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Abstract
An empirical study of the physical properties (thermal conductivity, thermal diffusivity, and density) of thermophysical 
interfaces based on a hexagonal boron nitride (h-BN) nanopowder lattice for cooling electronic component bases in micro- 
and nano-electronics has been conducted. The physical properties were determined using the laser flash method and the 
relative method. The potential of compressed nanoparticles of hexagonal boron nitride as a thermophysical interface 
without an adhesive agent has been described. This article also provides a comparison of the physical properties of other 
thermophysical interfaces that are widely used today.
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1. Introduction
A thermal interface is a multi-component substance that 
facilitates heat transfer mainly through thermal conductivity from 
the electronic component base of micro- and nanoelectronics to 
the cooling radiator. The purpose of this study was to assess the 
effectiveness of utilizing a boron nitride Nano powder thermal 
interface with a hexagonal crystal lattice (h-BN) for cooling the 
electronic component base of micro- and Nano electronics.

At present, two different forms of boron nitride, amorphous 
(α-BN) and crystalline (cubic c-BN, hexagonal h-BN, and 
dense, hexagonal w-BN), have been widely produced in 
mass manufacturing. Hexagonal boron nitride (h-BN) is the 
most stable crystalline form and is characterized by a layered 
structure with anisotropic thermal conductivity ranging from 
200 to 500 W/mK in-plane and up to 30 W/mK out-of-plane 
[1,2]. The bandgap (Eg) of hexagonal boron nitride varies 
widely from 3.6 to 7.1 eV  allowing it to be considered not only 
as a thermoelectric interface, but also as a dielectric as opposed 
to the works of Seungho Yu and Massoud Kavianya which used 
metals such as gallium, indium and lead as the thermoelectric 
interface [3,4].

In this study, the physical properties of copper-based 
thermoelectric interfaces and hexagonal boron nitride Nano 

powders under different compression pressures and nanopowder 
forms with different binding agents (glycerin, caponlac, and 
glass-like lacquer) were compared.

The granulometric composition of the hexagonal boron nitride-
copper nanopowder was measured by laser diffraction and 
polarization-induced differential intensity scanning (PIDS) with 
a resolution of several tens of nanometers, as opposed to the 
work of Martin and Kok  where the measurement was carried 
out by dynamic image analysis, in which the size and shape of 
the particles were determined by two-dimensional projections 
on images with resolutions of up to several microns [5].

The thermal conductivity and thermal diffusivity were measured 
using the laser flash method, in which the temperature rise was 
measured with respect to time using a cadmium-ruthenium-
telluride (CRT) infrared detector. 

Researchers studied the effectiveness of therminterfaces in the 
form of thermal pastes based on "L" and hexagonal boron nitride 
"P" samples, in which glycerin (samples "M" and "N"), capon 
lacquer (samples "R" and "S"), and glass-like lacquer (samples 
"O" and "T") were used as binding agents. Table 1 lists all 
eight therminterface samples in the form of thermal pastes and 
powders based on "L" and "P" samples, the physical properties 
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of which were studied at a temperature of plus 100°C (the 
maximum operating temperature of some integrated circuits, 

such as the central processor of an electronic computer) at a 
pressure of 1 atmosphere.

Sample No. Powder type Binder Note
L Cu absent
P nano h-BN absent
M Sample L glycerol CAS 56-81-5 (99,78 %) The ratio of (1 ± 0.05) g of sample 

to (2 ± 0.02) ml. binderR capon lacquer NC-62B
О glass-like lacquer P6V20
N Sample P glycerol CAS 56-81-5 (99,78 %)
S capon lacquer NC-62B
T glass-like lacquer P6V20
Table 1: Samples of thermal interfaces in the form of thermal pastes based on samples "L" and "P".

The authors did not consider ethanol and a cold sintering catalyst as binders because in the original works  when studying powder 
graphite, they showed lower efficiency than glycerin [6].
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Figure 1. Initial samples "L" (left) and "P" (right). 
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2. Theoretical Analysis
According to P. Bridgman's theory, which utilizes the method of expressing partial derivatives through the ratio of two expressions 
rendered by the table separately, determines the thermal conductivity of liquid particles from formula 1 [7].

where kf is the thermal conductivity of the liquid, due to molecular 
interactions, W/m•K; ρf is the density of the liquid, kg/m3; CV 
is the heat capacity at constant volume, J/kg•K; ʋ - is the sound 
speed in the liquid, m/s; nf is the particle concentration, 1/m3; Rg 
is the universal gas constant, J/mol•K; M is the molecular mass, 
kg/mol; and NA is Avogadro's number, 1/mol.

The ratio of the mass of the original sample to the volume of 
the binding substance was selected as 1 2 for all samples, based 
on the practical application of thermal interfaces. However, P 
[8]. Debaes  noted that the viscosity coefficient η of a liquid 
is sensitive to temperature. At low Reynolds numbers, the 
viscosity coefficient of the liquid can be determined from the 
Stokes-Einstein equation 2.
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Where η – fluid viscosity, Pa⋅s; kB – Boltzmann's constant, J/К ;  
Т – temperature, К; С – constant, in practice accepted 6π or 4π;  

RS-E is particle radius (m); D is diffusion coefficient (m2/s) 

 

The compressed specimens «P» and «L» depicted in Figure 2 are solid bodies for which profiling is 

necessary in order to solve heat transferal tasks. The main parameters for determining the roughness of the 

surface are the arithmetic mean of the absolute deviations of the surface from the base plane Ra, the root 

mean square of the surface heights (RMS) Rq, the mean maximum height of the profile (the mean value of 

the ten maxima and minima of the surface) Rz, and the maximum height of the surface (the distance between 
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Figure 2. Pressed samples "P" at a pressing pressure of 100 MPa (left) and "L" at a pressing pressure of 300 

MPa (right). 

 

With a mathematical approximation for three-dimensional images, Ra is determined using formula 3: 
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Where η – fluid viscosity, Pa⋅s; kB – Boltzmann's constant, J/К ; 
Т – temperature, К; С – constant, in practice accepted 6π or 4π; 
RS-E is particle radius (m); D is diffusion coefficient (m2/s)

The compressed specimens «P» and «L» depicted in Figure 2 
are solid bodies for which profiling is necessary in order to solve 
heat transferal tasks. The main parameters for determining the 

roughness of the surface are the arithmetic mean of the absolute 
deviations of the surface from the base plane Ra, the root mean 
square of the surface heights (RMS) Rq, the mean maximum 
height of the profile (the mean value of the ten maxima and 
minima of the surface) Rz, and the maximum height of the 
surface (the distance between the maximum and minimum of 
the surface) Rt.
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where M and N are the numbers of points in the direction of the abscissa and ordinate, respectively, and Z is 

the height of the surface relative to the base plane (applicate). 
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Where Hj is the maximum surface and Lj is the surface minimum. 

Rt is determined using Equation 6: 
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where ke – coefficient of thermal conductivity of a solid, due to interactions between electrons, W/m·К; e – 

electron charge, С; σ – conductivity, S/m. 
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Where Hj is the maximum surface and Lj is the surface minimum.
Rt is determined using Equation 6:

where Rmax is the surface maximum (distance between the surface 
maximum and base surface) and Rmin is the minimum surface 
area (distance between the surface minimum and reference 
surface).

In solid bodies, the thermal conductivity is determined by the 
contributions of electrons and quasi-particles, each of which 

includes the motion of all particles of the crystalline lattice 
(phonons). The contribution of electrons to the thermal interface 
coefficient of thermal conductivity can be determined by the 
Wiedemann-Franz law, based on the Lorenz number obtained 
by Zommerfeld with the help of quantum statistics, according 
to Equation 7:

where ke – coefficient of thermal conductivity of a solid, due to interactions between electrons, W/m•К; e – electron charge, С; σ – 
conductivity, S/m.
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The contribution of phonons to the thermal conductivity of the thermal interface can be determined using Equation 8.

The contribution of phonons to the thermal conductivity of the thermal interface can be determined using 

Equation 8. 
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Figure 3. The dependence of the percentage distribution of the volume of particles on their diameter of the 

sample "P" (specific surface area 72,50 m2/ml) 
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Figure 4. The dependence of the percentage distribution of the volume of particles on their diameter of the 

sample "L" (specific surface area 0,69 m2/ml). 

 

Samples "L" and "P" were pressed on the vulcanization press fitted with a hydraulic drive, to pressures of 2.3 

and 44.13 MPa, respectively. The samples were placed within a silicone plate held to receive the powdered 

material. After each pressing, additional amounts of powder were added to the form, and the pressing 

procedure was continued until the final shape was attained, as illustrated in Figure 5. 
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Samples "L" and "P" were pressed on the vulcanization press fitted with a hydraulic drive, to pressures of 2.3 and 44.13 MPa, 
respectively. The samples were placed within a silicone plate held to receive the powdered material. After each pressing, additional 
amounts of powder were added to the form, and the pressing procedure was continued until the final shape was attained, as illustrated 
in Figure 5.
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Figure 5. Appearance of samples “L” pressed to a pressure of 2.3 and 44.13 MPa and samples “P” pressed to 

a pressure of 2.3 MPa 

 

Samples "L" and "P" were pressed to a pressure of 300 MPa in an IP-1000 hydraulic press. To prevent the 

sample "P" from sticking to the punches, hexane (C6H14) was added to moisten it, and to prevent dispersion 

and provide stability during pressing, ethanol (C2H6O) was added to the sample "L". The press form, with a 

diameter of 34 mm, used for forming samples "L" and "P" in the pressing process under a load range from 20 

to 30 tons, is shown in Figure 6. 

 

 

 

 

Figure 6. Mold with a diameter of 34 mm, used in the formation of samples "L" and "P" in the process of 

pressing under a load range of 20 to 30 tons 
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The binding agent for samples "M" and "N," 99.78% glycerin 
CAS 56-81-5, was used. As the binding agent for samples "R" 
and "S," capon lacquer NC-62B was used. As the binding agent 
for samples "O" and "T," glass-like lacquer P6V20 was used. 
The mass of samples "L" and "P," used for their creation, was 
determined by electronic scales and the volume of the binding 
agent was by pipetting Black DPO-1-1000-10000 one-channel 
dosing.

The essence of the laser flash method used to measure the thermal 
conductivity λ and the thermal diffusivity α of the samples with 
the help of an analyzer for the thermal diffusivity and thermal 

conductivity LFA 467 Hyper Flash, involves mounting the 
sample in a calorimeter, the bottom surface of which is heated 
by pulses of radiant energy of 10 J duration 0.6 ms, created by 
a xenon lamp. The change in temperature of the calorimeter's 
top surface was recorded by a cadmium-radium-telluride (MCT) 
infrared detector. Measurements were made after thermos tatting 
the samples for 60 minutes at a constant temperature. The interval 
between pulses (shots) τ was 7 minutes. Laser voltage - 250 V. 
The number of pulses made was between 7 and 10 to establish 
the average value of the measured variable. The temperature of 
the sample can be determined according to formula 9 [9].
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The roughness of the sample "P" compressed under 300MPa 
is shown in Figure 7 with different resolutions. Table 2 shows 
the results of the measurement of the physical properties of the 
samples by the laser flash method.
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Figure 7. The surface roughness of the sample "P", pressed under a pressure of 300 MPa: 

А: increase 5,1x; 

B: increase 20,5x; 

C: increase 51,1x. 

 

 

 

 

Sample ρ*, kg/m3 α**, mm2/s λ**,  
     *, mm 

L for           1 960 0,374 ± 0,004 335,689 ± 2,349 2,07 

L for             5 461 90,136 ± 1,262 340,626 ± 2,384 2,32 

P for           1 480 0,016 ± 0,001 3,138 ± 0,022 2,13 

P for           3 241 0,972 ± 0,022 2,817 ± 0,020 0,57 

М 587 0,311 ± 0,002 0,469 ± 0,003 

0,7 

R 864 0,364 ± 0,002 0,913 ± 0,006 

О 674 0,482 ± 0,003 1,056 ± 0,007 

N 784 0,342 ± 0,003 0,569 ± 0,004 

S 1 162 0,389 ± 0,001 0,932 ± 0,007 

Т 1 231 0,377 ± 0,003 0,854 ± 0,006 
* At ambient temperature plus 20 °С. 
** At ambient temperature plus 100 °С. 

 

Table 2:  Results of measuring the physical properties of samples by the laser flash method. 
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The roughness of the surface of specimen "L" compressed under a pressure of 300 MPa is depicted in Figure 8 with various 
resolutions.
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Figure 8. The surface roughness of the sample "L", pressed under a pressure of 300 MPa: 

А:  increase 5,1x; 

B:  increase 20,5x; 

C: increase 51,1x. 
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copper powder were 67 nm and 13.6 μm respectively, the average values were 106 nm and 11.3 μm 
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and nanoelectronics devices. 
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conductivity slightly decreases by 11%, whereas, when sample “L” is pressed, its density increases nearly 3 

times while its thermal conductivity slightly increases by 1.5%. These relations indicate that compression of 

sample “L” slightly increases its thermal conductivity however this is not the case for sample “P” in which 

compression leads to a slight decrease in thermal conductivity due to factors beyond increase in density. Two 

primary factors affecting thermal conductivity in such a case may be particle connectivity and the presence 
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5. Results and Its Discussion
The percentage distribution of the particle size from their 
diameter in samples "P" and "L" (Figure 3, 4) showed that the 
values of the modal diameters of the investigated boron nitride 
hexagonal powder and copper powder were 67 nm and 13.6 
μm respectively, the average values were 106 nm and 11.3 
μm respectively, and the median values were 75 nm and 12.1 
μm respectively. The obtained values allow the application of 
thermal interfaces based on copper and boron nitride hexagonal 
powder for cooling of micro- and nanoelectronics devices.

High thermal and temperature conductivity values were 
observed in compressed samples due to their higher density 
compared to the same samples in original (powder) form. 
However, upon considering the changes in density and thermal 
conductivity upon pressing at 2.3 to 300 MPa for sample “P” and 
2.3 to 44.13 MPa for sample “L”, it could be seen that pressing 
of sample “P” increases its density by 2.2 whilst its thermal 
conductivity slightly decreases by 11%, whereas, when sample 
“L” is pressed, its density increases nearly 3 times while its 
thermal conductivity slightly increases by 1.5%. These relations 
indicate that compression of sample “L” slightly increases its 
thermal conductivity however this is not the case for sample 
“P” in which compression leads to a slight decrease in thermal 
conductivity due to factors beyond increase in density. Two 
primary factors affecting thermal conductivity in such a case may 
be particle connectivity and the presence of defects, as average 
particle diameter for sample “P” is two orders of magnitude 
lesser than sample “L”, and the investigated boron nitride has a 
hexagonal crystal lattice whereas copper is presented with cubic. 
It is supposed that particle connectivity increases the thermal 
conductivity and temperature conductivity of the sample due 
to increased phonon free path length, while increase in defect 
numbers reduces thermal conductivity by restricting it. 

In the case of creating a thermo-interface in the form of 
thermopast, the most promising appears to be the use of glass-
like lacquer as the binding substance for the "L" sample, and 
capon lacquer for the "P" sample, instead of glycerin, since the 
thermal conductivity coefficient for the "O" and "S" samples 
respectively is approximately 2 times higher.

The measurement of surface roughness with optical profilometry 
allowed for the three-dimensional imaging of the surface relief 
by a non-contact method. The mean of the absolute values of the 
sample "P" and "L" deviations from the base plane after pressing 
was 163 and 105 nm respectively. At all obtained resolutions, 
the surface roughness of the sample "P" was greater than that of 
the sample "L" despite the fact that the average size of the initial 
powder particles differed by two orders of magnitude.

6. Conclusion
Thus, in this work, the physical properties of thermointerfaces 
were determined empirically based on powdery copper and 
nanobeads of hexagonal boron nitride with different particle 
sizes, which allowed the determination of their fundamental 
differences during compaction.

Despite its higher thermal conductivity, the practical efficiency 
of using a copper-based thermal interface in the form of thermal 

paste to cool integrated circuits is virtually equivalent to that of 
a hexagonal boron nitride nanoparticle-based thermal interface. 
The smaller particle size of hexagonal boron nitride nanoparticles 
relative to the copper-based powder leads to significantly less 
roughness in the surface of the thermal interface in the form of a 
pressed thin film, which in practice will allow for a greater area 
of contact with the cooled surface.

It is suggested that increasing the thermal conductivity and 
temperature conductivity of hexagonal boron nitride nanowires 
could be further examined by looking into its planar physical 
properties at the same pressures while imposing one orientation 
for the majority of its particles as, in the present study, only its 
out-of-plane physical properties at a random particle orientation 
were addressed.

The measurement of the roughness of the compressed samples 
based on copper and hexagonal boron nitride shall permit their 
consideration for practical thermal transfer calculations.
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