodynamic argument. If a system process is in thermal equilibrium, then 
the process is reversible, but in thermal equilibrium, there is no measurement process! However, in noise measurements, higher 
resolution occurs, and we can observe small voltage noise fluctuations occurring across the resistor. Therefore, the current is not 
constant, a temperature gradient exists to dissipate heat and current fluctuation must generate complex entropy at the microscopic 
level. This is not a reversible process. We have the possibility that resistor entropy could increase ∆sR≠0, and the current itself 
becomes noisy and somewhat disorganized (∆sCurrent≠0). A basic model for the perturbed entropy change is,
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The ∆s Environment (with small s for entropy) in general represents the entropy flow of heat to the environment and is not of immediate 
interest. Here we can focus on the resistor and its internal disorder that may cause disorder in the measurement current which 
generates entropy in the current flow. Often in thermodynamics entropy flow (heat for example) is distinguished from generated 
entropy which causes permanent damage or disorder to the material from thermodynamic work W and in this case to the disruption 
of current flow. Note that generated entropy due to irreversible damage in the material is also termed in this paper, damage entropy.

Many of the features of flicker noise in resistors are illustrated by the phenomenological equation due to Hooge [1].
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 Here capital S is the noise spectral density, γ is the Hogg constant, and VDC is the applied voltage. We see that noise power S(f) ~ <V2> 
=<(IR)2>, where I is the driving current and R is the sample resistance. In terms of an entropy interpretation, R is a direct measure 
of internal friction, which when interacting with current flow, generates entropy.

The concept that 1/f noise is related to internal friction is not new as it has been described in metals by Kogan and Nagaev (1982) [2]. 
They argued that 1/f low-frequency noise fluctuations could occur in mechanical strain and then electrical resistance would depend 
on the strain displacements. Their detailed model is a type of mechanical approach. Here we use an interpretation from an energy 
approach and provide different details.

2. Method and Data
In the entropy view, 1/f noise in particular seems to be strongly related to aspects in materials that can be interpreted in terms of 
aging degradation in materials (i.e. disorder). Noise issues are a function of the entropy state of the material and the method provided 
here depends on the material's resistive properties and internal fabrication stresses. We can note that for materials with less disorder 
such as wire wound resistors compared to say carbon (c) resistors, one would in the entropy view, expect less noise [3,4]. We can 
highlight a method related to this view. To do this, it is helpful to understand some background as well.

2.1 Entropy Due to Current Fluctuation 
If we consider the random current fluctuations observable in sensitive 1/f noise measurements, we can consider this as providing an 
observation related to the disorganization occurring in the measurement current as it passes through the material under test; it is then 
quantifiable in terms of generated entropy current change. One can assume this current disorganization is a function of the entropy 
state of a material related to its resistance. This is theoretically supported by the fact that if current instead was to flow through a 
material with zero resistance; the process would be reversible with no generated entropy. 

2.2 Resistance Change Generates Entropy
Theoretically, any thermodynamic process creates entropy due to thermodynamic work. Thermodynamic stress in the material 
creates strain and this work is denoted as W in Eq. 3, likely created by current interactions in the material resulting in current 
fluctuations, other neighboring thermodynamic processes in the material may also occur. For example, the resistor may not be 
in complete thermodynamic equilibrium, even in the absence of measurement current flow!  This is likely due to manufacturing 
stresses that occur in any fabricated material. The best likely way to observe ∆sR according to Eq. 3, is to turn off any active current 
in a 1/f noise measurement. Note a clear argument is that noise will depend on the state of the system’s entropy. This argument comes 
about since system entropy itself can create stress due to a lack of structural internal integrity. This suggests that the entropy change 
in the material (the first term                                 on the RHS of Eq. 3, goes as the system’s entropy state in the material. Also, in the 
presence of a measurement current I, the disorder observed in the measurement current                       will go as the entropy state in 
the material 
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The entropy in the current increases as disorder 
increases in the material, yielding a higher level of 
measurement noise from the current entropy 
dissipating heat from i2R losses. The physics 
argument can be used in the absence of a 
measurement current. Without a measurement 
current, a system may be in an unstable equilibrium 
state and may start to yield, generating entropy. 
Initially, the higher the instability, the larger the 
entropy change. Once equilibrium is reached, aging is 
maximized. The system is in a maximum entropy 
state with fabrication stresses released (ds/dt~0). 
Fabrication stress relaxation is one form of aging in 
the material. 
 
Clarke and Voss [3] found that 1/f noise was present 
even if there was no driving current at equilibrium. 
However, they could not guarantee true thermal 
equilibrium. In this view, non-thermal equilibrium 
would likely be due to the fabrication of internal 
stresses. Note that the thermodynamic work W in Eq. 
3 is then defined to be due to the current workflow 
(from the measurement current) or any other 
neighboring thermodynamic work process (i.e., 
internal fabrication stresses).  
 
At this point, we will need to look further into 
modeling to determine how an entropy approach 
leads to the 1/f noise dependence. 
  
2.3 Wire Wound vs. Carbon Resistor Entropy 
Comparison 
 
From the above discussion, we can assume current 
noise entropy is a function of the entropy state of the 
material like a resistor and depends on the resistance 
(Eq. 4). It also depends on the resistor type. For 
example, 1/f noise observations indicate that wire 
wound (w) resistors have less noise than carbon (c) 
resistors [4]. In terms of entropy, a comparison of 

The entropy in the current increases as disorder increases in the material, yielding a higher level of measurement noise from the 
current entropy dissipating heat from i2R losses. The physics argument can be used in the absence of a measurement current. Without 
a measurement current, a system may be in an unstable equilibrium state and may start to yield, generating entropy. Initially, the 
higher the instability, the larger the entropy change. Once equilibrium is reached, aging is maximized. The system is in a maximum 
entropy state with fabrication stresses released (ds/dt~0). Fabrication stress relaxation is one form of aging in the material.

Clarke and Voss found that 1/f noise was present even if there was no driving current at equilibrium. However, they could not 
guarantee true thermal equilibrium. In this view, non-thermal equilibrium would likely be due to the fabrication of internal stresses. 
Note that the thermodynamic work W in Eq. 3 is then defined to be due to the current workflow (from the measurement current) or 
any other neighboring thermodynamic work process (i.e., internal fabrication stresses). 
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At this point, we will need to look further into modeling to determine how an entropy approach leads to the 1/f noise dependence.
 
2.3 Wire Wound vs. Carbon Resistor Entropy Comparison
From the above discussion, we can assume current noise entropy is a function of the entropy state of the material like a resistor and 
depends on the resistance (Eq. 4). It also depends on the resistor type. For example, 1/f noise observations indicate that wire wound 
(w) resistors have less noise than carbon (c) resistors. In terms of entropy, a comparison of entropy created in the current i during a 
measurement would show
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so damage entropy in a carbon resistor of the same 
initial R-value over time would exceed that of the 
wire wound resistor, given the same amount of 
electrical work. Alternately, wire wound resistors are 
manufactured with higher order and are therefore 
more reliable so there is less internal degradation 
over time.     
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3. Results
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Schottky’s original model which is compared with Eq. 5 [13]. 
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Gaussian spectra density for 1/f noise time-domain processes is often described as logical in the literature  [such as 16]. Milotti  
summarized the question noting [16,17].

Voss produced experimental plots of the quantity <V(t)|V0>/ V0 in several conductors and was able to show that the noise processes 
observed were reasonably Gaussian [18]. Further, it was noted that the superposition of many non-Gaussian microscopic processes 
can result in Gaussian form at the macroscopic level (demonstrated via the central limit theorem). J. B. Johnson in his 1925 experiment 
in vacuum tubes asserted that the spectral density characterizes a noise process completely only if the process is stationary, ergodic 
and Gaussian: does the observed 1/ f noise satisfy all constraints [19]. 

When Eq. 11 is inserted into the differential entropy Eq. 10, the result for a temporal process shows that for a Gaussian noise system, 
entropy (disorder s) is only a function of the variance [15].
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Here engine 2 has increased entropy damage by 
about 20% compared to engine 1 which is a measure 
of increased aging found by characterizing the 
engine's vibration noise instability through a 
comparison to the expected value for this type of 
engine. Such a system might indicate that if the noise 
level is 1.3, we might decide that this qualifies as a 
parametric threshold value for repair or failure.   
 
Note that the entropy does not depend on the mean 
only on the variance, as this is a more sensitive 
measure. Solving Eq. 12 in terms of the variance and 
expanding terms by assuming a small change to the 
entropy and looking at the temporal part  

 

2 1( ) exp{4.6 ( )}
2

1 (1 4.6 ( ))
2

4.6{ (0) '(0) ...}

t s t
e

s t
e

C s s t








 

   
 

(14) 

A common noise measure related to the variance in 
the time domain is the Allan Variance given by 
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The Allan variance frequency domain transforms are 
well established. For stationary process and the 
equivalent frequency domain PSD spectrum S is 
transformed for 02 )( tt   to [20, 21] to the 
frequency domain giving ffS 1)(   and for a 
temporal dependence (non-stochastic process) 
where tt )(2 , 2( ) 1S f f . These terms are 
present in Eq. 12. Here frequency domain spectral 
density of Equation 14 (first terms on the RHS) 
[20,21] is approximately 
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We note that the noise 1/f dependence is a function of 
the entropy and the RHS and we have included the 
concept of Eq. 5 where entropy changes are easier 
measured than entropy itself which brings in the 
constant k. Note the temporal term in the Taylor 
expansion in Eq. 14 leads to Brownian motion [17, 
20]   
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We note that the temporal model indicates that the 
variance and entropy rates change together. 
Therefore, we anticipate 1/f noise provides more 
fundamental significance to generated entropy 
damage sensitivity than say Brownian motion. 
 
3.2 Schottky-Entropy Flicker Analysis  
Equation 5 is similar to Schottky‟s (1926) [13] 
original premise. In his analysis, contributions to the 
vacuum tube current were assumed as surface 
trapping sites that released electrons according to 
simple exponential relaxation.  
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Here engine 2 has increased entropy damage by 
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about 20% compared to engine 1 which is a measure 
of increased aging found by characterizing the 
engine's vibration noise instability through a 
comparison to the expected value for this type of 
engine. Such a system might indicate that if the noise 
level is 1.3, we might decide that this qualifies as a 
parametric threshold value for repair or failure.   
 
Note that the entropy does not depend on the mean 
only on the variance, as this is a more sensitive 
measure. Solving Eq. 12 in terms of the variance and 
expanding terms by assuming a small change to the 
entropy and looking at the temporal part  
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A common noise measure related to the variance in 
the time domain is the Allan Variance given by 
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The Allan variance frequency domain transforms are 
well established. For stationary process and the 
equivalent frequency domain PSD spectrum S is 
transformed for 02 )( tt   to [20, 21] to the 
frequency domain giving ffS 1)(   and for a 
temporal dependence (non-stochastic process) 
where tt )(2 , 2( ) 1S f f . These terms are 
present in Eq. 12. Here frequency domain spectral 
density of Equation 14 (first terms on the RHS) 
[20,21] is approximately 
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We note that the noise 1/f dependence is a function of 
the entropy and the RHS and we have included the 
concept of Eq. 5 where entropy changes are easier 
measured than entropy itself which brings in the 
constant k. Note the temporal term in the Taylor 
expansion in Eq. 14 leads to Brownian motion [17, 
20]   
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We note that the temporal model indicates that the 
variance and entropy rates change together. 
Therefore, we anticipate 1/f noise provides more 
fundamental significance to generated entropy 
damage sensitivity than say Brownian motion. 
 
3.2 Schottky-Entropy Flicker Analysis  
Equation 5 is similar to Schottky‟s (1926) [13] 
original premise. In his analysis, contributions to the 
vacuum tube current were assumed as surface 
trapping sites that released electrons according to 
simple exponential relaxation.  
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In comparison, Equation 5 has an identical form in 
entropy terms with solution 
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We note that the noise 1/f dependence is a function of 
the entropy and the RHS and we have included the 
concept of Eq. 5 where entropy changes are easier 
measured than entropy itself which brings in the 
constant k. Note the temporal term in the Taylor 
expansion in Eq. 14 leads to Brownian motion [17, 
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We note that the temporal model indicates that the 
variance and entropy rates change together. 
Therefore, we anticipate 1/f noise provides more 
fundamental significance to generated entropy 
damage sensitivity than say Brownian motion. 
 
3.2 Schottky-Entropy Flicker Analysis  
Equation 5 is similar to Schottky‟s (1926) [13] 
original premise. In his analysis, contributions to the 
vacuum tube current were assumed as surface 
trapping sites that released electrons according to 
simple exponential relaxation.  
 

( ) exp( )oN t N t    (18) 
 
In comparison, Equation 5 has an identical form in 
entropy terms with solution 

We note that the noise 1/f dependence is a function of the entropy and the RHS and we have included the concept of Eq. 5 where 
entropy changes are easier measured than entropy itself which brings in the constant k. Note the temporal term in the Taylor 
expansion in Eq. 14 leads to Brownian motion [17, 20].

We note that the temporal model indicates that the variance and entropy rates change together. Therefore, we anticipate 1/f noise 
provides more fundamental significance to generated entropy damage sensitivity than say Brownian motion.

3.2 Schottky-Entropy Flicker Analysis 
Equation 5 is similar to Schottky’s (1926) original premise. In his analysis, contributions to the vacuum tube current were assumed 
as surface trapping sites that released electrons according to simple exponential relaxation. 

In comparison, Equation 5 has an identical form in entropy terms with solution  
 

5 
 

( ) exp( )os W s t   (19) 

The results leads to Schottky‟s [13, 17] spectrum 
model which can then be put in terms of entropy 
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In the Schottky model, n is an average pulse rate. 
Here it is the interactive stress such as the current. To 
be consistent with Eq. 16 we might let No

2 ~ s o
 2.  

 
In terms of the Schottky model, Bernamont [16] 
pointed out that only a superposition of processes 
with a variety of relaxation rates  would yield 1/f 
noise for a reasonable range of frequencies. He 
showed that if  is uniformly distributed between 1 
and 2, and the amplitudes remain constant, the 
spectrum can be interpreted in the flicker 1/f noise 
region  
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and Brownian noise for example 
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3.2.1 Flicker Amplification Effect 
 
Using Eq. 16, the entropy flicker model with the aid 
of Equation 3 can be written 
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
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Now when say a measurement current flows, the 
current itself interacts with the internal frictional 
resistance which can create more entropy in the 

material (depending on the current density), but also 
amplifying the existing flicker “entropy damage” 
noise in the material. This notion is further supported 
by the observed flicker noise expressions in Eq. 4 and 
8. Therefore, in this view, the origin or source of the 
flicker noise is initially due to entropy changes in the 
material, its entropy state, and interactions I2R stress 
with the measurement current. 

 
4.0 Discussion 
Several experimental methods can be performed to 
illustrate these results. Accelerated testing of 
materials and products is often done in industry. 
Since entropy increases with aging time, and we have 
illustrated how flicker noise is a likely sensitive 
measure of entropy change, then with standardized 
testing, degradation can be quantified through 1/f 
noise analysis. Below are some suggested 
experiments. 
 
4.1 Suggested Flicker Aging Experiments 
 
The noise spectral density can depend on aging test 
time when entropy (internal resistance) increases so 
that 
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Flicker reliability noise measurements could be 
performed. For example, a noise measurement of the 
material such as a carbon resistor is initially 
performed. Then the material is stressed at an 
elevated temperature in an oven over time which 
creates disorder in the material. Then the material is 
removed and a final noise measurement at room 
temperature is performed and compared with the 
initial noise measurement.  
 
The spectral 1/f characteristic of the material and its 
material-stress interaction likely provide a unique 
spectral characteristic and there may be even a 
possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
 
4.1.1 Thin Film Resistors 
 
Thin film resistors are known to age as a power law 
in aging time t over temperature (for example 
sR=ktn). Since it is known that thin film resistance 
increases with temperature over time, then flicker 
noise entropy will increase. However, now the option 
is available to look at aging rates at lower 
temperatures to observe the flicker aging law and if 
needed, transfer it to the time domain and compare it 
to gross measurements (i.e. higher temperatures and 
longer macroscopic gross measurements).  
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
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Flicker reliability noise measurements could be 
performed. For example, a noise measurement of the 
material such as a carbon resistor is initially 
performed. Then the material is stressed at an 
elevated temperature in an oven over time which 
creates disorder in the material. Then the material is 
removed and a final noise measurement at room 
temperature is performed and compared with the 
initial noise measurement.  
 
The spectral 1/f characteristic of the material and its 
material-stress interaction likely provide a unique 
spectral characteristic and there may be even a 
possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
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3.2.1 Flicker Amplification Effect 
 
Using Eq. 16, the entropy flicker model with the aid 
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
 

1( ) ( , )Material stress Material MaterialS f s W s
f
      (24) 

 
Now when say a measurement current flows, the 
current itself interacts with the internal frictional 
resistance which can create more entropy in the 

material (depending on the current density), but also 
amplifying the existing flicker “entropy damage” 
noise in the material. This notion is further supported 
by the observed flicker noise expressions in Eq. 4 and 
8. Therefore, in this view, the origin or source of the 
flicker noise is initially due to entropy changes in the 
material, its entropy state, and interactions I2R stress 
with the measurement current. 

 
4.0 Discussion 
Several experimental methods can be performed to 
illustrate these results. Accelerated testing of 
materials and products is often done in industry. 
Since entropy increases with aging time, and we have 
illustrated how flicker noise is a likely sensitive 
measure of entropy change, then with standardized 
testing, degradation can be quantified through 1/f 
noise analysis. Below are some suggested 
experiments. 
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The noise spectral density can depend on aging test 
time when entropy (internal resistance) increases so 
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Flicker reliability noise measurements could be 
performed. For example, a noise measurement of the 
material such as a carbon resistor is initially 
performed. Then the material is stressed at an 
elevated temperature in an oven over time which 
creates disorder in the material. Then the material is 
removed and a final noise measurement at room 
temperature is performed and compared with the 
initial noise measurement.  
 
The spectral 1/f characteristic of the material and its 
material-stress interaction likely provide a unique 
spectral characteristic and there may be even a 
possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
 
4.1.1 Thin Film Resistors 
 
Thin film resistors are known to age as a power law 
in aging time t over temperature (for example 
sR=ktn). Since it is known that thin film resistance 
increases with temperature over time, then flicker 
noise entropy will increase. However, now the option 
is available to look at aging rates at lower 
temperatures to observe the flicker aging law and if 
needed, transfer it to the time domain and compare it 
to gross measurements (i.e. higher temperatures and 
longer macroscopic gross measurements).  
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
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Flicker reliability noise measurements could be 
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temperature is performed and compared with the 
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possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
 
4.1.1 Thin Film Resistors 
 
Thin film resistors are known to age as a power law 
in aging time t over temperature (for example 
sR=ktn). Since it is known that thin film resistance 
increases with temperature over time, then flicker 
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with a variety of relaxation rates  would yield 1/f 
noise for a reasonable range of frequencies. He 
showed that if  is uniformly distributed between 1 
and 2, and the amplitudes remain constant, the 
spectrum can be interpreted in the flicker 1/f noise 
region  
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3.2.1 Flicker Amplification Effect 
 
Using Eq. 16, the entropy flicker model with the aid 
of Equation 3 can be written 
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
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Now when say a measurement current flows, the 
current itself interacts with the internal frictional 
resistance which can create more entropy in the 

material (depending on the current density), but also 
amplifying the existing flicker “entropy damage” 
noise in the material. This notion is further supported 
by the observed flicker noise expressions in Eq. 4 and 
8. Therefore, in this view, the origin or source of the 
flicker noise is initially due to entropy changes in the 
material, its entropy state, and interactions I2R stress 
with the measurement current. 

 
4.0 Discussion 
Several experimental methods can be performed to 
illustrate these results. Accelerated testing of 
materials and products is often done in industry. 
Since entropy increases with aging time, and we have 
illustrated how flicker noise is a likely sensitive 
measure of entropy change, then with standardized 
testing, degradation can be quantified through 1/f 
noise analysis. Below are some suggested 
experiments. 
 
4.1 Suggested Flicker Aging Experiments 
 
The noise spectral density can depend on aging test 
time when entropy (internal resistance) increases so 
that 
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Flicker reliability noise measurements could be 
performed. For example, a noise measurement of the 
material such as a carbon resistor is initially 
performed. Then the material is stressed at an 
elevated temperature in an oven over time which 
creates disorder in the material. Then the material is 
removed and a final noise measurement at room 
temperature is performed and compared with the 
initial noise measurement.  
 
The spectral 1/f characteristic of the material and its 
material-stress interaction likely provide a unique 
spectral characteristic and there may be even a 
possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
 
4.1.1 Thin Film Resistors 
 
Thin film resistors are known to age as a power law 
in aging time t over temperature (for example 
sR=ktn). Since it is known that thin film resistance 
increases with temperature over time, then flicker 
noise entropy will increase. However, now the option 
is available to look at aging rates at lower 
temperatures to observe the flicker aging law and if 
needed, transfer it to the time domain and compare it 
to gross measurements (i.e. higher temperatures and 
longer macroscopic gross measurements).  
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Here χ is a calibration constant (similar to the Hooge constant) discussed in Eq. 4. Note in the absence of stress current, we can still 
observe the material flicker noise entropy as indicated in this equation and as mentioned earlier, has been observed experimentally, 
so Eq. 23 becomes
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The results leads to Schottky‟s [13, 17] spectrum 
model which can then be put in terms of entropy 
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
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Now when say a measurement current flows, the 
current itself interacts with the internal frictional 
resistance which can create more entropy in the 

material (depending on the current density), but also 
amplifying the existing flicker “entropy damage” 
noise in the material. This notion is further supported 
by the observed flicker noise expressions in Eq. 4 and 
8. Therefore, in this view, the origin or source of the 
flicker noise is initially due to entropy changes in the 
material, its entropy state, and interactions I2R stress 
with the measurement current. 

 
4.0 Discussion 
Several experimental methods can be performed to 
illustrate these results. Accelerated testing of 
materials and products is often done in industry. 
Since entropy increases with aging time, and we have 
illustrated how flicker noise is a likely sensitive 
measure of entropy change, then with standardized 
testing, degradation can be quantified through 1/f 
noise analysis. Below are some suggested 
experiments. 
 
4.1 Suggested Flicker Aging Experiments 
 
The noise spectral density can depend on aging test 
time when entropy (internal resistance) increases so 
that 
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Flicker reliability noise measurements could be 
performed. For example, a noise measurement of the 
material such as a carbon resistor is initially 
performed. Then the material is stressed at an 
elevated temperature in an oven over time which 
creates disorder in the material. Then the material is 
removed and a final noise measurement at room 
temperature is performed and compared with the 
initial noise measurement.  
 
The spectral 1/f characteristic of the material and its 
material-stress interaction likely provide a unique 
spectral characteristic and there may be even a 
possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
 
4.1.1 Thin Film Resistors 
 
Thin film resistors are known to age as a power law 
in aging time t over temperature (for example 
sR=ktn). Since it is known that thin film resistance 
increases with temperature over time, then flicker 
noise entropy will increase. However, now the option 
is available to look at aging rates at lower 
temperatures to observe the flicker aging law and if 
needed, transfer it to the time domain and compare it 
to gross measurements (i.e. higher temperatures and 
longer macroscopic gross measurements).  
 

Now when say a measurement current flows, the current itself interacts with the internal frictional resistance which can create more 
entropy in the material (depending on the current density), but also amplifying the existing flicker “entropy damage” noise in the 
material. This notion is further supported by the observed flicker noise expressions in Eq. 4 and 8. Therefore, in this view, the origin 
or source of the flicker noise is initially due to entropy changes in the material, its entropy state, and interactions I2R stress with the 
measurement current.

4. Discussion
Several experimental methods can be performed to illustrate these results. Accelerated testing of materials and products is often 
done in industry. Since entropy increases with aging time, and we have illustrated how flicker noise is a likely sensitive measure of 
entropy change, then with standardized testing, degradation can be quantified through 1/f noise analysis. Below are some suggested 
experiments.

4.1 Suggested Flicker Aging Experiments
The noise spectral density can depend on aging test time when entropy (internal resistance) increases so that
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3.2.1 Flicker Amplification Effect 
 
Using Eq. 16, the entropy flicker model with the aid 
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Here  is a calibration constant (similar to the Hooge 
constant) discussed in Eq. 4. Note in the absence of 
stress current, we can still observe the material flicker 
noise entropy as indicated in this equation and as 
mentioned earlier, has been observed experimentally 
[4], so Eq. 23 becomes  
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Now when say a measurement current flows, the 
current itself interacts with the internal frictional 
resistance which can create more entropy in the 
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amplifying the existing flicker “entropy damage” 
noise in the material. This notion is further supported 
by the observed flicker noise expressions in Eq. 4 and 
8. Therefore, in this view, the origin or source of the 
flicker noise is initially due to entropy changes in the 
material, its entropy state, and interactions I2R stress 
with the measurement current. 

 
4.0 Discussion 
Several experimental methods can be performed to 
illustrate these results. Accelerated testing of 
materials and products is often done in industry. 
Since entropy increases with aging time, and we have 
illustrated how flicker noise is a likely sensitive 
measure of entropy change, then with standardized 
testing, degradation can be quantified through 1/f 
noise analysis. Below are some suggested 
experiments. 
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that 
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Flicker reliability noise measurements could be 
performed. For example, a noise measurement of the 
material such as a carbon resistor is initially 
performed. Then the material is stressed at an 
elevated temperature in an oven over time which 
creates disorder in the material. Then the material is 
removed and a final noise measurement at room 
temperature is performed and compared with the 
initial noise measurement.  
 
The spectral 1/f characteristic of the material and its 
material-stress interaction likely provide a unique 
spectral characteristic and there may be even a 
possibility to build a 1/f library similar to FTIR 
spectroscopy‟s method for identifying organic 
material. 
 
4.1.1 Thin Film Resistors 
 
Thin film resistors are known to age as a power law 
in aging time t over temperature (for example 
sR=ktn). Since it is known that thin film resistance 
increases with temperature over time, then flicker 
noise entropy will increase. However, now the option 
is available to look at aging rates at lower 
temperatures to observe the flicker aging law and if 
needed, transfer it to the time domain and compare it 
to gross measurements (i.e. higher temperatures and 
longer macroscopic gross measurements).  
 

Flicker reliability noise measurements could be performed. For example, a noise measurement of the material such as a carbon 
resistor is initially performed. Then the material is stressed at an elevated temperature in an oven over time which creates disorder 
in the material. Then the material is removed and a final noise measurement at room temperature is performed and compared with 
the initial noise measurement. 

The spectral 1/f characteristic of the material and its material-stress interaction likely provide a unique spectral characteristic and 
there may be even a possibility to build a 1/f library similar to FTIR spectroscopy’s method for identifying organic material.

4.1.1 Thin Film Resistors
Thin film resistors are known to age as a power law in aging time t over temperature (for example ∆sR=ktn). Since it is known that 
thin film resistance increases with temperature over time, then flicker noise entropy will increase. However, now the option is 
available to look at aging rates at lower temperatures to observe the flicker aging law and if needed, transfer it to the time domain 
and compare it to gross measurements (i.e. higher temperatures and longer macroscopic gross measurements). 

4.1.2 Biological Aging Experiment in Living Systems
The human heart is known to have different noise characteristics for Congestive Heart Failure (CHF) compared to a healthy heart. 
However, now the option may be available to study aging in normal healthy hearts using flicker noise measurement over a person’s 
lifetime. Here we might suggest both long-term tracking of a group of people and also looking at different aging groups. All 
measurements should be first done with a calibration standard.

4.2 Entropy prognostics of complex systems using flicker noise measurements
A key characteristic of system entropy is its additive property. In a complex system, in terms of entropy, the whole is equal to the sum 
of i parts so that the entropy of the system is cumulative, i.e.,                           and according to the second law, the entropy change 

is ∆ssystem ≥ 0 . We can think of damage in terms of a complex partitioned system treated this way. In the mechanical macro view, 
cumulative entropy damage (i.e., generated entropy) can be treated in a form similar to Miner’s fatigue rule [22] for cumulative 
damage             . In the entropy view, this is also applicable to ‘flicker cumulative damage and should be applicable in prognostics 

where applicable as needed for sensitive measurements. Similar to Miner’s fatigue rule we write [22].
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We conclude that noise; in particular, 1/f flicker noise 
should have strong applications in the area of 
prognostics of aging systems. The noise spectra can 
be read and should provide clues to areas in complex 
sensitive systems where entropy damage requires 
maintenance for particular parts, due to their aging. 
This would be a highly sensitive prognostic tool that 
likely could detect issues well before other type of 
measurements. 
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