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Abstract
Light atmospheric gas constituents tend to evaporate from the planetary gravitational fields. The point is that not only the uppermost 
atmospheric layer contributes to this gas escape, but the lower layers contribute their share as well and give the outcoming particle 
flow a nonthermal, non-Maxwellian character. In this article we do study the outflow of hydrogen atoms from a planetary oxygen 
atmosphere assumed to be one-dimensionally stratified by the action of the planet‘s gravitational field. This outflow is modified 
by local elastic collisions of upwards flying H-atoms with the heavy major atmospheric background constituent, as in case of the 
terrestrial atmosphere, the monoatomic oxygen atoms. This shock-modulation of the upwards particle flow produces nonthermal 
kinetic features of the particle distribution which we want to decribe. Since angle-integrated elastic collision cross sections are 
velocity-dependent, falling off with the velocity v like (1/v), the occuring collision-modulation of the H-atom flow does change 
the kinetic velocity profile of the escaping H-atoms. Deeply down in the lower atmophere the local H-atoms, like the O-atoms 
as well, are in thermodynamical equilibrium characterized by Maxwell Boltzmann distributions with a common temperature 
TH = TO. Nevertheless, at the upper exobase border of the atmosphere the resulting H-atom escape flow is shown to be a non-
Maxwellian, non-equilibrium flow with non-thermal escape-relevant properties. We describe this collisional modification of the 
H-escape flow and can quantify the upcome of kinetic non-equilibrium features like power laws in the H-distribution function. 
Thus, as we demonstrate in this   article, this collisional modulation effect via velocity-dependent collision cross-sections acts 
as a typical process to convert equilibrium distributions into non-equilibrium distribution    functions. On the basis of this new 
kinetic theoretical approach we then calculate the effective escape flux of H- atoms to open space, demonstrate its nonthermal 
character, and quantify its difference with respect to the classical Jeans escape value. We find that with the classical Jeans 
formula one slightly overestimates the actual escape flux by an amount that varies between 30 - 80 percent, depending on the 
temperature of the lower atmosphere of the planet which varies with the solar 10.7-cm- radioflux.
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Introductory Motivation: Superpositions of Gaussians 
with Statistically Weighted Widths
In an earlier paper [1] we have shown that a series of nonthermal 
distribution functions, like especially Kappa-functions [2, 3], can 
be understood as originating from superpositions of thermal dis-
tributions with different stochastic weights. Especially we could 
show that the superposition of a series of stochastic processes 
will give rise to power-law distribution functions, a kind of de-
generated Kappa functions with small kappa indices of k ≥ 1. 5. 
Thereby we could show that the v-5 - power law distributions, 
prominently appearing in heliospheric and heliosheath physics 
[4] can arise from a collection of Poisson processes, from a col-
lection of Gaussian distributions, or from a collection of differ-
ent shock-accelerated distributions. Though this proof indicated 
how nonthermal distributions in plasma physics easily can arise 
from superpositions of thermal distributions, the argumentation 
given there was, however, strongly based on theoretical physics 
and stochastic principles, without a deeper look on the physical 
scenarios that have to arrange in fact such stochastic superposi-

tions. Here in this paper we shall, however, start from a physical-
ly well-posed problem connected with a planetary atmosphere 
stratified by the action of the planet´s gravitational field and con-
nected with locally thermal equilibrium distribution functions, 
and will demonstrate that the collision-modulated escape flow 
from below, arriving at the top level of the atmosphere, i.e. the 
exobase, does show clearly pronounced signatures of a non-ther-
mal kinetic distribution function.

The Thermosphere-Modified Escape Flow at The Plan-
etary Exobase
We are interested in describing the particle outflow from the 
top of an atmospheric layer, one-dimensionally stratified by 
the earth´s gravity between coordinates x = x0 (base of thermo-
sphere) and x = x1(exobase). Below the top layer at x1 the gas, 
especially the heavy component, the O-atom gas, is kept more or 
less under thermal equilibrium conditions with a common local 
temperature T (x) as function of x, and the particle distribution 
functions of the atomic gases can be assumed to be local Max-
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wellians f(v, x) = Max (v, T(x)). From below x1 particles like 
H- atoms, distributed according to such a local Maxwellian, are 
emitted towards the top layer, but before arriving there, they will 
undergo elastic collisions with other gas particles, like, in case of 
the earth, especially the dominant O- atoms. What comes out un-
der such conditions is a "sheath-modified" H - atom outflow with 
a collisionally modified, transformed, non-Maxwellian distribu-
tion function. This latter function finally determines the effective 
H-escape from the atmosphere, and it is just the kinetics of this   

function which we want to describe in the forthcoming paper.

Taking a 1d-structured atmosphere with an H/O - gas density 
distribution given by mH,O (x) = mH,O (x) exp[-(x-x0) /SH,O], with a 
height-coordinate x, and with the atmospheric scale heights SH,O 
= kT(x)/mH,Og specific for H- and O- atoms, where g denotes the 
gravitational acceleration within this layer, one obtains a local 
particle emissivity (jH ) into the direction ϑ of

nH,O  nH,Ox  nH.Ox0expx  x0/SH,O, with a height-coordinate x, and with the
atmospheric scale heights SH,O  kTx/mH,Og specific for H- and O- atoms, where g
denotes the gravitational acceleration within this layer, one obtains a local particle
emissivity jH into the direction  of

jHv,dvd  nHxv   mH
kTx 3/2 exp mHv

2

kTx v2dvcosd   #   

It could appear as suggested to introduce here as an appropriate velocity
normalization vH,x2  kTx/mH and use the normalized velocity w  v/vH,x furtheron. This
then would lead to

jHv,dwd  nHxw  expw2w2dwcosd   #   
where, however, this normalization of v unfortunately implies a mixing of coordinate

dependencies on v and on x, since T  Tx must be taken as an x-dependent sheath
temperature. This, however, is a hindrance for the integration procedure to come, and is
the reason why we better stay with the first expression.

Now one has to pay attention to the fact that the upward flux jHv,  0 of H-atoms
originating at a coordinate x, before it reaches the top layer at x  x1, is reduced on its
way up due to elastic collisions with the dominant gas constituent, in case of the Earth‘s
atmosphere, the O-atoms. This reduction can be described by a transmission function
Trx,v, assuming that the colliding, low-mass H-atoms by H  O - collisions are
completely redistributed to other directions ´   , i.e. representing in essence a loss
for H- atoms of the flow jHv, which come along the upward direction   0, and
hence one obtains a transmission given by:

Trx,v,  expOv 
x

x1
nOz dz

cos    #   

where Ov denotes the angle-averaged elastic collision cross section between O-
and H- atoms at a relative velocity vrel  vH  v. This cross section must be described as
a type of a polarization cross section with a central interaction potential VH,Or  r4 (i.e.
Maxwell model!) between the collision partners (polarized atomic shell) , effectively
leading to the following velocity-dependence Ov  Ov0  v/v01. Here in case of
H  O - atom collisions a reference cross section of Ov0  kT0/mH   3  1017cm2 or
O  8  1017cm2 can be used (see Schäfer and Trefftz ,1970, or Massey, 1968), or,
when averaged over the scattering angle, of O  1015cm2 (see Gao et al., 1989,
Swazyna et al., 2021). Thus alltogether we obtain for velocities v  v0 the following
transmission function:

Trx,v  expO   v0v 1nOx 
x

x1
exp z  z0

SO
 dz
cos  

expO   v0v 1nOxSOexp x
SO cos

  exp x1
SO cos



  #   

One may keep in mind that the general validity with respect of the zenith inclination
angle  only is serious within a small range of inclination values   c  30, since our
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  #   

When simplified with vx2  kTx/mH  v02  T0/Tx, where
v0  kT0/mH  5.8km/s  0.5vesc,H, the exobasic value of the escape velocity, denotes
the mean thermal velocity of H atoms at the lower most layer at x  x0, then leads to
the following expression:

JHv,dvd  1
x1  x0 x0

x1
dx  nHxv   1

v0 3
Tx
T0

3/2 exp v
2

v02
Tx
T0

expO v0v 1nOxSO 

exp x
SO cos

  exp x1
SO cos

v2dvd

  #   

or finally with w  v/v0 given in the form:

JHw,dwd  v0 1
x1  x0 x0

x1
dx  nHxw  

Tx
T0

3/2 expw2 Tx
T0

expO
nOx
w SO 

exp x
SO cos

  exp x1
SO cos

w2dwd

  #   

Atmospheric conditions for a standard terrestrial atmosphere
between heights of x0  200km and x1  500km:

We take as a standard atmosphere the one at 14. 00h day time for medium solar
irradiance conditions F10.7  150. According to CIRA (COSPAR International Reference
Atmosphere - 1965), we then have to use the following input numbers:

nHx  nH0  104cm3

nOx  n0,o expx  x0/S0  1010  expx  x0/50cm3

Oxygen scale height: SO  50km

When simplified with   v2
x =kT (x) /mH= v0

2  •(T0/T(x)), where      
v0= √(kT0 / mH )= 5.8km/s≃,0.5vesc,H. the exobasic value of the 
escape velocity, denotes the mean thermal velocity of H  ̶ atoms 

at the lower most layer at x=x0, then leads to the following ex-
pression:

one-dimensional atmospheric approach requires limitations due to the sphericity of the
real planetary atmosphere.

This then leads to the following total H-atom outflow JHv, upwards from the top
layer at x  x1, say the exobase :

JHv,dvd  1
x1  x0 x0

x1 dx
cos nHx  v mH

kTx 3/2 exp mHv
2

kTx  

expO v0v 1nOxSOexp x
SO cos

  exp x1
SO cos

v2dvcosd

  #   

When simplified with vx2  kTx/mH  v02  T0/Tx, where
v0  kT0/mH  5.8km/s  0.5vesc,H, the exobasic value of the escape velocity, denotes
the mean thermal velocity of H atoms at the lower most layer at x  x0, then leads to
the following expression:

JHv,dvd  1
x1  x0 x0

x1
dx  nHxv   1

v0 3
Tx
T0

3/2 exp v
2

v02
Tx
T0

expO v0v 1nOxSO 

exp x
SO cos

  exp x1
SO cos

v2dvd

  #   

or finally with w  v/v0 given in the form:

JHw,dwd  v0 1
x1  x0 x0

x1
dx  nHxw  

Tx
T0

3/2 expw2 Tx
T0

expO
nOx
w SO 

exp x
SO cos

  exp x1
SO cos

w2dwd

  #   

Atmospheric conditions for a standard terrestrial atmosphere
between heights of x0  200km and x1  500km:

We take as a standard atmosphere the one at 14. 00h day time for medium solar
irradiance conditions F10.7  150. According to CIRA (COSPAR International Reference
Atmosphere - 1965), we then have to use the following input numbers:

nHx  nH0  104cm3

nOx  n0,o expx  x0/S0  1010  expx  x0/50cm3

Oxygen scale height: SO  50km
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or finally with w = v/v0 given in the form:

one-dimensional atmospheric approach requires limitations due to the sphericity of the
real planetary atmosphere.

This then leads to the following total H-atom outflow JHv, upwards from the top
layer at x  x1, say the exobase :

JHv,dvd  1
x1  x0 x0

x1 dx
cos nHx  v mH

kTx 3/2 exp mHv
2

kTx  

expO v0v 1nOxSOexp x
SO cos

  exp x1
SO cos

v2dvcosd

  #   

When simplified with vx2  kTx/mH  v02  T0/Tx, where
v0  kT0/mH  5.8km/s  0.5vesc,H, the exobasic value of the escape velocity, denotes
the mean thermal velocity of H atoms at the lower most layer at x  x0, then leads to
the following expression:

JHv,dvd  1
x1  x0 x0

x1
dx  nHxv   1

v0 3
Tx
T0

3/2 exp v
2

v02
Tx
T0

expO v0v 1nOxSO 

exp x
SO cos

  exp x1
SO cos

v2dvd

  #   

or finally with w  v/v0 given in the form:

JHw,dwd  v0 1
x1  x0 x0

x1
dx  nHxw  

Tx
T0

3/2 expw2 Tx
T0

expO
nOx
w SO 

exp x
SO cos

  exp x1
SO cos

w2dwd

  #   

Atmospheric conditions for a standard terrestrial atmosphere
between heights of x0  200km and x1  500km:

We take as a standard atmosphere the one at 14. 00h day time for medium solar
irradiance conditions F10.7  150. According to CIRA (COSPAR International Reference
Atmosphere - 1965), we then have to use the following input numbers:

nHx  nH0  104cm3

nOx  n0,o expx  x0/S0  1010  expx  x0/50cm3

Oxygen scale height: SO  50km

Atmospheric conditions for a standard terrestrial atmosphere between heights of x0 = 200km and x1 = 500km:
We take as a standard atmosphere the one at 14. 00h day time for medium solar irradiance conditions F10.7 = 150. According to CIRA 
[9], we then have to use the following input numbers:

one-dimensional atmospheric approach requires limitations due to the sphericity of the
real planetary atmosphere.

This then leads to the following total H-atom outflow JHv, upwards from the top
layer at x  x1, say the exobase :

JHv,dvd  1
x1  x0 x0

x1 dx
cos nHx  v mH

kTx 3/2 exp mHv
2

kTx  

expO v0v 1nOxSOexp x
SO cos

  exp x1
SO cos

v2dvcosd

  #   

When simplified with vx2  kTx/mH  v02  T0/Tx, where
v0  kT0/mH  5.8km/s  0.5vesc,H, the exobasic value of the escape velocity, denotes
the mean thermal velocity of H atoms at the lower most layer at x  x0, then leads to
the following expression:

JHv,dvd  1
x1  x0 x0

x1
dx  nHxv   1

v0 3
Tx
T0

3/2 exp v
2

v02
Tx
T0

expO v0v 1nOxSO 

exp x
SO cos

  exp x1
SO cos

v2dvd

  #   

or finally with w  v/v0 given in the form:

JHw,dwd  v0 1
x1  x0 x0

x1
dx  nHxw  

Tx
T0

3/2 expw2 Tx
T0

expO
nOx
w SO 

exp x
SO cos

  exp x1
SO cos

w2dwd

  #   

Atmospheric conditions for a standard terrestrial atmosphere
between heights of x0  200km and x1  500km:

We take as a standard atmosphere the one at 14. 00h day time for medium solar
irradiance conditions F10.7  150. According to CIRA (COSPAR International Reference
Atmosphere - 1965), we then have to use the following input numbers:

nHx  nH0  104cm3

nOx  n0,o expx  x0/S0  1010  expx  x0/50cm3

Oxygen scale height: SO  50km

Tx  T0 
T1T0
x1x0  x  x0  T0  T

x  x  x0
with
T0  700K
and
T1  1400K
and:
T  700K
x  300km

To study at this occasion the influence of the given temperature profile in the
atmospheric layer, we also shall compare the upcoming results with results for an
alternative atmosphere which, in contrast to the upper CIRA-typical one, has an inverted
temperature profile with the highest temperature T  T1 at x  x0 and the lowest
temperature T  T0 at the top layer x  x1. The temperature profile in this alternative
atmosphere ( a corona-like profile) would thus be given in the following form:

Tx  T1  T1  T0
x1  x0  x  x0  T1  T

x  x  x0   #   

Finally with these above standard input numbers we obtain the following expression
for the regular atmosphere:

JHw,dwd  v0nH0 1
x1  x0 x0

x1
dx  w  

T0  T/xx  x0
T0

3/2 expw2 T0  T/xx  x0
T0



expO
nOx
w 5expz  4exp x

50cos   exp 500
50cos w2dwd

  #   

or numerically using the value given by Massey (1968) with O  8  1017cm2 and
introducing the quantity   T/T0x resulting in:

JHw,dwd  v0nH0w3dwd 1
x1  x0 x0

x1
dx  1  x  x03/2 expw21  x  x0

exp 4
w expx  x0/SO  exp x

50cos   exp 10
cos 

  #   

When introducing the normalized integration variable by z  x/SO, one finally obtains:

JHw,  v0nH0 SO
x1  x0 w

3 
4

10
dz  1  z  43/2 expw21  z  4 

exp 4
w expz  4  exp z

cos   exp 10
cos 

  #   

where the quantity  evaluates to:

To study at this, occasion the influence of the given temperature profile in the atmospheric layer, we also shall compare the upcom-
ing results with results for an alternative atmosphere which, in contrast to the upper CIRA-typical one, has an inverted temperature 
profile with the highest temperature T = T1 at x = x0 and the lowest temperature T = T0 at the top layer x= x1. The temperature profile 
in this alternative atmosphere (a corona-like profile) would thus be given in the following form:

Tx  T0 
T1T0
x1x0  x  x0  T0  T

x  x  x0
with
T0  700K
and
T1  1400K
and:
T  700K
x  300km

To study at this occasion the influence of the given temperature profile in the
atmospheric layer, we also shall compare the upcoming results with results for an
alternative atmosphere which, in contrast to the upper CIRA-typical one, has an inverted
temperature profile with the highest temperature T  T1 at x  x0 and the lowest
temperature T  T0 at the top layer x  x1. The temperature profile in this alternative
atmosphere ( a corona-like profile) would thus be given in the following form:

Tx  T1  T1  T0
x1  x0  x  x0  T1  T

x  x  x0   #   

Finally with these above standard input numbers we obtain the following expression
for the regular atmosphere:

JHw,dwd  v0nH0 1
x1  x0 x0

x1
dx  w  

T0  T/xx  x0
T0

3/2 expw2 T0  T/xx  x0
T0



expO
nOx
w 5expz  4exp x

50cos   exp 500
50cos w2dwd

  #   

or numerically using the value given by Massey (1968) with O  8  1017cm2 and
introducing the quantity   T/T0x resulting in:

JHw,dwd  v0nH0w3dwd 1
x1  x0 x0

x1
dx  1  x  x03/2 expw21  x  x0

exp 4
w expx  x0/SO  exp x

50cos   exp 10
cos 

  #   

When introducing the normalized integration variable by z  x/SO, one finally obtains:

JHw,  v0nH0 SO
x1  x0 w

3 
4

10
dz  1  z  43/2 expw21  z  4 

exp 4
w expz  4  exp z

cos   exp 10
cos 

  #   

where the quantity  evaluates to:

Finally with these above standard input numbers we obtain the following expression for the regular atmosphere:

Tx  T0 
T1T0
x1x0  x  x0  T0  T

x  x  x0
with
T0  700K
and
T1  1400K
and:
T  700K
x  300km

To study at this occasion the influence of the given temperature profile in the
atmospheric layer, we also shall compare the upcoming results with results for an
alternative atmosphere which, in contrast to the upper CIRA-typical one, has an inverted
temperature profile with the highest temperature T  T1 at x  x0 and the lowest
temperature T  T0 at the top layer x  x1. The temperature profile in this alternative
atmosphere ( a corona-like profile) would thus be given in the following form:

Tx  T1  T1  T0
x1  x0  x  x0  T1  T

x  x  x0   #   

Finally with these above standard input numbers we obtain the following expression
for the regular atmosphere:

JHw,dwd  v0nH0 1
x1  x0 x0

x1
dx  w  

T0  T/xx  x0
T0

3/2 expw2 T0  T/xx  x0
T0



expO
nOx
w 5expz  4exp x

50cos   exp 500
50cos w2dwd

  #   

or numerically using the value given by Massey (1968) with O  8  1017cm2 and
introducing the quantity   T/T0x resulting in:

JHw,dwd  v0nH0w3dwd 1
x1  x0 x0

x1
dx  1  x  x03/2 expw21  x  x0

exp 4
w expx  x0/SO  exp x

50cos   exp 10
cos 

  #   

When introducing the normalized integration variable by z  x/SO, one finally obtains:

JHw,  v0nH0 SO
x1  x0 w

3 
4

10
dz  1  z  43/2 expw21  z  4 

exp 4
w expz  4  exp z

cos   exp 10
cos 

  #   

where the quantity  evaluates to:

or numerically using the value given by Massey (1968) with σO =8 • 10-17cm2 and introducing the quantity Δ= ΔT/T0Δx resulting in:

Tx  T0 
T1T0
x1x0  x  x0  T0  T

x  x  x0
with
T0  700K
and
T1  1400K
and:
T  700K
x  300km

To study at this occasion the influence of the given temperature profile in the
atmospheric layer, we also shall compare the upcoming results with results for an
alternative atmosphere which, in contrast to the upper CIRA-typical one, has an inverted
temperature profile with the highest temperature T  T1 at x  x0 and the lowest
temperature T  T0 at the top layer x  x1. The temperature profile in this alternative
atmosphere ( a corona-like profile) would thus be given in the following form:
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or numerically using the value given by Massey (1968) with O  8  1017cm2 and
introducing the quantity   T/T0x resulting in:

JHw,dwd  v0nH0w3dwd 1
x1  x0 x0

x1
dx  1  x  x03/2 expw21  x  x0

exp 4
w expx  x0/SO  exp x

50cos   exp 10
cos 

  #   

When introducing the normalized integration variable by z  x/SO, one finally obtains:

JHw,  v0nH0 SO
x1  x0 w

3 
4

10
dz  1  z  43/2 expw21  z  4 

exp 4
w expz  4  exp z

cos   exp 10
cos 

  #   

where the quantity  evaluates to:
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To study the above considered, collision-caused modulation effect under a bit wider
perspective, we also treat here quantitatively the modulation effect in a "non-standard"
atmosphere with the inverted "corona-like" temperature profile given by Equ.(??),
already discussed further above and, instead of the flux JHw,, now we find an
alternative flux JH w,.

This flux JH w,, resulting for the alternative atmosphere (inverted temperature
profile) Tx!), is given by:
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pronouncing the phenomena of a non-equilibrium distribution function even stronger
as in case of the standard atmosphere, where, however, in this latter case the
normalized velocity now is given by w2  2kT1/mH.

Main results:

First here we look at results obtained for the standard terrestrial atmosphere.
According to the expression (??) derived above for the upward hydrogen flux at
x  x1  500km one obtains the flux values JHw,  0 shown in Figures 1 and 2. While
in Fig.1 the flux values themselves are plotted versus the normalized velocity w  v/v0,
in Figure 2 we have plotted the logarithm of these fluxes, because this type of plot more
clearly manifests the nonthermal characteristic of the function JHw,  0, since w 
power law characteristics then show up in straight-lines, i.e. linear dependences on w.
As one can see, beyond the velocity w  2.5 this kind of power law spectrum seems to
come up in the expression (??) for JHw,  0.

with
T0 = 700K
and
T1 = 700K
and:
ΔT = 700K
Δx = 300km

Oxygen Scale height: SO =50km 



      Volume 5 | Issue 1 | 367Adv Theo Comp Phy, 2022 www.opastonline.com
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pronouncing the phenomena of a non-equilibrium distribution 
function even stronger as in case of the standard atmosphere, 
where, however, in this latter case the normalized velocity now 
is given by w*2 = 2kT1/mH.

Main Results
First here we look at results obtained for the standard terrestrial 
atmosphere.
According to the expression (??) derived above for the upward 
hydrogen flux at x = x1 = 500km one obtains the flux values 
JH(w,ϑ = 0) shown in Figures 1 and 2. While in Figure 1 the flux 
values themselves are plotted versus the normalized velocity w 
= v/v0, in Figure 2 we have plotted the logarithm of these fluxes, 
because this type of plot more clearly manifests the nonthermal 
characteristic of the function JH(w,ϑ = 0), since w- power law 
characteristics then show up in straight-lines, i.e. linear depen-
dences on w.

As one can see, beyond the velocity w = 2. 5 this kind of power law 
spectrum seems to come up in the expression (B) for JH(w,ϑ = 0). 

Figure 1: The upward hydrogen flux at x ꞊ x1 (exobase) as func-
tion of the normalized velocity w ꞊ v/v0 for the standard atmo-
sphere

More impressive this power law feature turns up in a logarithmic 
display of the flux function JH(w, ϑ) which is given in Figure 2.

Figure 2: The logarithm of upward hydrogen flux at x ꞊ x1 
(exobase) as function of the normalized velocity w ꞊ v/v0 for the 
standard atmosphere

One can see that beyond velocities w ꞊ v/v0 ꞊ 2. 5 the function 
JH(w, ϑ) turns into a power-law behavior.

Doing the same calculations for the case of the "alternative at-
mosphere" (inverted temperature profile Equ. (A)!) we can see 
substantial differences and a much stronger emphasis of the 
conversion into a non-thermal character of the resulting upward 
H-flux, as is shown in the next Figures 3 and 4. In the region of 
small velocities w ≤ 1. 5 one can recognize the depletion with 
respect to a Maxwellian of low velocity particles, and beyond 
velocities of w ꞊ 2. 5 a much milder decrease as compared to a 
Maxwellian decrease.
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Figure 1: The upward hydrogen flux at x  x1 (exobase) as function of the normalized
velocity w  v/v0 for the standard atmosphere

More impressive this power law feature turns up in a logarithmic display of the flux
function JHw, which is given in Figure 2.
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More impressive this power law feature turns up in a logarithmic display of the flux
function JHw, which is given in Figure 2.
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Figure 3: The upward hydrogen flux J*H (w) at x ꞊ x1 as func-
tion of the normalized velocity w ꞊ v/v0 for the non-standard 
atmosphere with the inverted temperature profile (see Equ. (A)

This phenomenon of a systematic conversion from an equilib-
rium towards a non-equilibrium distribution function is even 
more evident in Figure 4 where we have shown the logarithm 
of the function J*H (w) showing that upwards from velocities w 
≥ 1. 5 the function turns to a power law. 

Figure 4: The logarithm of the upward hydrogen flux J*H (w) 
at x ꞊ x1 as function of the normalized velocity w ꞊ v/v1 for the 
non-standard atmosphere with the inverted temperature profile 
(see Equ. (A)

In the case of Figure 4, i.e. for the inverted temperature pro-
file, one can clearly recognize the flux depletions at low veloc-
ities w ≤ 1. 5 and non-thermal flux increases beyond w ꞊ 2. 0, 
where the clear tendency of a power law spectrum becomes 

visible. This effect is due to the collision-determined expres-
sion for the H-atom transmissivity function TrH(w, x) which 
describes the effect of elastic H - O - collisions with collision 
cross sections σ(v)=σ1.(v1/v) that fall off with the reciprocal of 
the velocity w ꞊ v/v1 yielding, in case of the inverted T- profile, 
higher transmissivities at higher velocities and a stronger dom-
inance of flux contributions from deeper and hotter regions of 
the atmosphere. In case of the temperature-inverted atmosphere 
Figure 4 higher transmissions from the lower, but hotter layers 
of the atmosphere thus are guaranteed. Taking all these results 
together it shows that collision-modified thermal hydrogen flows 
from atmospheric layers with different temperatures may lead 
to nonthermal characteristics of the particle outflows from the 
uppermost exobasic layer.

There exist some differences in the recommended values of the 
relevant collision cross sections, expressed in the quantity of the 
reference cross-section σ0=σ0.(v0) given by the quantity σ0 ( v0 ) 
= σ(1)=10-17 cm2 or by the quantity σ0 (v0 )=σ(2)=10-15 cm2  [5]. In 
Figure 5 we have shown the differences that are solely due to 
these cross-section differences concerning the upcoming results 
for Log[j(esc, w] as function of w ꞊ v/v(o).

Log [j(esc, w)] for different cross-sections:

Figure 5: Log [jesc (w)] is shown as function of w ꞊ v/v(o) for 
two different cross section values: sigma1꞊ 10. (-17) cm2 and sig-
ma2꞊ 10.(-15) cm2.

The Collision-Modulated Planetary Escape Flux
At the end of this article, the important question must be put how 
these effects of a collision-induced transformation of the H-atom 
distribution function into a non-equilibrium function do influ-
ence the final hydrogen escape flow from the earth´s exobase to 
space. This escape flow namely determines the total hydrogen 
loss of the Earth´s atmosphere per time to space, and now this 
must be quantified under the new auspices treated in the sections 
above. Usually, for the purpose to determine this escape flux, the 
classical Jeans approach is used [10-12] leading to the result that 
this flux Jjeans is given by;

normalized velocity w  v/v0 for the standard atmosphere
One can see that beyond velocities w  v/v0  2.5 the function JHw, turns into a

power-law behaviour.
Doing the same calculations for the case of the "alternative atmophere" (inverted

temperature profile Equ.(??) !) we can see substantial differences and a much stronger
emphasis of the conversion into a non-thermal character of the resulting upward H flux,
as is shown in the next Figures 3 and 4. In the region of small velocities w  1.5 one
can recognize the depletion with respect to a Maxwellian of low velocity particles, and
beyond velocities of w  2.5 a much milder decrease as compared to a Maxwellian
decrease.
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Figure 3: The upward hydrogen flux JH w at x  x1 as function of the normalized
velocity w  v/v0 for the non-standard atmosphere with the inverted temperature profile
(see Equ. (??)

This phenomenon of a systematic conversion from an equilibrium towards a
non-equilibrium distribution function is even more evident in Figure 4 where we have
shown the logarithm of the function JH w showing that upwards from velocities w  2.0
the function turns to a power law.
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Figure 4: The logarithm of the upward hydrogen flux JH w at x  x1 as function of the
normalized velocity w  v/v1 for the non-standard atmosphere with the inverted
temperature profile (see Equ. (??))

In the case of Figure 4 , i.e. for the inverted temperature profile, one can clearly
recognize the flux depletions at low velocities w  1.5 and non thermal flux increases
beyond w  2.0, where the clear tendency of a power law spectrum becomes visible.
This effect is due to the collision-determined expression for the H-atom transmissivity
function TrHw.x which describes the effect of elastic H  O -collisions with collision
cross sections v  1  v1/v that fall off with the reciprocal of the velocity w  v/v1
yielding, in case of the inverted T- profile, higher transmissivities at higher velocities and
a stronger dominance of flux contributions from deeper and hotter regions of the
atmosphere. In case of the temperature-inverted atmosphere (Figure 4) higher
transmissions from the lower, but hotter layers of the atmosphere thus are guaranteed.
Taking all these results together it shows that collision-modified thermal hydrogen flows
from atmospheric layers with different temperatures may lead to nonthermal
characteristics of the particle outflows from the uppermost exobasic layer.

There exist some differences in the recommended values of the relevant collision
cross sections, expressed in the quantity of the reference cross-section o  ovo
given by the quantity ovo  1  1017cm2(Schäfer and Trefftz,1970) or by the
quantity ovo  2  1015cm2. In Figure 5 we have shown the differences that are
solely due to these cross section differences concerning the upcoming results for
Logjesc,w as function of w  v/vo.
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.Figure 5: Log[jesc(w)] is shown as function of wv/v(o) for two different cross
section values : sigma1  10.^(-17)cm^2
and sigma210.^(-15) cm^2.

The collision-modulated planetary escape flux

At the end of this article, the important question must be put how these effects of a
collision-induced transformation of the H-atom distribution function into a non-equilibrium
function do influence the final hydrogen escape flow from the earth´s exobase to space.
This escape flow namely determines the total hydrogen loss of the Earth´s atmosphere
per time to space, and now this must be quantified under the new auspices treated in the
sections above. Usually, for the purpose to determine this escape flux, the classical
Jeans approach is used (Jeans, 1923, Jones, 1923, Spitzer, 1952) leading to the result
that this flux Jjeans is given by;

Jjeans  2 
vesc

 
0

/2
fH,MAXvvcosdcosv2dv   #   

with the thermal exobase hydrogen distribution function given at a central exobase
distance rexo  rE  rex with rex  500km by

fH,MAXv  nH   mH2kTH
3/2 exp mHv

2

2kTH
   #   

and leading to the well known result (e.g. see Fahr and Shizgal, 1983):
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The collision-modulated planetary escape flux

At the end of this article, the important question must be put how these effects of a
collision-induced transformation of the H-atom distribution function into a non-equilibrium
function do influence the final hydrogen escape flow from the earth´s exobase to space.
This escape flow namely determines the total hydrogen loss of the Earth´s atmosphere
per time to space, and now this must be quantified under the new auspices treated in the
sections above. Usually, for the purpose to determine this escape flux, the classical
Jeans approach is used (Jeans, 1923, Jones, 1923, Spitzer, 1952) leading to the result
that this flux Jjeans is given by;
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with the thermal exobase hydrogen distribution function given at a central exobase
distance rexo  rE  rex with rex  500km by
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and leading to the well known result (e.g. see Fahr and Shizgal, 1983):
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The collision-modulated planetary escape flux

At the end of this article, the important question must be put how these effects of a
collision-induced transformation of the H-atom distribution function into a non-equilibrium
function do influence the final hydrogen escape flow from the earth´s exobase to space.
This escape flow namely determines the total hydrogen loss of the Earth´s atmosphere
per time to space, and now this must be quantified under the new auspices treated in the
sections above. Usually, for the purpose to determine this escape flux, the classical
Jeans approach is used (Jeans, 1923, Jones, 1923, Spitzer, 1952) leading to the result
that this flux Jjeans is given by;

Jjeans  2 
vesc

 
0

/2
fH,MAXvvcosdcosv2dv   #   

with the thermal exobase hydrogen distribution function given at a central exobase
distance rexo  rE  rex with rex  500km by

fH,MAXv  nH   mH2kTH
3/2 exp mHv
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2kTH
   #   

and leading to the well known result (e.g. see Fahr and Shizgal, 1983):
and leading to the well-known result [13]:

Jjeans  nH
2 

 2kTH
mH 1/21  HexpH   #   

where H is the escape energy parameter given by :

H  GmHM
kTHrexo

  #   

where M and rexo  re  500km here denote the mass of the earth and the central
exobase radius.

Now, in comparison to that classical result from Jeans (1923), we here in this article
find the following result for the collision-modified escape flux:

Jesc  v0nH0 
wesc


w3 

4

10
dz  1  z  43/2 expw21  z  4 

exp 4
w expz  4  exp z

cos   exp 10
cos 

 v0nH0  1
4 wesc


JHw,  0dw

  #   

Let us remember that we have used as normalization of the H-atom velocity:
kTx/mH  v02  T0/Tx, with the normalizing velocity
v0  kT0/mH  5.8km/s  0.5vesc,H. This means that the lower border in the upper
w integral delivering Jesc is given by wesc  vesc,H/v0  2. Thus, we obtain the modulated
Jeans escape flow by:

Jesc  v0nH0 1
4 2


JHw,  0dw   #   

The numerically determined dependence of JHw,  0 beyond values of w  2 as
can be seen in Figure 2 appears power-law-like, i.e. yielding in the range w  2 a straight
line when plotting LogJHw against w with the following algebra:

LogJHw  A  B  w   #   
and when fitting this algebraic expression to the plot shown in Figure 2 one obtains

the following result:
LogJHw  Logv0nH0  12.87  6.05  w   #   

Since the escape flux is an integral over the differential flux , and not over its
logarithm, we have to use the following expression:

JHw  v0nH0  10. 12.876.05w   #   
yielding the total escape flux according to Equ.(??) in the following form:

where λH is the escape energy parameter given by:
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where H is the escape energy parameter given by :

H  GmHM
kTHrexo
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where M and rexo  re  500km here denote the mass of the earth and the central
exobase radius.

Now, in comparison to that classical result from Jeans (1923), we here in this article
find the following result for the collision-modified escape flux:
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Let us remember that we have used as normalization of the H-atom velocity:
kTx/mH  v02  T0/Tx, with the normalizing velocity
v0  kT0/mH  5.8km/s  0.5vesc,H. This means that the lower border in the upper
w integral delivering Jesc is given by wesc  vesc,H/v0  2. Thus, we obtain the modulated
Jeans escape flow by:

Jesc  v0nH0 1
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JHw,  0dw   #   

The numerically determined dependence of JHw,  0 beyond values of w  2 as
can be seen in Figure 2 appears power-law-like, i.e. yielding in the range w  2 a straight
line when plotting LogJHw against w with the following algebra:

LogJHw  A  B  w   #   
and when fitting this algebraic expression to the plot shown in Figure 2 one obtains

the following result:
LogJHw  Logv0nH0  12.87  6.05  w   #   

Since the escape flux is an integral over the differential flux , and not over its
logarithm, we have to use the following expression:

JHw  v0nH0  10. 12.876.05w   #   
yielding the total escape flux according to Equ.(??) in the following form:

where M and rexo ꞊ re + 500km here denote the mass of the earth and the central exobase radius.
Now, in comparison to that classical result from Jeans (1923), we here in this article find the following result for the collision-mod-
ified escape flux:
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where H is the escape energy parameter given by :

H  GmHM
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where M and rexo  re  500km here denote the mass of the earth and the central
exobase radius.

Now, in comparison to that classical result from Jeans (1923), we here in this article
find the following result for the collision-modified escape flux:
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Let us remember that we have used as normalization of the H-atom velocity:
kTx/mH  v02  T0/Tx, with the normalizing velocity
v0  kT0/mH  5.8km/s  0.5vesc,H. This means that the lower border in the upper
w integral delivering Jesc is given by wesc  vesc,H/v0  2. Thus, we obtain the modulated
Jeans escape flow by:

Jesc  v0nH0 1
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The numerically determined dependence of JHw,  0 beyond values of w  2 as
can be seen in Figure 2 appears power-law-like, i.e. yielding in the range w  2 a straight
line when plotting LogJHw against w with the following algebra:

LogJHw  A  B  w   #   
and when fitting this algebraic expression to the plot shown in Figure 2 one obtains

the following result:
LogJHw  Logv0nH0  12.87  6.05  w   #   

Since the escape flux is an integral over the differential flux , and not over its
logarithm, we have to use the following expression:

JHw  v0nH0  10. 12.876.05w   #   
yielding the total escape flux according to Equ.(??) in the following form:
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where M and rexo  re  500km here denote the mass of the earth and the central
exobase radius.

Now, in comparison to that classical result from Jeans (1923), we here in this article
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kTx/mH  v02  T0/Tx, with the normalizing velocity
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where M and rexo  re  500km here denote the mass of the earth and the central
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where M and rexo  re  500km here denote the mass of the earth and the central
exobase radius.

Now, in comparison to that classical result from Jeans (1923), we here in this article
find the following result for the collision-modified escape flux:

Jesc  v0nH0 
wesc


w3 

4

10
dz  1  z  43/2 expw21  z  4 

exp 4
w expz  4  exp z

cos   exp 10
cos 

 v0nH0  1
4 wesc


JHw,  0dw

  #   

Let us remember that we have used as normalization of the H-atom velocity:
kTx/mH  v02  T0/Tx, with the normalizing velocity
v0  kT0/mH  5.8km/s  0.5vesc,H. This means that the lower border in the upper
w integral delivering Jesc is given by wesc  vesc,H/v0  2. Thus, we obtain the modulated
Jeans escape flow by:

Jesc  v0nH0 1
4 2


JHw,  0dw   #   

The numerically determined dependence of JHw,  0 beyond values of w  2 as
can be seen in Figure 2 appears power-law-like, i.e. yielding in the range w  2 a straight
line when plotting LogJHw against w with the following algebra:

LogJHw  A  B  w   #   
and when fitting this algebraic expression to the plot shown in Figure 2 one obtains

the following result:
LogJHw  Logv0nH0  12.87  6.05  w   #   

Since the escape flux is an integral over the differential flux , and not over its
logarithm, we have to use the following expression:

JHw  v0nH0  10. 12.876.05w   #   
yielding the total escape flux according to Equ.(??) in the following form:yielding the total escape flux according to Equ.(B) in the following form:

Jesc  v0nH0 1
4 2


JHw,  0dw  v0nH0 1

4 2


10. 12.876.05wdw   #   

The remaining integral evaluates to 
2

 10. 12.876.05wdw  0.163 and hence one finally
finds

Jesc  v0nH0 1
4 2


JHw,  0dw  2.8  10^5  0.163/12  nH0  3.81  103  nH0   #   

Comparing this above result with earlier results obtained by using the classical Jeans
expression (Jeans, 1923, see also Fahr and Shizgal (1983, especially their Figure 3 for
concretes) we find as a relative surprise that the present value Jesc  3.8  103nH0
obtained for a thermally structured atmosphere with a lower temperature T0x0  700K
and an upper temperature of T1x1  1400K not only, as expectable, is larger than the
Jeans flux for the lower temperature, i.e. JjeansT0  700K  80nH0 , but, less expectable,
is slightly smaller than the Jeans flux for the higher temperature, namely
JjeansT1  1400K  7000nH0. Therefore one can say that the classical Jeans formula
does lead to a slight overestimation of the actual hydrogen escape flow from the earth.

This result also came already out from several earlier studies following different
aspects of the escape problem like those considered by Brinkmann (1970), Fahr (1976),
Fahr and Weidner (1977), Lindenfeld and Shizgal (1979), Shizgal and Blackmore (1986)
or Pierrard (2003). In Fahr (1976) it was considered that the H-population at exobase
heights in its upward velocity branch contains particles that escape from the earth‘s
gravity field, i.e particles that do not return to the exobase from above, meaning that this
part of the population in the downward velocity branch is permanently missing at
exobase heights, i.e. it thus does not appear in the downward branch of the distribution
function and somehow needs to be replaced via collisions. This loss of escaping
particles can be expressed as a permanent loss of thermal energy from the exobasic
H population cooling down the exobasic hydrogen gas by about 80K relative to oxygen
(Fahr, 1976) and thereby reducing the Jeans escape rate by about a factor of 0.5. A
similar reduction of the Jeans flux values is elaborated in a study by Fahr and Weidner
(1977) determining the influence on the H-escape rate in the sub-exobasic atmospheric
layers due to collisions with O-atoms, however, treated in this case as hard-core elastic
collisions with velocity-independent cross sections. For the atmospheric exobasic
temperature of 1400 K the authors find a similar reduction of the Jeans escape value by
a factor of 0.35.

Putting things together, it turns out that this present study is not the first one
demonstrating that classical Jeans escape rates are undermined by present day more
realistic results, if collisional effects in the thermosphere of the Earth are taken into
account. However, this study shows for the first time that the effect of elastic collisions of
escaping H-atoms with O-atoms leads to a transformation of the original thermal
Maxwell distribution into a non-thermal kappa-like distribution with power-law
characteristics at larger velocities of v  2v0  2 kT0/mH . This should demonstrate that
when detecting exobasic H-atoms with kappa-like or power-law distributions, this does
not allow to conclude that these H-atoms originate from non-thermal lower atmospheric
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does lead to a slight overestimation of the actual hydrogen escape flow from the earth.
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gravity field, i.e particles that do not return to the exobase from above, meaning that this
part of the population in the downward velocity branch is permanently missing at
exobase heights, i.e. it thus does not appear in the downward branch of the distribution
function and somehow needs to be replaced via collisions. This loss of escaping
particles can be expressed as a permanent loss of thermal energy from the exobasic
H population cooling down the exobasic hydrogen gas by about 80K relative to oxygen
(Fahr, 1976) and thereby reducing the Jeans escape rate by about a factor of 0.5. A
similar reduction of the Jeans flux values is elaborated in a study by Fahr and Weidner
(1977) determining the influence on the H-escape rate in the sub-exobasic atmospheric
layers due to collisions with O-atoms, however, treated in this case as hard-core elastic
collisions with velocity-independent cross sections. For the atmospheric exobasic
temperature of 1400 K the authors find a similar reduction of the Jeans escape value by
a factor of 0.35.

Putting things together, it turns out that this present study is not the first one
demonstrating that classical Jeans escape rates are undermined by present day more
realistic results, if collisional effects in the thermosphere of the Earth are taken into
account. However, this study shows for the first time that the effect of elastic collisions of
escaping H-atoms with O-atoms leads to a transformation of the original thermal
Maxwell distribution into a non-thermal kappa-like distribution with power-law
characteristics at larger velocities of v  2v0  2 kT0/mH . This should demonstrate that
when detecting exobasic H-atoms with kappa-like or power-law distributions, this does
not allow to conclude that these H-atoms originate from non-thermal lower atmospheric
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Comparing this above result with earlier results obtained by us-
ing the classical Jeans expression (Jeans, 1923, see also Fahr and 
Shizgal (1983, especially their Figure 3 for concretes) we find as 
a relative surprise that the present value Jesc=3.8.103nH0 obtained 
for a thermally structured atmosphere with a lower temperature 
T0( x0 ) = 700K and an upper temperature of T1(x1) = 1400K not 
only, as expectable, is larger than the Jeans flux for the lower 
temperature, i.e. Jjeans(T0 = 700K)=80nH0, but, less expectable, is 
slightly smaller than the Jeans flux for the higher temperature, 
namely Jjeans(T1= 1400K)=7000nH0. Therefore, one can say that 
the classical Jeans formula does lead to a slight overestimation 
of the actual hydrogen escape flow from the earth.

This result also came already out from several earlier studies 
following different aspects of the escape problem like those con-
sidered by Brinkmann (1970), Fahr (1976), Fahr and Weidner 
(1977), Lindenfeld and Shizgal (1979), Shizgal and Blackmore 
(1986) or Pierrard (2003) [14-19]. In Fahr (1976) it was con-
sidered that the H-population at exobase heights in its upward 
velocity branch contains particles that escape from the earth‘s 
gravity field, i.e. particles that do not return to the exobase from 
above, meaning that this part of the population in the downward 
velocity branch is permanently missing at exobase heights, i.e. 
it thus does not appear in the downward branch of the distribu-
tion function and somehow needs to be replaced via collisions. 
This loss of escaping particles can be expressed as a permanent 
loss of thermal energy from the exobasic H-population cooling 
down the exobasic hydrogen gas by about 80K relative to oxy-
gen (Fahr, 1976) and thereby reducing the Jeans escape rate by 
about a factor of 0. 5. A similar reduction of the Jeans flux values 
is elaborated in a study by Fahr and Weidner (1977) determin-
ing the influence on the H-escape rate in the sub-exobasic atmo-
spheric layers due to collisions with O-atoms, however, treated 
in this case as hard-core elastic collisions with velocity-indepen-
dent cross sections. For the atmospheric exobasic temperature of 
1400 K the authors find a similar reduction of the Jeans escape 
value by a factor of 0. 35.

Putting things together, it turns out that this present study is not 
the first one demonstrating that classical Jeans escape rates are 
undermined by present day more realistic results, if collisional 
effects in the thermosphere of the Earth are taken into account. 
However, this study shows for the first time that the effect of 
elastic collisions of escaping H-atoms with O-atoms leads to a 
transformation of the original thermal Maxwell distribution into 
a non-thermal kappa-like distribution with power-law character-
istics at larger velocities of v≥2 v0= 2√(kT0 / mH ). This should 
demonstrate that when detecting exobasic H-atoms with kap-
pa-like or power-law distributions, this does not allow to con-
clude that these H-atoms originate from non-thermal lower at-
mospheric regions [20].
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