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Abstract
Rotating machinery is an important equipment in modern industries, which is widely used in aerospace, metallurgy, electricity, 
mining, railway transportation and other industries. The rolling bearing is widely used in large machinery, especially in 
rotating machines, such as highly operating precision, low price. The operating status of the rolling bearing is about the safety 
and reliability of the entire mechanical system, directly affects the overall performance, work efficiency and service life of the 
equipment. The rolling bearing is one of the most widely used key components in the rotating machine. The harsh working 
environment leads to its fault, which affects the operation of the entire equipment, which causes the entire production chain to 
stop production, causing certain economic losses, and the weight is caused Disastrous casualties and serious social hazards. 
Therefore, the research on the problem of rolling bearing fault diagnosis is carried out, especially for the study of early fault 
diagnosis and is important for scientific theory and engineering application value. Because the scroll bear generates impact 
vibration when the scrolling bearing occurs normally or fails, bearing status recognition and fault diagnosis can be achieved 
by the detection signal containing a fault impact. In order to influence this influence, this paper will study the extraction and 
diagnosis of the rolling bearing fault characteristics under strong noise conditions, and use the method of extracting sample 
entropy characteristics on the rolling bearing vibration signal, and is shown in different conditions, and the vibration signal 
data sample entropy is entropy. The general range and the distribution of its entropy values is expressed by the box line map. 
In response to noise under different signal-to-noise ratios, the effect of studying its impact on the type of diagnosis of rolling 
bearing and its change law.
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Introduction
Nowadays, with the rapid progress of modern science and technol-
ogy, promote the development of the machinery industry, a variety 
of precision large-scale integrated automation, high-speed me-
chanical equipment emerges in endlessly, the structure of mechan-
ical system is more complex, its scale is also gradually huge. These 
developments and changes make us need to deal with the design, 
manufacture, operation and maintenance of mechanical system 
with higher and more stringent requirements, and also cause the 
operation of mechanical equipment to be affected by more fac-
tors, which improves the potential of mechanical system failure 
and increases the diversity of fault types, which poses a great chal-
lenge to the fault diagnosis of mechanical system. Machinery and 
equipment are widely used in the current pillar industries of the 
national economy, such as electric power, petrochemical, trans-
portation and metallurgy [1]. Once a part in the system fails, it 
may cause chain reaction, reduce production efficiency and affect 
product quality [2]. More seriously, it will cause casualties, and en-
terprises will also suffer serious economic losses, which will have 

a bad impact on society. If we can accurately predict and identify 
the type of fault when the mechanical equipment just has a weak 
fault or even when the fault does not occur, we can prevent it from 
happening, improve the reliability and stability of the mechanical 
equipment in operation, and more effectively avoid the occurrence 
of safety accidents [3].

Because rolling bearings generally work in the harsh working en-
vironment such as high temperature, high load, dusty and alternat-
ing load, and their own poor impact resistance, with the increase of 
working time, the working conditions of rolling bearings will con-
tinue to change, and the surface of parts will appear different de-
grees and forms of damage, such as deformation, wear, rust, crack 
and even fracture. As a result, rolling bearing has become one of 
the most vulnerable parts in mechanical system [4]. Although the 
value of rolling bearing is not necessarily very high, when it breaks 
down, it will directly have adverse effects on the shaft and gear 
parts connected with it, and then affect the whole mechanical sys-
tem or production line, making it unable to operate normally. The 
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economic loss caused by this is not comparable to the price of a 
bearing, if it is more serious, it may even lead to equipment dam-
age, causing casualties. It can be seen that rolling bearing is the 
key factor to determine its stability and reliability in the whole me-
chanical system, and its normal operation will directly affect the 
performance of mechanical equipment [5]. According to statistics, 
nearly 45% of mechanical equipment failures are caused by rolling 
bearing damage. To sum up, the research is of great significance to 
the fault condition monitoring, extraction and diagnosis of rolling 
bearing [6]. Similarly, when we extract and diagnose the fault of 
rolling bearing, we should also focus on the weak signal generated 
in the early stage.

But in fact, the actual working environment of rolling bearing is 
relatively bad, there are all kinds of noises, and the fault signal 
generated by the bearing in the early fault is very weak, which 
has a great impact on the early fault feature diagnosis of rolling 
bearing. Therefore, it is particularly important to study the fault 
feature extraction and diagnosis of rolling bearing under strong 
noise conditions, and to seek an effective diagnosis method to pro-
vide effective proof for future fault judgment [7].

Fault and data analysis of rolling bearing
Structure of rolling bearing
In order to better study the influence of noise on rolling bearing 
fault feature extraction and diagnosis, we first understand the 
structure and fault form of rolling bearing. The main function of 
rolling bearing is to change the sliding friction between shaft and 
shaft seat into rolling friction, so as to reduce the friction loss. The 
typical structure of rolling bearing is shown in figure 1. It can be 
seen from the figure that the structure of rolling bearing mainly 
includes inner ring, outer ring, rolling element and cage. Among 
them, the inner ring mainly rotates with the shaft and cooperates 
with it; The outer ring plays a supporting role; The rolling ele-
ments are distributed between the inner and outer rings and evenly 
distributed with the help of cages. There are many types of rolling 
elements, such as ball, cylinder, cone and needle. Different types 
of rolling elements have different effects on the performance and 
service life of bearings [8]; The cage makes the rolling force even-
ly distributed on the track between the inner and outer rings, which 
plays the role of anti-falling and lubrication.

Figure 1: Typical structure diagram of rolling bearing

Fault types of rolling bearing
Due to the complex and harsh working environment of rolling 
bearing, there aremany fault forms of rolling bearing:

1.	 Fatigue spalling: due to the special working properties of 
rolling bearing, the inner and outer ring track and rolling ele-
ment of the bearing have to bear considerable load. Under the 
action of these changing loads, small cracks will form under 
the bearing surface, and the spalling will occur on the bearing 
surface with the increase of time, and finally develop into a 
large area of spalling pit. This phenomenon is called fatigue 
spalling [9].

2.	 Wear: due to the falling of small and hard objects, the surface 
of the track and rolling element between the inner and outer 
rings of the bearing will be worn when the bearing is running, 
and the lubrication layer will be damaged [10], which further 
aggravates their wear. As a result, the clearance between vari-
ous parts of the bearing will be increased, and the smoothness 
of the surface will be gradually reduced, which will lead to the 
reduction of the accuracy of the bearing One of the reasons for 
the increase in noise.

3.	 Corrosion: This is one of the most serious problems in bear-
ing failure, which is difficult to avoid and solve. It is diffi-
cult to prevent all the causes of corrosion, such as moisture, 
acid, alkaline substances in contact with the components of 
the bearing, there is a great probability of causing corrosion; 
Even when it stops running, the moisture in the air will con-
dense the water droplets attached to the bearing surface due 
to the decrease of bearing temperature, which will also cause 
the bearing to rust. When the surface of the bearing and the 
surface of the component body is corroded, the rolling bearing 
will lose its accuracy and cannot be used normally.

4.	 Fracture: when the load of the bearing greatly exceeds the rat-
ed load [11], the internal parts of the bearing may fracture.

5.	 Gluing: when the rolling bearing is in high-speed operation, 
overload and other operating environment for a long time, the 
parts of the rolling bearing will produce extremely high tem-
perature under the influence of friction. At this time, the tem-
perature can easily burn the surface of the bearing, resulting in 
gluing between the parts after burning and melting.

6.	 Plastic deformation: refers to the irrecoverable damage be-
tween the inner and outer rings of rolling bearing, such as 
scratches, dents, etc. The main reasons are too much static 
load, impact load, extra load caused by deformation due to 
overheating, foreign matter with high hardness, etc.

7.	 Cage damage: due to improper installation or operation prob-
lems, the cage in the bearing components may be deformed, 
which may lead to the abnormal operation of the rolling ele-
ment, aggravate the noise generated by the bearing and dam-
age the bearing.

When the bearing has the above type of fault, it will produce a 
weak impulse signal in operation. This kind of impact energy can 
excite the natural frequency vibration of various parts in the system 
of bearing and bearing seat, and the energy generated by vibration 
will gradually decrease with the damping of mechanical parts [12]. 
Because the characteristics of the vibration signals generated by 
the defects on the inner and outer rings and rolling elements are 
different, we can also classify the fault types of all rolling bearings 
into inner ring fault, outer ring fault and rolling element fault [13].

Experimental bearing data
Because the bearing data center of Western Reserve University 
shared the data collected in an experiment of bearing fault feature 
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detection on the network, the equipment is relatively good, and the 
experimental equipment is shown in fig.2, which consists of a mo-
tor (1.5KW,2HP), torque sensor / decoder, power tester and elec-
tronic controller. Therefore, several groups of experimental data 
under different working conditions will be selected for calculation 
and research, including normal operation state, inner ring fault, 
rolling element fault and outer ring fault.

The bearing to be tested is the rolling shaft supporting the mo-
tor. The model of the bearing at the driving end is SKF6205. The 
sampling frequency of the selected data is 12khz. The damage of 
rolling bearing is a single point damage produced by EDM, with 
the diameter of 0.1778mm, 0.3556mm and 0.5334mm. The specif-
ic specifications and fault frequency of rolling bearing are shown 
in tab.1 and tab.2. The vibration signal data of rolling bearing un-
der four working conditions including normal state are collected 

when the motor speed is 1797 r/min, no load, fault specification is 
0.1778 mm in diameter and depth is 0.2794 mm.

Figure 2: Experimental platform of Western Reserve University

Table 1: Rolling bearing specification

Inner ring fault Outer ring fault Thickness Diameter of rolling element Pitch diameter
25mm 52mm 15mm 7.94mm 7.94mm 39.04mm

Table 2: Failure frequency of rolling bearing (multiple of rotation frequency Hz)

Inner ring diameter Outer ring diameter Cage drum fault Rolling element failure
5.4152 3.5848 0.39828 4.7135

Research on data processing and diagnosis of rolling 
bearing
Experimental data processing
In this experiment, we use sample entropy to extract fault features. 
Sample entropy is a method to measure the complexity of data 
based on approximate entropy. Compared with approximate entro-
py, its calculation does not depend on the length of data, and has 
better consistency. It effectively improves the problem of different 
calculation results caused by the length of data.

For a time series {Xi} = {x1, x2, ...xN} containing N data, it is ar-
ranged into a set of vector sequences with dimension M,m is the 
given embedding dimension. The m dimensional vectors are ob-
tained as follows:

Xm(i) = {x(i), x(i+1), ...x(i+m−1)}, i = 1, 2, ...N−m                               (1)

These reconstructed m-dimensional vectors represent m consecu-
tive values starting from the i-th point [14].

The distance between Xm(i) and Xm(j) is defined as d[Xm(i), Xm(j)], 
and d[Xm(i), Xm(j)] is used to represent the absolute value of the 
maximum difference between the two corresponding elements.

The value of similarity tolerance r is defined. By calculating the 
distance d[Xm(i), Xm(j)] between Xm(i) and Xm(j), the number Bi less 
than r is obtained. The relationship between Bi and total N − m − 1 
is expressed by Bm

i(r):

Calculate the average of N − m Bm
i (r) and repeat the above steps 

to get Bm(r):

Increase the embedding dimension m to m+1 and repeat the above 
steps to get Bm+1(r):

Through the above steps, we can get the probability Bm(r) of two 
sequences matching m points and the probability Bm(r) of match-
ing m+1 points under the similarity tolerance r. therefore, the defi-
nition of sample entropy is as follows:

When the amount of data N in the time series is finite, the sample 
entropy can be estimated by the following formula:

When the bearing fails, due to the periodic impact when the rolling 
element passes through the fault position, there will be many simi-
lar components in the vibration signal sequence, which reduces the 
value of sample entropy.

four working conditions including normal state are collected
when the motor speed is 1797 r/min, no load, fault specifica-
tion is 0.1778 mm in diameter and depth is 0.2794 mm.
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When the bearing fails, due to the periodic impact when
the rolling element passes through the fault position, there
will be many similar components in the vibration signal se-
quence, which reduces the value of sample entropy.

3.2 Data calculation and processing
The sample entropy is used to calculate the vibration sig-

nal data under four working conditions. In order to ensure
the accuracy of the results, the bearing data is divided into
110 groups, with 1000 data in each group. The approximate
range of the sample entropy of the vibration signal data un-
der each working condition can be obtained by continuous
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Therefore, after compiling the sample entropy calculation
algorithm with MATLAB and importing the signal data, the
entropy values under each working condition can be ob-
tained as shown in the following table. Due to too much
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The complete variation range curve of entropy value of
calculated samples under each working condition is shown
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The sample entropy is used to calculate the vibration sig-

nal data under four working conditions. In order to ensure
the accuracy of the results, the bearing data is divided into
110 groups, with 1000 data in each group. The approximate
range of the sample entropy of the vibration signal data un-
der each working condition can be obtained by continuous
calculation.

Therefore, after compiling the sample entropy calculation
algorithm with MATLAB and importing the signal data, the
entropy values under each working condition can be ob-
tained as shown in the following table. Due to too much
data, only the first 20 groups of data are shown here:

The complete variation range curve of entropy value of
calculated samples under each working condition is shown
in the figure below:

four working conditions including normal state are collected
when the motor speed is 1797 r/min, no load, fault specifica-
tion is 0.1778 mm in diameter and depth is 0.2794 mm.

Fig. 2: Experimental platform of Western Reserve Univer-
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Table 1: Rolling bearing specification

Inner
ring
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Outer
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fault

Thickness
Diameter
of rolling
element

Pitch
diameter

25mm 52mm 15mm 7.94mm 39.04mm

Table 2: Failure frequency of rolling bearing (multiple of
rotation frequency Hz)
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Cage
drum
fault

Rolling
element
failure

5.4152 3.5848 0.39828 4.7135

3 Research on data processing and diagnosis of
rolling bearing

3.1 Experimental data processing
In this experiment, we use sample entropy to extract fault

features. Sample entropy is a method to measure the com-
plexity of data based on approximate entropy. Compared
with approximate entropy, its calculation does not depend
on the length of data, and has better consistency. It effec-
tively improves the problem of different calculation results
caused by the length of data.

For a time series {Xi} = {x1, x2, ...xN} containing N

data, it is arranged into a set of vector sequences with di-
mension M,m is the given embedding dimension. The m-
dimensional vectors are obtained as follows:

Xm(i) = {x(i), x(i+1), ...x(i+m−1)}, i = 1, 2, ...N−m (1)

These reconstructed m-dimensional vectors represent m
consecutive values starting from the i-th point[14].
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d[Xm(i), Xm(j)], and d[Xm(i), Xm(j)] is used to represent
the absolute value of the maximum difference between the
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calculation.

Therefore, after compiling the sample entropy calculation
algorithm with MATLAB and importing the signal data, the
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tained as shown in the following table. Due to too much
data, only the first 20 groups of data are shown here:

The complete variation range curve of entropy value of
calculated samples under each working condition is shown
in the figure below:



Figure 3: Variation range of sample entropy of bearing vibration 
data in normal operation

Figure 4: Variation range of sample entropy of bearing vibration 
data with inner ring fault
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Data calculation and processing
The sample entropy is used to calculate the vibration signal data 
under four working conditions. In order to ensure the accuracy of 
the results, the bearing data is divided into 110 groups, with 1000 
data in each group. The approximate range of the sample entropy 
of the vibration signal data under each working condition can be 
obtained by continuous calculation.

Therefore, after compiling the sample entropy calculation algo-
rithm with MATLAB and importing the signal data, the entropy 
values under each working condition can be obtained as shown in 
the following table. Due to too much data, only the first 20 groups 
of data are shown here:

The complete variation range curve of entropy value of calculated 
samples under each working condition is shown
in the figure below:

Table 3: Sample entropy of bearing vibration data in normal Operation

Group 1 2 3 4 5 6 7 8 9 10
Entropy 1.268 1.232 1.274 1.210 1.259 1.278 1.258 1.288 1.257 1.282
Group 11 12 13 14 15 16 17 18 19 20
Entropy 1.308 1.285 1.313 1.261 1.302 1.275 1.285 1.248 1.298 1.261

Table 4: Sample entropy of bearing vibration data with inner ring fault

Group 1 2 3 4 5 6 7 8 9 10
Entropy 1.664 1.569 1.567 1.631 1.634 1.669 1.660 1.647 1.586 1.614
Group 11 12 13 14 15 16 17 18 19 20
Entropy 1.625 1.655 1.609 1.645 1.598 1.607 1.604 1.666 1.627 1.628

Table 5: Sample entropy of bearing vibration data with inner ring fault

Group 1 2 3 4 5 6 7 8 9 10
Entropy 1.980 1.958 1.957 2.000 2.006 2.009 1.969 1.975 1.935 1.989
Group 11 12 13 14 15 16 17 18 19 20
Entropy 1.925 1.972 1.901 2.006 1.962 1.965 1.939 1.998 1.952 1.980

Table 6: Sample entropy of bearing vibration data with outer ring fault

Group 1 2 3 4 5 6 7 8 9 10
Entropy 1.034 1.054 0.983 1.052 0.951 1.019 1.045 1.027 1.003 1.070
Group 11 12 13 14 15 16 17 18 19 20
Entropy 1.028 1.083 1.033 1.054 1.051 1.080 1.031 1.048 1.071 1.074
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Figure 5: Variation range of sample entropy of bearing vibration 
data in rolling element fault

Figure 6: Variation range of sample entropy of bearing vibration 
data with outer ring fault

According to table 3 and figure 3, the sample entropy of vibration 
signal data generated when rolling bearing is in normal operation 
ranges from 1.196 to 1.334.

From table 4 and figure 4, it can be concluded that the sample 
entropy ranges of vibration signal data generated when rolling 
bearing inner ring fails is about 1.558 to 1.707. It can be conclud-
ed from table 5 and figure 5 that the sample entropy of vibration 
signal data generated by rolling element fault of rolling bearing 
ranges from 1.882 to 2.018.

Influence of strong noise on fault feature extraction and 
diagnosis 
Change after adding noise
We can use awgn function in MATLAB to artificially add a group 
of Gaussian white noise data which can control its signal-to-noise 
ratio to the bearing vibration signal data under various working 
conditions. Then calculate the sample entropy, Under the influence 
of different signal-to-noise ratio, the influence and change trend of 
fault feature extraction and diagnosis for each working condition 
are observed.

After adding noise, the influence of different signal-to-noise ratio 
(SNR; Unit: dB) on the sample entropy range under various con-
ditions is shown in the following table: Through the above four 
tables, it is not difficult to find that when the signal-to-noise ratio 
of noise is greater than or equal to 50dB, the influence of noise on 
the sample entropy of rolling bearing vibration signal is negligible. 
We focus on the effect of noise below 50 dB. Their box line dia-
gram is as follows:

Table 7: Entropy range under different SNR in normal operation (unit: dB)

SNR No noise 10 20 30 40 50 60 70
Upper limit 1.334 1.997 1.969 1.665 1.404 1.336 1.334 1.332
Lower limit 1.196 1.912 1.872 1.522 1.264 1.212 1.197 1.194
Mean value 1.281 1.964 1.921 1.608 1.351 1.289 1.281 1.281

Table 8: Entropy range under different SNR in case of inner ring fault (unit: dB)

SNR No noise 10 20 30 40 50 60 70
Upper limit 1.707 1.967 .796 1.720 1710 1.705 1.706 1.706
Lower limit 1.558 1.844 1.667 1.559 1.561 1.557 1.560 1.194
Mean value 1.627 1.913 1.724 .642 1.629 1.627 1.627 1.627

Table 9: Entropy range of rolling element fault under different SNR (unit: dB)

SNR No noise 10 20 30 40 50 60 70
Upper limit 2.018 2.109 2.099 2.033 2.021 2.015 2.017 2.017
Lower limit 1.882 2.032 2.025 1.908 1.877 1.884 1.882 1.882
Mean value 1.968 2.071 2.059 1.979 1.968 1.968 1.968 1.968



Table 10: Entropy range under different SNR when outer ring fault occurs (unit: dB)

SNR No noise 10 20 30 40 50 60 70
Upper limit 1.083 1.615 1.207 1.103 1.085 1.084 1.083 1.083
Lower limit 0.944 1.412 1.053 0.963 0.948 0.944 0.944 0.944
Mean value 1.029 1.511 1.124 1.041 1.031 1.029 1.029 1.029

Figure 7: Box plot of sample entropy under different working con-
ditions when SNR is 10dB

Impact analysis
Through the research on the influence of noise on the accuracy of 
rolling bearing fault diagnosis under different signal-to-noise ratio, 
it can be found that when the signal-to-noise ratio is too low, that 
is, when the power ratio of noise is too high; it has a great influence 
on the accuracy of fault diagnosis. In this case, we cannot judge 
which kind of fault causes the fault characteristics at this time. 
With the improvement of signal-to-noise ratio (SNR), that is, the 
proportion of noise decreases, the accuracy of fault diagnosis is 
also improving. When SNR is equal to or greater than 50dB, the 
influence of noise on the accuracy of fault diagnosis has been rel-
atively low or even no influence, and the noise is basically out of 
the category of strong noise.

Figure 8: Box plot of sample entropy under each working condi-

tion when SNR is 20dB

Figure 9: Box plot of sample entropy under each working condi-
tion when SNR is 30dB

Figure 10: Box plot of sample entropy under each working condi-
tion when SNR is 40dB

Through the research on the influence of noise on the accuracy of 
rolling bearing fault diagnosis under different signal-to-noise ratio, 
it can be found that when the signal-to- noise ratio is too low, that 
is, when the power ratio of noise is too high, it has a great influence 
on the accuracy of fault diagnosis. In this case, we cannot judge 
which kind of fault causes the fault characteristics at this time. 
With the improvement of signal-to-noise ratio (SNR), that is, the 
proportion of noise decreases, the accuracy of fault diagnosis is 
also improving. When SNR is equal to or greater than 50dB, the 
influence of noise on the accuracy of fault diagnosis has been rel-
atively low or even no influence, and the noise is basically out of 
the category of strong noise
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Conclusion
Rolling bearing is the core of rotating machinery system and the 
“joint” of modern industry. As an indispensable part of the me-
chanical equipment and system, its good or bad determines the 
good or bad of the mechanical equipment to a certain extent, it is 
very necessary to detect the fault of rolling bearing. In the develop-
ment process of so many years, scholars have developed a variety 
of methods that can effectively detect the fault of rolling bearing. 
At the same time, more people have carried out research and inno-
vation on this basis, and strive to do better. In this experiment, the 
vibration signal data of rolling bearing is extracted by using the 
calculation method of sample entropy. At the same time, in order 
to ensure the accuracy of the calculation results, the rolling bearing 
fault experimental data published by Western Reserve University 
is used to select a group of data under each working condition, and 
the bearing vibration data is divided into 110 groups, with 1000 
data in each group. After cyclic calculation of these data, the ap-
proximate range of sample entropy under each working condition 
is obtained, which can be used as the criteria for feature extraction 
and diagnosis of rolling bearing fault under strong noise. The awgn 
function is used to add Gaussian white noise which can control the 
signal-to-noise ratio to the original bearing vibration signal data, 
and the sample entropy of the new rolling bearing vibration signal 
data with noise data is calculated again. According to the same 
steps, the sample entropy ranges of each working condition under 
different signal-to-noise ratios can be calculated, that is, when the 
noise is low, its impact on fault diagnosis is very weak. When the 
signal-to-noise ratio is lower than 10dB, the noise interference on 
fault diagnosis is very strong. At this time, we cannot even make 
normal and accurate fault diagnosis. Between 10dB and 50dB, the 
impact of noise on Fault Diagnosis will gradually weaken until the 
impact becomes negligible.
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