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1. Introduction
1.1 Modelling Human Emotions
A mathematical model of human emotion processing in group 
settings, focusing on how individuals receive and react to 
emotions from events was developed. It explains how emotions 
are modelled using a one-dimensional random walk or Wiener 
process and represented by fixed probability distributions [1]. 
The author demonstrates that when individuals form a group, 
the distribution of emotions can also be represented by a fixed 
distribution, providing insights into emotional responses and 
behaviours within social dynamics.

Investigated the mathematical modelling of human emotions 
and decision-making processes within group dynamics [1-7]. It 
highlights the application of decision field theory to understand 
how individuals make decisions and how mathematical models 
are used in psychology and other fields to study dynamic events 
and decision-making processes. The research aims to provide 

insights into human behaviours and emotional responses within 
social contexts through mathematical analysis and modelling 
techniques [1]. While mathematical models have been applied in 
experimental psychology and Bayesian modelling, there seems 
to be a gap in integrating mathematical methods with the study of 
human emotions and behaviours. This highlights a potential area 
for further research and exploration in the field of psychology.

Going through the hypothetical scenario where an event (X) 
triggers an emotion (x), which then leads to a reaction denoted as 
F(x)  [1]. This relationship is illustrated in Figure 1, showing how 
events, emotions, and reactions are interconnected. The author 
suggested that individuals determine whether an event produces 
positive or negative emotions and adjust their emotional state 
towards a stable and neutral state (x = 0) through a series of 
reactions and emotional responses, as illustrated by figure 1(c.f., 
[1]).



    Volume 2 | Issue 4 | 2 Int J Med Net, 2024

have been applied in experimental psychology and Bayesian modelling, there seems to be a gap in integrating 

mathematical methods with the study of human emotions and behaviours. This highlights a potential area for 

further research and exploration in the field of psychology. 

Going through the hypothetical scenario [1] where an event ( ) triggers an emotion ( ), which then leads to a 

reaction denoted as       This relationship is illustrated in Figure 1, showing how events, emotions, and 

reactions are interconnected. The author[1] suggested that individuals determine whether an event produces 

positive or negative emotions and adjust their emotional state towards a stable and neutral state (     ) 

through a series of reactions and emotional responses, as illustrated by Fig.1(c.f., [1]). 

 

Fig.1. The relationship between events, emotions, and reactions in the context of individual emotion processing 

In the context of personal emotion processing[1], individuals determine whether events elicit positive or 

negative emotions and whether they lead to large or small emotional or behavioural responses. The process 

involves randomly starting with an emotion value and then adding 1 or -1 to aim for emotional balance at 
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Figure 1: The Relationship Between Events, Emotions, and Reactions in the Context of Individual Emotion Processing

In the context of personal emotion processing, individuals 
determine whether events elicit positive or negative emotions 
and whether they lead to large or small emotional or behavioural 
responses [1]. The process involves randomly starting with an 
emotion value and then adding 1 or -1 to aim for emotional 
balance at x = 0, representing stability and emotionlessness. This 
one-dimensional random walk model suggests that emotions are 
processed by continuously adding or subtracting values, with 
the mean emotion value being 0 and variance increasing with 
the number of processing iterations.

This explains that the process of emotion processing can be 
likened to a one-dimensional random walk, where positive and 
negative emotions are determined with a probability of 1/2 and 
then added together to obtain the total emotion. In this scenario, 
the mean μ (expected value) of the emotion is 0, indicating a 
balance between positive and negative emotions, while the 
variance represents the variability or spread of emotions 
experienced during the process. This perspective provides a 
mathematical framework to understand how emotions may 
fluctuate and balance out over time.

This shows how an individual's reactions are determined by 
events and emotions they experience, with reactions being 
like a dictionary once events and emotions are established 
[1]. It emphasizes that individuals cannot influence events or 
the type of emotions they receive, but they can influence their 
reactions based on the initial emotional value assigned to an 
event. The relationship between the magnitude of emotions and 
corresponding reactions is highlighted, where strong positive 
emotions lead to favourable reactions and strong negative 
emotions lead to unfavourable reactions.

The author had  discussed the relationship between a stochastic 
differential equation and the Fokker-Planck equation in the 
context of probability density functions and random walk 
processes, by introducing the concept of a Wiener process, 
represented by the equation [1]:

where 𝛽 is a positive real number and Wt is a standard Brownian 
motion. The equations derived illustrate how changes in 
probability density functions over time can be described 
mathematically in the context of random processes.

Thus,  the suggested mathematical model  can relate to the change 
in emotions over time, comparing it to a one-dimensional random 
walk. It introduces equations that describe how emotions change 
per unit time and how these changes can be represented using 
partial differential equations. This  highlights the relationship 
between different mathematical expressions and emphasizes the 
concept of 𝛽 in the context of the model.

The time-dependent  probability distribution of emotions during 
emotional processing, p(x,t),  which  provides insights into how 
emotions evolve over time during the processing phase, helping 
to understand the average distribution of emotions as the process 
unfolds. Engaging the mathematical vision provided by, p(x,t) 
reads as [1]: 

When individuals are grouped together, the emotion processing 
of the group is viewed as the average of the individual emotions 
[1]. This means that the probability density function (PDF) of 
the group's emotions, pgroup (x) reads:

which describes how emotions are distributed within the 
group based on statistical principles. This approach simplifies 
the understanding of how emotions are processed collectively 
within a group setting, as visualized by figure 2(c.f., [1]).
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Figure 2: The Portrayed PDF Allows us to Analyse and Compare Emotional Patterns Within Individuals and Groups, 
Highlighting Similarities in Emotional Processing When People are Grouped Together.

highlighted how individuals and groups share a common equation 
for expressing emotions, emphasizing the role of understanding 
social indications in preventing bullying and moral harassment. 
Some strategies for individuals to adapt to their surroundings, 
manage their reactions, and handle challenging situations 
effectively were suggested by [1].

1.2. Information Length Theory
Shannon entropy is not the best descriptor of a time series’ 
statistical variations, which has made using other unique 
information theoretic notions, including Fisher Information, 
highly motivating [8-11]. Differential entropy, Kullback-Leibler 
divergence (KLD), or information length (IL) [12-16].  Time-
dependent PDFs provide the ability to trace time series evolution 
and measure variability, which is the basis of the IL metric's 
attractiveness [8]. In conclusion, provide an examination of 
the interval learning (IL) computation of linear stochastic 
autonomous processes [17–23]. This broadens the scope of 
application, enabling IL to be used for the abruption of event 
prediction and facilitating application to different engineering 
contexts. 

1.3.  IL as a Concept 
Mathematically speaking, if x serves as a nth- order stochastic 
variable and p(x,t) is a time-dependent PDF of x, then the 
Information Length L(t) corresponding to its evolution from the 
initial time t0=0 to the final time tF=t reads:

provided that √(ε(t) serves as the root-mean- squared fluctuating 
energy rate. 

Having a closer look at (3), it is essential to note that τ(t) serves 
as a dynamic temporal unit which provides the correlation time 
over which the changes of p(x,t) take place [16]. Furthermore , 
τ(t) defines the  statistical space’s time unit. Having said that, √(ε 
(t) = 1/(τ (t), quantifies the information velocity [18]. 

It is preferable to compute the underlying value of the 
mathematical model of the related physical process to 
comprehend the meaning of L. Taking the Langevin equation-
described first-order stochastic process into consideration:

x serves as a random variable,  f  defines a deterministic force,  ξ 
represents a short-correlated random force satisfying that:

where D serves as  the amplitude (temperature) of the 
deterministic force(stochastic nose) .
It is to be noted that equation (7) is so popular to be used as a 
descriptor of the motion of a particle under a harmonic potential 
in the form:
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fluctuations that are occurring when we use differential entropy 
[12]. This directly follows from the locality's insufficiency 
because differential entropy primarily measures the differences 
between any two given PDFs while ignoring any intermediate 
states [17]. In an alternative symbolism, it merely alerts us to the 
distinctions that impact the overall evolution of the underlying 
system. In contrast, any localised changes that take place over 
the course of the system are measured by IL L(t), [14,17]. What's 
more, IL has been hailed as a powerful metric that can bring 
geometry and stochasticity together, as well as a state-of-the-
art method for representing an attractor structure [20, 21]. The 
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trait [17, 23]. 
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3.  Concluding Remarks, Open Problems, and Future Re-
search
This paper contributes to the establishment of Information 
Length Theory of HEs. The novel mathematical derivations are 
undertaken by finding the integral formula of the information 
length of HEs. Because of the higher complexity to derive the 
closed form result of the later integral formula, both the upper 

and the  lower bounds of that integral, namely UBHEs,LBHEs   
were derived. 

Notably, UBHEs(λ,t),LBHEs(λ,t) are both (λ,t)-dependent. More-
over, these analytic findings were validated numerically.

Here are some emerging open problems:

Open Problem One
Is it mathematically feasible to unlock the challenging problem 
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of finding the exact analytic form of , LHEs (c.f., (18)), rather 
than obtaining its upper and lower bounds?  This problem is still 
open.

Open Problem Two
Looking at Eqn (18), can we find any other strict upper and 
lower bounds for  LHEs?
Future research pathways include the attempting to solve the 
proposed open problems and extending the information data 
length theory to explain other fields of human knowledge, such 
as engineering, physics and much more.
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