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Abstract
Acute compartment syndrome (ACS) is an orthopedic emergency caused by elevated pressure within a muscle compartment 
that can lead to permanent tissue damage and death. Current ACS diagnosis relies heavily on patient-reported symptoms, 
a method that is subjective and often followed by invasive intracompartmental pressure measurements that can be faulty 
in motion settings. Reliable motion diagnosis is critical for longterm monitoring that involves limb movement. This study 
proposes an objective and noninvasive diagnostic for ACS. Our device utilizes a random forest machine learning model that 
uses analog readings from force-sensitive resistors (FSRs) placed on the skin. To validate the machine learning diagnostic 
model, a data set containing FSR measurements and the corresponding simulated pressure was created for motion and 
motionless scenarios. Our diagnostic achieved up to 98% accuracy and excelled in key performance metrics, including 
sensitivity (97%) and specificity (98%), with a statistically insignificant (±5% error bars) performance difference in motion 
present cases. These results demonstrate the potential of noninvasive ACS diagnostics to meet clinical accuracy standards 
in real world scenarios.
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1. Introduction
Acute Compartment Syndrome (ACS) is an orthopedic 
emergency that occurs when tissue pressure within a muscle 
compartment exceeds perfusion pressure. ACS typically 
necessitates immediate surgical intervention in the form of a 
fasciotomy to prevent irreversible nerve and muscle damage. In 
the United States, ACS affects approximately 26,500 individuals 
annually, with approximately 70% of cases attributed to fractures 
[1]. Despite its prevalence, ACS remains a challenging and 
complex condition to diagnose, even among expert surgeons.

The primary diagnostic method, known as the “5 P’s assessment” 
is subjective and clinically unreliable [2]. In severe trauma, 
patients are unable to differentiate the pain between fractures 
and increased compartmental pressure. This method may 
lead to misdiagnosis and unnecessary invasive compartment 
measurements. Moreover, the traditional invasive needling 
pressure measurement method is single-point, associated with 
discomfort, and not applicable in nonclinical settings [3].

As an alternative to invasive measurements, noninvasive ACS 
detection devices must be investigated. A solution that employs 
skin-to-surface pressure readings to detect surrogates of increased 
intracompartmental pressure may offer patients continuous ACS 

monitoring, seamless connectivity if multiple casts are worn, 
and straightforward usability. This study proposes a noninvasive 
skin-to-surface ACS diagnostic that employs a novel machine 
learning approach to provide patients with accurate diagnostics.

2. Related Work
2.1 Acute Compartment Syndrome
Acute Compartment Syndrome (ACS) is a condition 
characterized by increased tissue pressure within a closed 
muscle compartment, leading to muscle and nerve damage as 
well as impaired blood flow circulation [4]. This issue commonly 
occurs in orthopedic casts, such as the site of a fracture, where 
the injured limb is immobilized to aid the healing process. 
Following fractures, other common causes of ACS include 
burns, high energy trauma (crash injuries), drug overdoses, 
improperly applied casts, intense athletic activity, and improper 
positioning during surgery [5].

The pathology of ACS is characterized by sharp increases in 
intracompartmental pressure or decreases in perfusion pressure, 
also known as delta pressure. Ideal intracompartmental pressure 
ranges from 0 to 8 mmHg. Pressures that indicate possible ACS 
begin from around 10 mmHg while the pressures for definite 
ACS requiring fasciotomy start from 40 mmHg and beyond. 
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Clinicians generally adhere to the rule that a perfusion pressure, 
compartmental pressure minus diastolic pressure, of 30 mmHg or 
more is a distinct sign of ACS [6]. To prevent and identify ACS, it 
is critical to be able to continuously monitor intracompartmental 
pressure or perfusion pressure in suspected cases.

Furthermore, studies have shown that external skin-to surface 
pressure reading may be associated with intracompartmental 
pressure. Literature conducted with a pig skin model with 
imitated ACS has suggested that external and internal pressure 
is positively correlated [7] A similar study has also confirmed 
that the pressure between the skin and a cast can monitor 
intracompartmental pressure, with a correlation coefficient of 
0.995 (P=0.000) [8].

2.2 Invasive Diagnostics
Measuring a patient’s compartmental pressure at the site of pain 
or muscle tensions is key in diagnosing ACS. A clinician does 
this in order to determine whether a fasciotomy is necessary 
to prevent permanent tissue damage. Often, they may follow 
the 5 P’s assessment: pain, pallor, paresthesias, paralysis, and 
pulselessness [9]. Patients who may be suspected of developing 
ACS may exhibit painful tension in muscles, a persistent 
‘burning sensation,’ and paresthesias in addition to a recent 
orthopedic injury. However, there are certain limitations to 
this form of epidemiology. Children, critically ill patients, and 
those emerging from recent anesthesia may have a difficult 
time expressing these symptoms [10]. All of these signs are 
hopelessly vague and there is little data to support the accuracy 
of these factors. At this stage, the patient’s clinician should take 
the patient’s compartmental pressure to confirm a diagnosis. 
There are two methods to measure compartment pressure that 
are frequently used and regarded as the “golden standard”: a 
syringe-based manometer (e.g. a Stryker device) and the wick or 
slit catheter technique [11].

The handheld manometer, particularly Stryker devices, 
have become a widely accepted and commercialized device 
because they are portable, simple, and relatively accurate. 
Such manometers consist of a needle to detect changes in 
compartmental pressure. They function by injecting a saline 
solution into a compartment and measuring the change in blood 
pressure in mmHg [12]. Syringe-based manometers are used for 
independent measurements when a clinician needs to know the 
compartment’s pressure at a singular point in time. On the other 
hand, measurement methods using a catheter may be left within 
the patient for continuous monitoring. The slit catheter method 
involves inserting a fluid-filled tube into the compartment. The 
tube is connected to an arterial transducer which derives the 
compartment’s blood pressure by converting the analog pressure 
measurement into a readable voltage signal.

Both devices are widely acclaimed for diagnosing ACS with 
relative accuracy, yet, there are still some limitations which 
should be improved upon. Each device should be calibrated and 
sterilized prior to each use. Multiple measurements of each site 
are suggested to ensure the diagnosis is accurate. Additionally, 
although there is little training required to use each device, 
technicians must learn the proper placement and usage of the 
probe to prevent misleading measurements. While injecting the 

saline solution into the site of possible ACS, technicians must 
make sure not to plunge too much liquid in too fast. Especially in 
a transducer-based device, a surplus of the saline solution could 
cause abnormal contractions as well as lead to inaccurate pressure 
readings and worsen ACS [13]. Furthermore, measurements 
taken from areas of abnormally high pressure (< 5 cm) may result 
in a false positive. The wick catheter and slit catheter focus on 
increasing the surface area of pressure assessments to increase 
accuracy measures, however precision may still be inhibited by 
blood clots and air bubbles. Overall, further research is needed 
to better understand the clinical symptoms of ACS and improve 
the use-ability and accuracy of ACS diagnosing devices.

2.3 Noninvasive Diagnostics 
While needle-based compartment pressure measurement is 
considered the gold standard for assessing ACS, noninvasive 
diagnostic tools have gained traction due to their potential for 
continuous monitoring, application in nonclinical settings, and 
early detection. Noninvasive approaches identify ACS through 
either the detection of decreased perfusion pressure or increased 
intracompartmental pressure [14].

Infrared imaging and near-infrared spectroscopy (NIRS) present 
a promising solution towards measuring surrogates of perfusion 
pressure. In a clinical study, infrared imaging was shown to detect 
ACS by comparing the surface temperature of the proximal and 
distal leg. However, the application of this device may be limited 
due to the challenge of establishing precise temperature variance 
thresholds, especially in trauma patients [15]. Additionally, 
NIRS-based devices, which aim to measure tissue oxygenation 
and perfusion pressure, have not demonstrated sufficient 
reliability for continuous monitoring because NIRS uses 
reflected light, which may be easily confounded by factors like 
skin abrasions, skin degloving, and muscle tissue hemorrhage 
[16].

Current noninvasive approaches also measure surrogates 
of increased intra compartmental pressure. Skin-to-surface 
pressure readings, and tissue hardness measurement are 
emerging diagnostic tools. Although, literature considering 
systems employing handheld tissue hardness measurement note 
that present technology must be adapted to be more sensitive to 
small changes in pressure between the critical ranges of 20 and 
50 mmHg [17]. Nevertheless, prior research has also investigated 
the use of a pressure sensor sleeve that can be worn underneath a 
cast [18]. The skin-to-surface pressure reading system is capable 
of measuring the specified pressure range and interacts with an 
Android application to provide real time readings of when a 
sensor exceeds the 30 mmHg threshold. However, this device 
leverages a primitive detection algorithm that does not weigh 
the readings across the eight sensors used in the sleeve. This 
may lead to false positive pressure detections and ultimately 
unnecessary visits to physician offices and hospital emergency 
rooms. Recent research indicates that there is a current lack 
of reliable noninvasive diagnostic tools that can accurately 
pinpoint readings of individual sensors and ensure system 
connectedness if multiple casts are worn. Patients may require 
monitoring in multiple limbs, and current technology is often 
fallible to ensure seamless connectivity and data aggregation 
from multiple devices. Among the various approaches, skin-to 
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surface pressure measurements show considerable promise to 
address past limitations.

2.4 Flexible Sensor Technology
Flexible pressure sensor technology holds high potential 
in noninvasive diagnostic tools for ACS. In prior studies, 
researchers developed a flexible pressure sensor for measuring 
skin surface pressure in a pig-skin model with compartment 
syndrome. The sensor had a response area of 4×4 mm2 and 
was encapsulated with PDMS to provide water resistance and 
biocompatibility. However, this limited sensing area may not be 
sufficient to capture pressure changes across larger regions or 
accurately represent the overall pressure distribution of a fracture 
site. Numerous sensors or sensors with wider response areas are 
necessary to achieve higher precision in ACS diagnostics.

Furthermore, the response units were prepared on a flexible 
foundation using a micro-Nano structure direct writing technique 
with silver paste. In the study, the touch spot of the flexible 
pressure sensor was attached to the skin using medical tape. 
This implementation may be problematic in regards to secure 
adhesion and could potentially affect the accuracy of pressure 
measurements especially in longer duration uses.

Literature has also considered the use of commercial Force 

Sensing Resistors. This system was reported to perform at a 
maximum deviation under 10% over the 20-40 mmHg range. 
Testing also achieved a 91% accuracy rate with ground truth 
negative readings at under 25 mmHg. However, this detection 
system held a 56.2% specificity. Further work is necessary 
to determine how to reduce false positive rates in this design 
to prevent unnecessary clinical visits. We hypothesize that 
switching from a linear average algorithm as presented from this 
study to a machine learning algorithm to classify ACS detection 
based on sensor readings would greatly improve performance in 
these metrics.

The remainder of this paper is arranged as follows. Section 3 
explains the methodology and validation. Section 4 offers a 
discussion on the data. Finally, Section 5 presents conclusions to 
the data and offers final reflections for future research.

3. Materials and Methods
To improve system accuracy compared to prior noninvasive 
diagnostics, an ACS detection system that leverages machine 
learning was developed. The device was validated using a 
collected dataset containing ground truth ACS predictions 
and corresponding skin-to-surface pressure readings. A 
representation of the device illustrating the setup for just one 
force sensitive resistor (FSR) sensor is shown in Fig. 1.
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at a maximum deviation under 10% over the 20-40 mmHg
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truth negative readings at under 25 mmHg. However, this de-
tection system held a 56.2% specificity. Further work is nec-
essary to determine how to reduce false positive rates in this
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from this study to a machine learning algorithm to classify
ACS detection based on sensor readings would greatly im-
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clusions to the data and offers final reflections for future re-
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Materials and Methods

To improve system accuracy compared to prior noninvasive
diagnostics, an ACS detection system that leverages machine
learning was developed. The device was validated using a
collected dataset containing ground truth ACS predictions
and corresponding skin-to-surface pressure readings. A rep-
resentation of the device illustrating the setup for just one
force sensitive resistor (FSR) sensor is shown in Fig. 1.

Fig. 1. Visual schematic of fundamental electronic components. The force sensi-
tive resistor (FSR) serves as the main way pressure data is collected while the Ar-
duino:micro analyzes the data. The 10k Ohm resistor is used to reduce the amount
of power fed into the FSR.

Hardware. To provide a comprehensive reading of the arm’s
skin-to-surface pressure, five Interlink Electronics FSRs were
sewn into a polyester biocompatible sleeve. Each sensor was
placed to be in the approximate center of the anterior, lateral,
superficial posterior and deep posterior compartments of a
simulated lower leg. The sensors were wired to an ESP32
Arduino microcontroller, with built-in Bluetooth capability,
to enable real-time data transmission and remote monitoring.
The microcontroller was placed externally from the sleeve,
maximizing patient comfort and preventing device breakage.
The device was powered using a USB host device.

Dataset Collection. As there is a lack of public data sets
available on the diagnosis of ACS in relation to skin-to-
surface pressure measurements, data points on the raw read-
ings of five FSRs and the true prediction of ACS were gath-
ered for motion and motionless scenarios. This dataset was
collected by placing the diagnostic device on an inflated IV
bag to simulate intracompartmental pressure. The IV bag
was lined with a 21 mm polyethylene foam layer to simu-
late subcutaneous fat in the leg and a 2 mm silicone artificial
skin. As shown in Fig. 2, the FSRs, sewn in the sleeve, di-
rectly touch the artificial skin. The IV bag was inflated from
zero to 50 mmHg inclusive, by increments of 10 mmHg, and
the corresponding FSR voltage readings were logged from
the Arduino. A total of 400 data points with 80 data points
for each pressure were recorded. This process was repeated
to create another 400 point dataset containing recorded FSR
measurements and ground truth pressure in a motion present
scenario. Motion was simulated by manually raising and
lowering the IV bag, by a 1 m vertical displacement, con-
tinuously throughout data collection. This was done to simu-
late real-life clinical settings such as moving the patient limb,
transport conditions, and standing up. Ground truth pressures
greater than or equal to 30 mmHg were classified as a positive
case. Pressures below 30 mmHg were recorded as a negative
ACS case.

Fig. 2. Cross-section of testing set-up. Acute compartment syndrome (ACS) was
simulated artificially using an intravenous (IV) bag, foam and silicone skin. Ground
truth pressure is the inflated pressure of the IV bag.

Random Forest Machine Learning. To classify the detec-
tion of ACS using the FSR sensor measurements, a random
forest classifier (RFC) machine learning model was deployed
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Figure 1. Visual schematic of fundamental electronic components. The force sensitive resistor (FSR) serves as the main way 
pressure data is collected while the Arduino: micro analyzes the data. The 10k Ohm resistor is used to reduce the amount of power 
fed into the FSR.

• Hardware
To provide a comprehensive reading of the arm’s skin-to-
surface pressure, five Interlink Electronics FSRs were sewn into 
a polyester biocompatible sleeve. Each sensor was placed to 
be in the approximate center of the anterior, lateral, superficial 
posterior and deep posterior compartments of a simulated lower 
leg. The sensors were wired to an ESP32 Arduino microcontroller, 
with built-in Bluetooth capability, to enable real-time data 
transmission and remote monitoring. The microcontroller was 
placed externally from the sleeve, maximizing patient comfort 
and preventing device breakage. The device was powered using 
a USB host device.

• Dataset Collection
As there is a lack of public data sets available on the diagnosis of 
ACS in relation to skin-to surface pressure measurements, data 
points on the raw readings of five FSRs and the true prediction 

of ACS were gathered for motion and motionless scenarios. This 
dataset was collected by placing the diagnostic device on an 
inflated IV bag to simulate intracompartmental pressure. The IV 
bag was lined with a 21 mm polyethylene foam layer to simulate 
subcutaneous fat in the leg and a 2 mm silicone artificial skin. As 
shown in Fig. 2, the FSRs, sewn in the sleeve, directly touch the 
artificial skin. The IV bag was inflated from zero to 50 mmHg 
inclusive, by increments of 10 mmHg, and the corresponding 
FSR voltage readings were logged from the Arduino. A total 
of 400 data points with 80 data points for each pressure were 
recorded. This process was repeated to create another 400 point 
dataset containing recorded FSR measurements and ground truth 
pressure in a motion present scenario. Motion was simulated by 
manually raising and lowering the IV bag, by a 1 m vertical 
displacement, continuously throughout data collection. This was 
done to simulate real-life clinical settings such as moving the 
patient limb, transport conditions, and standing up. Ground truth 
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pressures greater than or equal to 30 mmHg were classified as 
a positive case. Pressures below 30 mmHg were recorded as a 
negative ACS case.

with PDMS to provide water resistance and biocompatibility.
However, this limited sensing area may not be sufficient to
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represent the overall pressure distribution of a fracture site.
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range. Testing also achieved a 91% accuracy rate with ground
truth negative readings at under 25 mmHg. However, this de-
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essary to determine how to reduce false positive rates in this
design to prevent unnecessary clinical visits. We hypothesize
that switching from a linear average algorithm as presented
from this study to a machine learning algorithm to classify
ACS detection based on sensor readings would greatly im-
prove performance in these metrics.
The remainder of this paper is arranged as follows. Section
3 explains the methodology and validation. Section 4 offers
a discussion on the data. Finally, Section 5 presents con-
clusions to the data and offers final reflections for future re-
search.
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To improve system accuracy compared to prior noninvasive
diagnostics, an ACS detection system that leverages machine
learning was developed. The device was validated using a
collected dataset containing ground truth ACS predictions
and corresponding skin-to-surface pressure readings. A rep-
resentation of the device illustrating the setup for just one
force sensitive resistor (FSR) sensor is shown in Fig. 1.

Fig. 1. Visual schematic of fundamental electronic components. The force sensi-
tive resistor (FSR) serves as the main way pressure data is collected while the Ar-
duino:micro analyzes the data. The 10k Ohm resistor is used to reduce the amount
of power fed into the FSR.

Hardware. To provide a comprehensive reading of the arm’s
skin-to-surface pressure, five Interlink Electronics FSRs were
sewn into a polyester biocompatible sleeve. Each sensor was
placed to be in the approximate center of the anterior, lateral,
superficial posterior and deep posterior compartments of a
simulated lower leg. The sensors were wired to an ESP32
Arduino microcontroller, with built-in Bluetooth capability,
to enable real-time data transmission and remote monitoring.
The microcontroller was placed externally from the sleeve,
maximizing patient comfort and preventing device breakage.
The device was powered using a USB host device.

Dataset Collection. As there is a lack of public data sets
available on the diagnosis of ACS in relation to skin-to-
surface pressure measurements, data points on the raw read-
ings of five FSRs and the true prediction of ACS were gath-
ered for motion and motionless scenarios. This dataset was
collected by placing the diagnostic device on an inflated IV
bag to simulate intracompartmental pressure. The IV bag
was lined with a 21 mm polyethylene foam layer to simu-
late subcutaneous fat in the leg and a 2 mm silicone artificial
skin. As shown in Fig. 2, the FSRs, sewn in the sleeve, di-
rectly touch the artificial skin. The IV bag was inflated from
zero to 50 mmHg inclusive, by increments of 10 mmHg, and
the corresponding FSR voltage readings were logged from
the Arduino. A total of 400 data points with 80 data points
for each pressure were recorded. This process was repeated
to create another 400 point dataset containing recorded FSR
measurements and ground truth pressure in a motion present
scenario. Motion was simulated by manually raising and
lowering the IV bag, by a 1 m vertical displacement, con-
tinuously throughout data collection. This was done to simu-
late real-life clinical settings such as moving the patient limb,
transport conditions, and standing up. Ground truth pressures
greater than or equal to 30 mmHg were classified as a positive
case. Pressures below 30 mmHg were recorded as a negative
ACS case.

Fig. 2. Cross-section of testing set-up. Acute compartment syndrome (ACS) was
simulated artificially using an intravenous (IV) bag, foam and silicone skin. Ground
truth pressure is the inflated pressure of the IV bag.

Random Forest Machine Learning. To classify the detec-
tion of ACS using the FSR sensor measurements, a random
forest classifier (RFC) machine learning model was deployed
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Figure 2. Cross-section of testing set-up. Acute compartment syndrome (ACS) was simulated artificially using an intravenous (IV) 
bag, foam and silicone skin. Ground truth pressure is the inflated pressure of the IV bag.

• Random Forest Machine Learning
To classify the detection of ACS using the FSR sensor 
measurements, a random forest classifier (RFC) machine 
learning model was deployed to the diagnostic. The model was 
trained and developed using the python library Scikit-Learn. The 
RFC algorithm was selected due to its recognized high accuracy 
in data science, and its ability to overcome noise in data [19]. 
The model was trained using the ideal motionless data set. 
The test to train split of the data was 20% to 80%. The model 
was then evaluated using 20% of the motion data set to assess 
generalization of the model in the alternate use case. The input 

parameters were the raw voltage readings of five FSR sensors 
and the output was a binary classification of ACS. No feature 
preprocessing or scaling was performed on the data-set. The 
RFC was constructed using the standard number of 100 decision 
trees and all hyper parameters were left at default values. The 
max depth of a decision tree was abbreviated to be five to prevent 
model overfitting of data. This was also done to improve model 
generalization for a motion present case. An abbreviated single 
decision tree from the forest is visualized in Fig. 3, where darker 
shaded boxes indicate a higher probability for the detection class.

to the diagnostic. The model was trained and developed us-
ing the python library Scikit-Learn. The RFC algorithm was
selected due to its recognized high accuracy in data science,
and its ability to overcome noise in data (19). The model was
trained using the ideal motionless data set. The test to train
split of the data was 20% to 80%. The model was then evalu-
ated using 20% of the motion data set to assess generalization
of the model in the alternate use case. The input parameters
were the raw voltage readings of five FSR sensors and the
output was a binary classification of ACS. No feature prepro-
cessing or scaling was performed on the data-set. The RFC
was constructed using the standard number of 100 decision
trees and all hyperparameters were left at default values. The
max depth of a decision tree was abbreviated to be five to pre-
vent model overfitting of data. This was also done to improve
model generalization for a motion present case. An abbrevi-
ated single decision tree from the forest is visualized in Fig.
3, where darker shaded boxes indicate a higher probability
for the detection class.

Fig. 3. Single decision tree visualization. Darker shading indicates higher proba-
bility for the corresponding class, where blue is a positive detection and red is a
negative detection.

The gini index shown calculates the probability an instance
is wrongly classified when it is randomly chosen. As shown
in Fig. 4, the RFC algorithm utilizes a collection of decision
trees and then applies majority voting on the trees to assign a
final classification for the given set of inputs.

Fig. 4. RFC algorithm final classification using decision trees. The model averages
predictions across 100 decision trees.

The model’s utilization of numerous decision trees avoids po-
tential issues with any overfitting. The model was then ex-
ported to the ESP32 Arduino. In real-time use cases, the Ar-
duino read raw data from the FSRs, processed the pressure
measurements using the RFC model, and exported the final
diagnostic to a ReactJS web application via bluetooth.

Diagnostic Evaluation. Instances of true and false positive
and negative predictions were recorded for the ACS machine
learning diagnostic using the test portion of the prior col-
lected dataset. The device’s performance in classifying the
presence of ACS, in terms of accuracy, precision, sensitivity
(also known as recall), specificity, and F1 score were evalu-
ated. These metrics are detailed in equations (1) - (5), where
TP denotes true positives, TN denotes true negatives, FP de-
notes false positives, and FN denotes false negatives.

ACC = TP + TN
TP + TN + FP + FN

(1)

PRE = TP
TP + FP

(2)

SEN = TP
TP + FN

(3)

SPE = TN
TN + FP

(4)

F1 = 2 · PRE · SEN
PRE + SEN

(5)

Results and Discussion
Our model’s performance in motionless and motion scenar-
ios was assessed using key metrics, including accuracy, pre-
cision, sensitivity, specificity and F1 score. The accuracy
and precision during the model’s evaluation in the motionless
case was notably high at 0.98 and 0.97 respectively. Although
accuracy and precision is higher in the motionless case, these
metrics are not statistically significantly different from the
motion case, when using five percent error bars. The model
in both cases achieved a sensitivity of 0.97, which indicates
that fewer cases of ACS are missed. The model also demon-
strated a high motionless specificity of 0.98 and an accept-
able motion specificity of 0.88. Furthermore, the F1 score
reached 0.97 and 0.95 in motionless and motion scenarios,
which signals a well-balanced performance between preci-
sion and sensitivity. All these metrics are presented in Fig.
5, where accuracy, precision, sensitivity, specificity, and F1
score were consistently on the higher range from 0 to 1 in the
two scenarios.
Out of all metrics, the model exhibited a lower specificity in
the motion case. This suggests a possible challenge in cor-
rectly ruling out ACS. Nevertheless, in comparison to prior
literature that assessed a diagnostic with similar hardware
but a simple average algorithm among pressure readings, our
study still proposed a 57% increase in specificity (18). This is
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Figure 3. Single decision tree visualization. Darker shading indicates higher probability for the corresponding class, where blue is 
a positive detection and red is a negative detection.

The gini index shown calculates the probability an instance is wrongly classified when it is randomly chosen. As shown in Fig. 4, 
the RFC algorithm utilizes a collection of decision trees and then applies majority voting on the trees to assign a final classification 
for the given set of inputs.
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to the diagnostic. The model was trained and developed us-
ing the python library Scikit-Learn. The RFC algorithm was
selected due to its recognized high accuracy in data science,
and its ability to overcome noise in data (19). The model was
trained using the ideal motionless data set. The test to train
split of the data was 20% to 80%. The model was then evalu-
ated using 20% of the motion data set to assess generalization
of the model in the alternate use case. The input parameters
were the raw voltage readings of five FSR sensors and the
output was a binary classification of ACS. No feature prepro-
cessing or scaling was performed on the data-set. The RFC
was constructed using the standard number of 100 decision
trees and all hyperparameters were left at default values. The
max depth of a decision tree was abbreviated to be five to pre-
vent model overfitting of data. This was also done to improve
model generalization for a motion present case. An abbrevi-
ated single decision tree from the forest is visualized in Fig.
3, where darker shaded boxes indicate a higher probability
for the detection class.

Fig. 3. Single decision tree visualization. Darker shading indicates higher proba-
bility for the corresponding class, where blue is a positive detection and red is a
negative detection.

The gini index shown calculates the probability an instance
is wrongly classified when it is randomly chosen. As shown
in Fig. 4, the RFC algorithm utilizes a collection of decision
trees and then applies majority voting on the trees to assign a
final classification for the given set of inputs.

Fig. 4. RFC algorithm final classification using decision trees. The model averages
predictions across 100 decision trees.

The model’s utilization of numerous decision trees avoids po-
tential issues with any overfitting. The model was then ex-
ported to the ESP32 Arduino. In real-time use cases, the Ar-
duino read raw data from the FSRs, processed the pressure
measurements using the RFC model, and exported the final
diagnostic to a ReactJS web application via bluetooth.

Diagnostic Evaluation. Instances of true and false positive
and negative predictions were recorded for the ACS machine
learning diagnostic using the test portion of the prior col-
lected dataset. The device’s performance in classifying the
presence of ACS, in terms of accuracy, precision, sensitivity
(also known as recall), specificity, and F1 score were evalu-
ated. These metrics are detailed in equations (1) - (5), where
TP denotes true positives, TN denotes true negatives, FP de-
notes false positives, and FN denotes false negatives.

ACC = TP + TN
TP + TN + FP + FN

(1)

PRE = TP
TP + FP

(2)

SEN = TP
TP + FN

(3)

SPE = TN
TN + FP

(4)

F1 = 2 · PRE · SEN
PRE + SEN

(5)

Results and Discussion
Our model’s performance in motionless and motion scenar-
ios was assessed using key metrics, including accuracy, pre-
cision, sensitivity, specificity and F1 score. The accuracy
and precision during the model’s evaluation in the motionless
case was notably high at 0.98 and 0.97 respectively. Although
accuracy and precision is higher in the motionless case, these
metrics are not statistically significantly different from the
motion case, when using five percent error bars. The model
in both cases achieved a sensitivity of 0.97, which indicates
that fewer cases of ACS are missed. The model also demon-
strated a high motionless specificity of 0.98 and an accept-
able motion specificity of 0.88. Furthermore, the F1 score
reached 0.97 and 0.95 in motionless and motion scenarios,
which signals a well-balanced performance between preci-
sion and sensitivity. All these metrics are presented in Fig.
5, where accuracy, precision, sensitivity, specificity, and F1
score were consistently on the higher range from 0 to 1 in the
two scenarios.
Out of all metrics, the model exhibited a lower specificity in
the motion case. This suggests a possible challenge in cor-
rectly ruling out ACS. Nevertheless, in comparison to prior
literature that assessed a diagnostic with similar hardware
but a simple average algorithm among pressure readings, our
study still proposed a 57% increase in specificity (18). This is
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to the diagnostic. The model was trained and developed us-
ing the python library Scikit-Learn. The RFC algorithm was
selected due to its recognized high accuracy in data science,
and its ability to overcome noise in data (19). The model was
trained using the ideal motionless data set. The test to train
split of the data was 20% to 80%. The model was then evalu-
ated using 20% of the motion data set to assess generalization
of the model in the alternate use case. The input parameters
were the raw voltage readings of five FSR sensors and the
output was a binary classification of ACS. No feature prepro-
cessing or scaling was performed on the data-set. The RFC
was constructed using the standard number of 100 decision
trees and all hyperparameters were left at default values. The
max depth of a decision tree was abbreviated to be five to pre-
vent model overfitting of data. This was also done to improve
model generalization for a motion present case. An abbrevi-
ated single decision tree from the forest is visualized in Fig.
3, where darker shaded boxes indicate a higher probability
for the detection class.

Fig. 3. Single decision tree visualization. Darker shading indicates higher proba-
bility for the corresponding class, where blue is a positive detection and red is a
negative detection.

The gini index shown calculates the probability an instance
is wrongly classified when it is randomly chosen. As shown
in Fig. 4, the RFC algorithm utilizes a collection of decision
trees and then applies majority voting on the trees to assign a
final classification for the given set of inputs.

Fig. 4. RFC algorithm final classification using decision trees. The model averages
predictions across 100 decision trees.

The model’s utilization of numerous decision trees avoids po-
tential issues with any overfitting. The model was then ex-
ported to the ESP32 Arduino. In real-time use cases, the Ar-
duino read raw data from the FSRs, processed the pressure
measurements using the RFC model, and exported the final
diagnostic to a ReactJS web application via bluetooth.

Diagnostic Evaluation. Instances of true and false positive
and negative predictions were recorded for the ACS machine
learning diagnostic using the test portion of the prior col-
lected dataset. The device’s performance in classifying the
presence of ACS, in terms of accuracy, precision, sensitivity
(also known as recall), specificity, and F1 score were evalu-
ated. These metrics are detailed in equations (1) - (5), where
TP denotes true positives, TN denotes true negatives, FP de-
notes false positives, and FN denotes false negatives.
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(5)

Results and Discussion
Our model’s performance in motionless and motion scenar-
ios was assessed using key metrics, including accuracy, pre-
cision, sensitivity, specificity and F1 score. The accuracy
and precision during the model’s evaluation in the motionless
case was notably high at 0.98 and 0.97 respectively. Although
accuracy and precision is higher in the motionless case, these
metrics are not statistically significantly different from the
motion case, when using five percent error bars. The model
in both cases achieved a sensitivity of 0.97, which indicates
that fewer cases of ACS are missed. The model also demon-
strated a high motionless specificity of 0.98 and an accept-
able motion specificity of 0.88. Furthermore, the F1 score
reached 0.97 and 0.95 in motionless and motion scenarios,
which signals a well-balanced performance between preci-
sion and sensitivity. All these metrics are presented in Fig.
5, where accuracy, precision, sensitivity, specificity, and F1
score were consistently on the higher range from 0 to 1 in the
two scenarios.
Out of all metrics, the model exhibited a lower specificity in
the motion case. This suggests a possible challenge in cor-
rectly ruling out ACS. Nevertheless, in comparison to prior
literature that assessed a diagnostic with similar hardware
but a simple average algorithm among pressure readings, our
study still proposed a 57% increase in specificity (18). This is
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Figure 4. RFC algorithm final classification using decision trees. The model averages predictions across 100 decision trees.

The model’s utilization of numerous decision trees avoids 
potential issues with any overfitting. The model was then 
exported to the ESP32 Arduino. In real-time use cases, the 
Arduino read raw data from the FSRs, processed the pressure 
measurements using the RFC model, and exported the final 
diagnostic to a React JS web application via Bluetooth.

• Diagnostic Evaluation
Instances of true and false positive and negative predictions were 
recorded for the ACS machine learning diagnostic using the test 
portion of the prior collected dataset. The device’s performance 
in classifying the presence of ACS, in terms of accuracy, 
precision, sensitivity (also known as recall), specificity, and F1 
score were evaluated. These metrics are detailed in equations (1) 
- (5), where TP denotes true positives, TN denotes true negatives, 
FP denotes false positives, and FN denotes false negatives.

4. Results and Discussion
Our model’s performance in motionless and motion scenarios 
was assessed using key metrics, including accuracy, precision, 
sensitivity, specificity and F1 score. The accuracy and precision 
during the model’s evaluation in the motionless case was notably 
high at 0.98 and 0.97 respectively. Although accuracy and 
precision is higher in the motionless case, these metrics are not 
statistically significantly different from the motion case, when 
using five percent error bars. The model in both cases achieved 
a sensitivity of 0.97, which indicates that fewer cases of ACS 
are missed. The model also demonstrated a high motionless 
specificity of 0.98 and an acceptable motion specificity of 
0.88. Furthermore, the F1 score reached 0.97 and 0.95 in 

motionless and motion scenarios, which signals a well-balanced 
performance between precision and sensitivity. All these metrics 
are presented in Fig. 5, where accuracy, precision, sensitivity, 
specificity, and F1 score were consistently on the higher range 
from 0 to 1 in the two scenarios.

Out of all metrics, the model exhibited a lower specificity in 
the motion case. This suggests a possible challenge in correctly 
ruling out ACS. Nevertheless, in comparison to prior literature 
that assessed a diagnostic with similar hardware but a simple 
average algorithm among pressure readings, our study still 
proposed a 57% increase in specificity [18]. This is
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Fig. 5. Comparison of model performance metrics in motion and no motion present scenarios. Higher scores indicate greater performance. Accuracy, precision, sensitivity,
and specificity tended to be of stronger values from the range of 0 to 1 in both test cases. Performance during motionless diagnosis was found to be statistically insignificant
compared to the motion present case. Five percent error bars were used to determine significance.

likely because machine learning is more capable of discern-
ing complex relationships between the sensors compared to a
simple linear approach.
Notably, our device’s accuracy is comparable to the industry
standard arterial line manometer, both sharing the same accu-
racy score (20). The high performance in accuracy indicates
the potential of our system as a clinically reliable diagnostic
tool.
Moreover, in Fig. 6, a Receiver Operating Characteristic
(ROC) curve was generated to assess the diagnostic per-
formance of the model in the motionless scenario. The
ROC curve visually represents the trade-off between sen-
sitivity and specificity across different threshold settings in
the model’s output probability for a binary classification of
ACS. The convex shape towards the upper-left corner of our
model’s ROC curve suggests a robust ability to correctly clas-
sify positive instances while minimizing false positives.

Fig. 6. The generated receiver operating characteristic (ROC) curve of our detection
model in the motionless case. The upper-left corner convex shape and related
area under curve metric indicates strong performance in distinguishing between
true positives and false positives.

This trend is also shown for the ROC curve of the motion sce-

nario shown in Fig. 7. This convexity signifies a favorable
model performance, as our model outperformed a random
classifier, depicted by the dashed gray line, and approached
the ideal scenario of perfect classification of the condition in
both test cases. The area under curve (AUC) is greater in
the motionless case compared to the motion present scenario.
These findings are expected as movement may interfere with
FSR measurement and introduce further noise in the data.

Fig. 7. The generated receiver operating characteristic (ROC) curve of our detection
model in the motion case. The upper-left corner convex shape demonstrates that
the classifier’s performance is not due to random chance.

Altogether, the total manufacturing cost to produce a user
ready product was 73 USD. In reference, the industry stan-
dard Stryker intracompartmental pressure system is commer-
cially available for 1575 USD (12). Furthermore, our device
is 97% cheaper than a 2019 study proposing a noninvasive
diagnostic utilizing similar technology that held a total cost
of 144.31 USD (18). Our device’s cost-effectiveness is most
likely due to the use of commercially available FSRs rather
than self manufactured ones.
In conclusion, our diagnostic model demonstrated excep-
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Figure 5. Comparison of model performance metrics in motion and no motion present scenarios. Higher scores indicate greater 
performance. Accuracy, precision, sensitivity, and specificity tended to be of stronger values from the range of 0 to 1 in both test 
cases. Performance during motionless diagnosis was found to be statistically insignificant compared to the motion present case. Five 
percent error bars were used to determine significance.

likely because machine learning is more capable of discerning 
complex relationships between the sensors compared to a simple 
linear approach.

Notably, our device’s accuracy is comparable to the industry 
standard arterial line manometer, both sharing the same accuracy 
score [20]. The high performance in accuracy indicates the 
potential of our system as a clinically reliable diagnostic tool.

Moreover, in Fig. 6, a Receiver Operating Characteristic (ROC) 
curve was generated to assess the diagnostic performance of 
the model in the motionless scenario. The ROC curve visually 
represents the trade-off between sensitivity and specificity across 
different threshold settings in the model’s output probability for 
a binary classification of ACS. The convex shape towards the 
upper-left corner of our model’s ROC curve suggests a robust 
ability to correctly classify positive instances while minimizing 
false positives.

Figure 6. The generated receiver operating characteristic (ROC) curve of our detection model in the motionless case. The upper-left 
corner convex shape and related area under curve metric indicates strong performance in distinguishing between true positives and 
false positives.

This trend is also shown for the ROC curve of the motion 
scenario shown in Fig. 7. This convexity signifies a favorable 
model performance, as our model outperformed a random 
classifier, depicted by the dashed gray line, and approached 
the ideal scenario of perfect classification of the condition in 

both test cases. The area under curve (AUC) is greater in the 
motionless case compared to the motion present scenario. These 
findings are expected as movement may interfere with FSR 
measurement and introduce further noise in the data.
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and specificity tended to be of stronger values from the range of 0 to 1 in both test cases. Performance during motionless diagnosis was found to be statistically insignificant
compared to the motion present case. Five percent error bars were used to determine significance.
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ing complex relationships between the sensors compared to a
simple linear approach.
Notably, our device’s accuracy is comparable to the industry
standard arterial line manometer, both sharing the same accu-
racy score (20). The high performance in accuracy indicates
the potential of our system as a clinically reliable diagnostic
tool.
Moreover, in Fig. 6, a Receiver Operating Characteristic
(ROC) curve was generated to assess the diagnostic per-
formance of the model in the motionless scenario. The
ROC curve visually represents the trade-off between sen-
sitivity and specificity across different threshold settings in
the model’s output probability for a binary classification of
ACS. The convex shape towards the upper-left corner of our
model’s ROC curve suggests a robust ability to correctly clas-
sify positive instances while minimizing false positives.
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This trend is also shown for the ROC curve of the motion sce-

nario shown in Fig. 7. This convexity signifies a favorable
model performance, as our model outperformed a random
classifier, depicted by the dashed gray line, and approached
the ideal scenario of perfect classification of the condition in
both test cases. The area under curve (AUC) is greater in
the motionless case compared to the motion present scenario.
These findings are expected as movement may interfere with
FSR measurement and introduce further noise in the data.

Fig. 7. The generated receiver operating characteristic (ROC) curve of our detection
model in the motion case. The upper-left corner convex shape demonstrates that
the classifier’s performance is not due to random chance.

Altogether, the total manufacturing cost to produce a user
ready product was 73 USD. In reference, the industry stan-
dard Stryker intracompartmental pressure system is commer-
cially available for 1575 USD (12). Furthermore, our device
is 97% cheaper than a 2019 study proposing a noninvasive
diagnostic utilizing similar technology that held a total cost
of 144.31 USD (18). Our device’s cost-effectiveness is most
likely due to the use of commercially available FSRs rather
than self manufactured ones.
In conclusion, our diagnostic model demonstrated excep-
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Figure 7. The generated receiver operating characteristic (ROC) curve of our detection model in the motion case. The upper-left 
corner convex shape demonstrates that the classifier’s performance is not due to random chance.

Altogether, the total manufacturing cost to produce a user ready 
product was 73 USD. In reference, the industry standard Stryker 
intracompartmental pressure system is commercially available 
for 1575 USD [12]. Furthermore, our device is 97% cheaper 
than a 2019 study proposing a noninvasive diagnostic utilizing 
similar technology that held a total cost of 144.31 USD [18]. 
Our device’s cost-effectiveness is most likely due to the use 
of commercially available FSRs rather than self-manufactured 
ones.

In conclusion, our diagnostic model demonstrated exceptional 
performance metrics, including high accuracy, precision, 
sensitivity, and F1 score, with a slight trade-off in specificity in 
the motion case. The cost-effective manufacturing of our device 
makes it a compelling and economic alternative to the current 
invasive gold standard.

5. Conclusion
In this study, we developed a noninvasive ACS diagnostic 
system that utilizes skin-to-surface pressure measurement and 
RFC machine learning for real-time and continuous detection. 
To address the lack of public data sets on ACS, our work 
contributed a dataset containing FSR readings and corresponding 
simulated intracompartmental pressure in both motionless and 
motion settings. Validation of our diagnostic demonstrated high 
performance in accuracy, precision, sensitivity, specificity, and 
F1 score. Notably, our testing suggests that our noninvasive 
device can achieve accuracy levels comparable to the clinical 
invasive gold standard and may be able to serve as a cost-effective 
alternative. Furthermore, our device was able to accurately predict 
ACS in motion present settings with an insignificant difference 
compared to motionless detection. This finding demonstrates that 
a noninvasive diagnostic can be applied to real-world scenarios 
where continuous pressure monitoring includes periods where 
the patient is being transported. Additionally, these results 
indicate that a machine learning noninvasive diagnostic can 
address past limitations of invasive devices becoming fallible 
in motion present scenarios [21]. Comprehensively, our study 
presents a promising noninvasive ACS diagnostic that holds the 
potential to meet clinical standards, become adopted into the 
standard of care and improve the patient experience.

Future Work
As our device was tested using an artificial simulation of 
intracompartmental pressure, the generalizability of our results 
to real-world scenarios may be constrained. A continuation of 
our study could entail in vivo testing to thoroughly validate 
the efficacy of our diagnostic. Further work including animal 
models would aid to confirm the device’s accuracy. Additionally, 
extended tests analyzing the device’s performance in long-term 
continuous applications have the potential to provide greater 
insight into the device’s capabilities. Overall, future work is 
necessary to allow the translation of our device into medical 
applications.

Acknowledgements
This work was funded by the Camas High School Math Science 
and Technology Program.

References
1.	 Via, A. G., Oliva, F., Spoliti, M., & Maffulli, N. (2015). 

Acute compartment syndrome. Muscles, ligaments and 
tendons journal, 5(1), 18.

2.	 Guo, J., Yin, Y., Jin, L., Zhang, R., Hou, Z., & Zhang, Y. 
(2019). Acute compartment syndrome: Cause, diagnosis, 
and new viewpoint. Medicine, 98(27). 

3.	 Li, H., Zhou, S., Fan, C., Zhu, X., Huang, H., & Gu, W. 
(2019, February). A novel flexible wireless pressure sensor 
for diagnosis of the osteofascial compartment syndrome. 
In 9th International Symposium on Advanced Optical 
Manufacturing and Testing Technologies: Optoelectronic 
Materials and Devices for Sensing and Imaging (Vol. 
10843, pp. 73-84). SPIE.

4.	 Penn Medicine. (2023). Compartment syndrome.
5.	 M. Torlincasi. (2023). Acute Compartment Syndrome. Stat 

Pearls Publishing.
6.	 Klenerman, L. (2007). The evolution of the compartment 

syndrome since 1948 as recorded in the JBJS (B). The 
Journal of Bone & Joint Surgery British Volume, 89(10), 
1280-1282. 

7.	 Gu, Y., Yang, W., Huang, H., & Gu, W. (2021). A new 
flexible pressure sensor contributes to the early diagnosis 
of acute compartment syndrome. International Journal of 
Clinical and Experimental Pathology, 14(6), 768.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396671/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396671/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396671/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635163/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635163/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635163/
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE10843E..0CL/abstract
https://orthoinfo.aaos.org/en/diseases--conditions/compartment-syndrome/
https://www.ncbi.nlm.nih.gov/books/NBK448124/
https://www.ncbi.nlm.nih.gov/books/NBK448124/
https://scholar.archive.org/work/lpis3rql3fa2pkgzwd3nhrgxw4/access/wayback/http:/pdfs.semanticscholar.org/162e/6a6411c218d838b9c84f5a5fced025de9cd2.pdf
https://scholar.archive.org/work/lpis3rql3fa2pkgzwd3nhrgxw4/access/wayback/http:/pdfs.semanticscholar.org/162e/6a6411c218d838b9c84f5a5fced025de9cd2.pdf
https://scholar.archive.org/work/lpis3rql3fa2pkgzwd3nhrgxw4/access/wayback/http:/pdfs.semanticscholar.org/162e/6a6411c218d838b9c84f5a5fced025de9cd2.pdf
https://scholar.archive.org/work/lpis3rql3fa2pkgzwd3nhrgxw4/access/wayback/http:/pdfs.semanticscholar.org/162e/6a6411c218d838b9c84f5a5fced025de9cd2.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255205/


 Volume 3 | Issue 1 | 8J Electrical Electron Eng, 2024

Copyright: ©2024 Florence Liang, et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

https://opastpublishers.com

8.	 Uslu, M. M., & Apan, A. (2000). Can skin surface pressure 
under a cast reveal intracompartmental pressure?. Archives 
of Orthopaedic and Trauma Surgery, 120, 319-322. 

9.	 Andrews, L. W. (1990). Neurovascular assessment. 
Advancing Clinical Care: Official Journal of NOAADN, 
5(6), 5-7.

10.	 Hammerberg, E. M., & Bachur, R. G. (2023). Acute 
compartment syndrome of the extremities. Up-to-date. com.

11.	 P. Allen and N. Barkin. (2020). Classification of 
intracompartmental pressure monitor devices under product 
code lxc. Technical report, FDA.gov; United States Federal 
Food and Drug Administration.

12.	 Uliasz, A., Ishida, J. T., Fleming, J. K., & Yamamoto, L. G. 
(2003). Comparing the methods of measuring compartment 
pressures in acute compartment syndrome. The American 
Journal of emergency medicine, 21(2), 143-145. 

13.	 Witthauer, L., Cascales, J. P., Roussakis, E., Li, X., Goss, 
A., Chen, Y., & Evans, C. L. (2020). Portable oxygen-
sensing device for the improved assessment of compartment 
syndrome and other hypoxia-related conditions. ACS 
sensors, 6(1), 43-53. 

14.	 Sellei, R. M., Kobbe, P., & Hildebrand, F. (2021). Non-
invasive diagnostics in acute compartment syndrome (p. 
55). IntechOpen. 

15.	 Katz, L. M., Nauriyal, V., Nagaraj, S., Finch, A., Pearlstein, 
K., Szymanowski, A., & Pearlstein, R. D. (2008). 
Infrared imaging of trauma patients for detection of acute 

compartment syndrome of the leg. Critical care medicine, 
36(6), 1756-1761. 

16.	 Schmidt, A. H., Bosse, M. J., Obremskey, W. T., O’Toole, R. 
V., Carroll, E. A., Stinner, D. J., & Major Extremity Trauma 
Research Consortium. (2018). Continuous near-infrared 
spectroscopy demonstrates limitations in monitoring the 
development of acute compartment syndrome in patients 
with leg injuries. JBJS, 100(19), 1645-1652. 

17.	 Joseph, B., Varghese, R. A., Mulpuri, K., Paravatty, S., 
Kamath, S., & Nagaraja, N. (2006). Measurement of tissue 
hardness: can this be a method of diagnosing compartment 
syndrome noninvasively in children? Journal of Pediatric 
Orthopaedics B, 15(6), 443-448. 

18.	 C. Ferrari, K. Ho, B. Thomas, and A. Tovar. (2019). Sensei 
‘the Cast Master’.

19.	 Reis, I., Baron, D., & Shahaf, S. (2018). Probabilistic 
random forest: A machine learning algorithm for noisy data 
sets. The Astronomical Journal, 157(1), 16. 

20.	 Boody, A. R., & Wongworawat, M. D. (2005). Accuracy in 
the measurement of compartment pressures: a comparison 
of three commonly used devices. JBJS, 87(11), 2415-2422. 

21.	 Merle, G., Comeau-Gauthier, M., Tayari, V., Kezzo, M. 
N., Kasem, C., Al-Kabraiti, F., & Harvey, E. J. (2020). 
Comparison of three devices to measure pressure for 
acute compartment syndrome. Military Medicine, 
185(Supplement_1), 77-81. 

https://www.researchgate.net/profile/Alpaslan-Apan/publication/12464509_Can_skin_surface_pressure_under_a_cast_reveal_intracompartmental_pressure/links/5541fca40cf2aba1e4f123fa/Can-skin-surface-pressure-under-a-cast-reveal-intracompartmental-pressure.pdf
https://www.researchgate.net/profile/Alpaslan-Apan/publication/12464509_Can_skin_surface_pressure_under_a_cast_reveal_intracompartmental_pressure/links/5541fca40cf2aba1e4f123fa/Can-skin-surface-pressure-under-a-cast-reveal-intracompartmental-pressure.pdf
https://www.researchgate.net/profile/Alpaslan-Apan/publication/12464509_Can_skin_surface_pressure_under_a_cast_reveal_intracompartmental_pressure/links/5541fca40cf2aba1e4f123fa/Can-skin-surface-pressure-under-a-cast-reveal-intracompartmental-pressure.pdf
https://pubmed.ncbi.nlm.nih.gov/2222741/#:~:text=Assessment%20of%20neurovascular%20status%20is,the%20importance%20of%20neurovascular%20assessments.
https://pubmed.ncbi.nlm.nih.gov/2222741/#:~:text=Assessment%20of%20neurovascular%20status%20is,the%20importance%20of%20neurovascular%20assessments.
https://pubmed.ncbi.nlm.nih.gov/2222741/#:~:text=Assessment%20of%20neurovascular%20status%20is,the%20importance%20of%20neurovascular%20assessments.
http://Hammerberg, E. M., & Bachur, R. G. (2023). Acute compartment syndrome of the extremities. Up-to-date
http://Hammerberg, E. M., & Bachur, R. G. (2023). Acute compartment syndrome of the extremities. Up-to-date
https://www.fda.gov/media/141904/download
https://www.fda.gov/media/141904/download
https://www.fda.gov/media/141904/download
https://www.fda.gov/media/141904/download
https://d1wqtxts1xzle7.cloudfront.net/53198678/ajem.2003.5003520170519-8344-13kzx3e-libre.pdf?1495215664=&response-content-disposition=inline%3B+filename%3DComparing_the_methods_of_measuring_compa.pdf&Expires=1707205095&Signature=bQ8uniwBRAktxbY-i1twOO1n9q5a-NK428VYuE1kqTfs7~Hojid5pBSGcDkVD6gIg~cuPNGefQdJRGGz81WWGk3hZBe409DkWonInxhZUmhXXXifUWyk3GHiR-HBVd6~GjLTGLQgOz4ZL~PIDUBn40qbTfa7GvYOR2UuplP5dbBsy7098hII2fwjCV3KD5EPpN38TrCvLU~cz4wQN1BGofDw63CGjrn~TKcmvF7ng27utyx~CJZC3oSARHf8KwxJXmPLJnytEHe1m5Sy-BXk9Xuvc10B7eaNJZpKp9kw8GpOPbcP0EYr9h7UqKjuEnWZWV9z5Q6iKva5N1opBlTDIQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/53198678/ajem.2003.5003520170519-8344-13kzx3e-libre.pdf?1495215664=&response-content-disposition=inline%3B+filename%3DComparing_the_methods_of_measuring_compa.pdf&Expires=1707205095&Signature=bQ8uniwBRAktxbY-i1twOO1n9q5a-NK428VYuE1kqTfs7~Hojid5pBSGcDkVD6gIg~cuPNGefQdJRGGz81WWGk3hZBe409DkWonInxhZUmhXXXifUWyk3GHiR-HBVd6~GjLTGLQgOz4ZL~PIDUBn40qbTfa7GvYOR2UuplP5dbBsy7098hII2fwjCV3KD5EPpN38TrCvLU~cz4wQN1BGofDw63CGjrn~TKcmvF7ng27utyx~CJZC3oSARHf8KwxJXmPLJnytEHe1m5Sy-BXk9Xuvc10B7eaNJZpKp9kw8GpOPbcP0EYr9h7UqKjuEnWZWV9z5Q6iKva5N1opBlTDIQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/53198678/ajem.2003.5003520170519-8344-13kzx3e-libre.pdf?1495215664=&response-content-disposition=inline%3B+filename%3DComparing_the_methods_of_measuring_compa.pdf&Expires=1707205095&Signature=bQ8uniwBRAktxbY-i1twOO1n9q5a-NK428VYuE1kqTfs7~Hojid5pBSGcDkVD6gIg~cuPNGefQdJRGGz81WWGk3hZBe409DkWonInxhZUmhXXXifUWyk3GHiR-HBVd6~GjLTGLQgOz4ZL~PIDUBn40qbTfa7GvYOR2UuplP5dbBsy7098hII2fwjCV3KD5EPpN38TrCvLU~cz4wQN1BGofDw63CGjrn~TKcmvF7ng27utyx~CJZC3oSARHf8KwxJXmPLJnytEHe1m5Sy-BXk9Xuvc10B7eaNJZpKp9kw8GpOPbcP0EYr9h7UqKjuEnWZWV9z5Q6iKva5N1opBlTDIQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/53198678/ajem.2003.5003520170519-8344-13kzx3e-libre.pdf?1495215664=&response-content-disposition=inline%3B+filename%3DComparing_the_methods_of_measuring_compa.pdf&Expires=1707205095&Signature=bQ8uniwBRAktxbY-i1twOO1n9q5a-NK428VYuE1kqTfs7~Hojid5pBSGcDkVD6gIg~cuPNGefQdJRGGz81WWGk3hZBe409DkWonInxhZUmhXXXifUWyk3GHiR-HBVd6~GjLTGLQgOz4ZL~PIDUBn40qbTfa7GvYOR2UuplP5dbBsy7098hII2fwjCV3KD5EPpN38TrCvLU~cz4wQN1BGofDw63CGjrn~TKcmvF7ng27utyx~CJZC3oSARHf8KwxJXmPLJnytEHe1m5Sy-BXk9Xuvc10B7eaNJZpKp9kw8GpOPbcP0EYr9h7UqKjuEnWZWV9z5Q6iKva5N1opBlTDIQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://arxiv.org/pdf/2207.03338.pdf
https://arxiv.org/pdf/2207.03338.pdf
https://arxiv.org/pdf/2207.03338.pdf
https://arxiv.org/pdf/2207.03338.pdf
https://arxiv.org/pdf/2207.03338.pdf
https://www.intechopen.com/chapters/76895
https://www.intechopen.com/chapters/76895
https://www.intechopen.com/chapters/76895
https://d1wqtxts1xzle7.cloudfront.net/47923671/Infrared_imaging_of_trauma_patients_for_20160809-2874-131at0s-libre.pdf?1470773314=&response-content-disposition=inline%3B+filename%3DInfrared_imaging_of_trauma_patients_for.pdf&Expires=1707205199&Signature=ZeRfupq0FlPOt8Zo7b9HPqNnpskhR4rfVNRZ5irCt0DyGE~EDtRDNefEdgo26Fyxm7AhZLInLvSLkf7~OQ3biXGFjU3JDfLnuAgRZnsaaAG38VK8EQKtY7sr4xpL6FQE4gst8mj0yXOleR7Z9Vx~ekhToKVXAl-Lxt-5nlB2vAntLGhlv1uQVAm~Okme8E9p3LL4KNUwTcjko3eRVKEKqkwBzc8V7QfK-yvhs2S6wnJ1kOWXWSaPX3ZEkUheG1LBJZp81lTSg7L34bSuxAW9JDuSexJMLSZNKE2y19uNHiXwlcEkMt86zg0tc3gUbIAdSAJUmE6AFdl3U-PZvWmYog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/47923671/Infrared_imaging_of_trauma_patients_for_20160809-2874-131at0s-libre.pdf?1470773314=&response-content-disposition=inline%3B+filename%3DInfrared_imaging_of_trauma_patients_for.pdf&Expires=1707205199&Signature=ZeRfupq0FlPOt8Zo7b9HPqNnpskhR4rfVNRZ5irCt0DyGE~EDtRDNefEdgo26Fyxm7AhZLInLvSLkf7~OQ3biXGFjU3JDfLnuAgRZnsaaAG38VK8EQKtY7sr4xpL6FQE4gst8mj0yXOleR7Z9Vx~ekhToKVXAl-Lxt-5nlB2vAntLGhlv1uQVAm~Okme8E9p3LL4KNUwTcjko3eRVKEKqkwBzc8V7QfK-yvhs2S6wnJ1kOWXWSaPX3ZEkUheG1LBJZp81lTSg7L34bSuxAW9JDuSexJMLSZNKE2y19uNHiXwlcEkMt86zg0tc3gUbIAdSAJUmE6AFdl3U-PZvWmYog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/47923671/Infrared_imaging_of_trauma_patients_for_20160809-2874-131at0s-libre.pdf?1470773314=&response-content-disposition=inline%3B+filename%3DInfrared_imaging_of_trauma_patients_for.pdf&Expires=1707205199&Signature=ZeRfupq0FlPOt8Zo7b9HPqNnpskhR4rfVNRZ5irCt0DyGE~EDtRDNefEdgo26Fyxm7AhZLInLvSLkf7~OQ3biXGFjU3JDfLnuAgRZnsaaAG38VK8EQKtY7sr4xpL6FQE4gst8mj0yXOleR7Z9Vx~ekhToKVXAl-Lxt-5nlB2vAntLGhlv1uQVAm~Okme8E9p3LL4KNUwTcjko3eRVKEKqkwBzc8V7QfK-yvhs2S6wnJ1kOWXWSaPX3ZEkUheG1LBJZp81lTSg7L34bSuxAW9JDuSexJMLSZNKE2y19uNHiXwlcEkMt86zg0tc3gUbIAdSAJUmE6AFdl3U-PZvWmYog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/47923671/Infrared_imaging_of_trauma_patients_for_20160809-2874-131at0s-libre.pdf?1470773314=&response-content-disposition=inline%3B+filename%3DInfrared_imaging_of_trauma_patients_for.pdf&Expires=1707205199&Signature=ZeRfupq0FlPOt8Zo7b9HPqNnpskhR4rfVNRZ5irCt0DyGE~EDtRDNefEdgo26Fyxm7AhZLInLvSLkf7~OQ3biXGFjU3JDfLnuAgRZnsaaAG38VK8EQKtY7sr4xpL6FQE4gst8mj0yXOleR7Z9Vx~ekhToKVXAl-Lxt-5nlB2vAntLGhlv1uQVAm~Okme8E9p3LL4KNUwTcjko3eRVKEKqkwBzc8V7QfK-yvhs2S6wnJ1kOWXWSaPX3ZEkUheG1LBJZp81lTSg7L34bSuxAW9JDuSexJMLSZNKE2y19uNHiXwlcEkMt86zg0tc3gUbIAdSAJUmE6AFdl3U-PZvWmYog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/47923671/Infrared_imaging_of_trauma_patients_for_20160809-2874-131at0s-libre.pdf?1470773314=&response-content-disposition=inline%3B+filename%3DInfrared_imaging_of_trauma_patients_for.pdf&Expires=1707205199&Signature=ZeRfupq0FlPOt8Zo7b9HPqNnpskhR4rfVNRZ5irCt0DyGE~EDtRDNefEdgo26Fyxm7AhZLInLvSLkf7~OQ3biXGFjU3JDfLnuAgRZnsaaAG38VK8EQKtY7sr4xpL6FQE4gst8mj0yXOleR7Z9Vx~ekhToKVXAl-Lxt-5nlB2vAntLGhlv1uQVAm~Okme8E9p3LL4KNUwTcjko3eRVKEKqkwBzc8V7QfK-yvhs2S6wnJ1kOWXWSaPX3ZEkUheG1LBJZp81lTSg7L34bSuxAW9JDuSexJMLSZNKE2y19uNHiXwlcEkMt86zg0tc3gUbIAdSAJUmE6AFdl3U-PZvWmYog__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://pubmed.ncbi.nlm.nih.gov/30277994/
https://pubmed.ncbi.nlm.nih.gov/30277994/
https://pubmed.ncbi.nlm.nih.gov/30277994/
https://pubmed.ncbi.nlm.nih.gov/30277994/
https://pubmed.ncbi.nlm.nih.gov/30277994/
https://pubmed.ncbi.nlm.nih.gov/30277994/
https://www.researchgate.net/profile/Nagaraja-Upadhya-2/publication/340667230_Measurement_of_tissue_hardness_can_this_be_a_method_of_diagnosing_compartment_syndrome_noninvasively_in_children/links/5e985f80299bf13079a01eb4/Measurement-of-tissue-hardness-can-this-be-a-method-of-diagnosing-compartment-syndrome-noninvasively-in-children.pdf
https://www.researchgate.net/profile/Nagaraja-Upadhya-2/publication/340667230_Measurement_of_tissue_hardness_can_this_be_a_method_of_diagnosing_compartment_syndrome_noninvasively_in_children/links/5e985f80299bf13079a01eb4/Measurement-of-tissue-hardness-can-this-be-a-method-of-diagnosing-compartment-syndrome-noninvasively-in-children.pdf
https://www.researchgate.net/profile/Nagaraja-Upadhya-2/publication/340667230_Measurement_of_tissue_hardness_can_this_be_a_method_of_diagnosing_compartment_syndrome_noninvasively_in_children/links/5e985f80299bf13079a01eb4/Measurement-of-tissue-hardness-can-this-be-a-method-of-diagnosing-compartment-syndrome-noninvasively-in-children.pdf
https://www.researchgate.net/profile/Nagaraja-Upadhya-2/publication/340667230_Measurement_of_tissue_hardness_can_this_be_a_method_of_diagnosing_compartment_syndrome_noninvasively_in_children/links/5e985f80299bf13079a01eb4/Measurement-of-tissue-hardness-can-this-be-a-method-of-diagnosing-compartment-syndrome-noninvasively-in-children.pdf
https://www.researchgate.net/profile/Nagaraja-Upadhya-2/publication/340667230_Measurement_of_tissue_hardness_can_this_be_a_method_of_diagnosing_compartment_syndrome_noninvasively_in_children/links/5e985f80299bf13079a01eb4/Measurement-of-tissue-hardness-can-this-be-a-method-of-diagnosing-compartment-syndrome-noninvasively-in-children.pdf
https://fisher.wharton.upenn.edu/wp-content/uploads/2019/06/SENSEI.pdf
https://fisher.wharton.upenn.edu/wp-content/uploads/2019/06/SENSEI.pdf
https://fisher.wharton.upenn.edu/wp-content/uploads/2019/06/SENSEI.pdf
https://fisher.wharton.upenn.edu/wp-content/uploads/2019/06/SENSEI.pdf
https://fisher.wharton.upenn.edu/wp-content/uploads/2019/06/SENSEI.pdf
https://c2dx.co/wp-content/uploads/2021/02/accuracy_in_the_measurement_of_compartment.7.pdf
https://c2dx.co/wp-content/uploads/2021/02/accuracy_in_the_measurement_of_compartment.7.pdf
https://c2dx.co/wp-content/uploads/2021/02/accuracy_in_the_measurement_of_compartment.7.pdf
https://d1wqtxts1xzle7.cloudfront.net/99304566/usz305-libre.pdf?1677725287=&response-content-disposition=inline%3B+filename%3DComparison_of_Three_Devices_to_Measure_P.pdf&Expires=1708763101&Signature=RZrAauffmLzMG89wfq5TSywm6Su-6tQKdgfYrTy09jplQe~ujSfHnj9g4yvJB3YIQP5m~4RCsi~Nr8RNZQQuCKXlwG0sor6ymoFEI3IXGP2eF1WIjWb03JJ1FlaUR983LjlvcOz~zwCAKINMckEJLUP74MJU2W-lfU5Ep~jvWcfOyJ06gv3PV1i9~HESX0w2EJ-xCe72KEN0FcIETeM4~38fVP9KLzdAQcdB5ok1-kRC4rrU4LXqMJ8W49rLTfkqKbjE6JtVBtdzseV4rgbzXDEXJ3~M53nDM-tJjWnJZuohlTJSqczjSiQCxF7e37YTT9dsmEhQkP4jXpiLpRItMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/99304566/usz305-libre.pdf?1677725287=&response-content-disposition=inline%3B+filename%3DComparison_of_Three_Devices_to_Measure_P.pdf&Expires=1708763101&Signature=RZrAauffmLzMG89wfq5TSywm6Su-6tQKdgfYrTy09jplQe~ujSfHnj9g4yvJB3YIQP5m~4RCsi~Nr8RNZQQuCKXlwG0sor6ymoFEI3IXGP2eF1WIjWb03JJ1FlaUR983LjlvcOz~zwCAKINMckEJLUP74MJU2W-lfU5Ep~jvWcfOyJ06gv3PV1i9~HESX0w2EJ-xCe72KEN0FcIETeM4~38fVP9KLzdAQcdB5ok1-kRC4rrU4LXqMJ8W49rLTfkqKbjE6JtVBtdzseV4rgbzXDEXJ3~M53nDM-tJjWnJZuohlTJSqczjSiQCxF7e37YTT9dsmEhQkP4jXpiLpRItMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/99304566/usz305-libre.pdf?1677725287=&response-content-disposition=inline%3B+filename%3DComparison_of_Three_Devices_to_Measure_P.pdf&Expires=1708763101&Signature=RZrAauffmLzMG89wfq5TSywm6Su-6tQKdgfYrTy09jplQe~ujSfHnj9g4yvJB3YIQP5m~4RCsi~Nr8RNZQQuCKXlwG0sor6ymoFEI3IXGP2eF1WIjWb03JJ1FlaUR983LjlvcOz~zwCAKINMckEJLUP74MJU2W-lfU5Ep~jvWcfOyJ06gv3PV1i9~HESX0w2EJ-xCe72KEN0FcIETeM4~38fVP9KLzdAQcdB5ok1-kRC4rrU4LXqMJ8W49rLTfkqKbjE6JtVBtdzseV4rgbzXDEXJ3~M53nDM-tJjWnJZuohlTJSqczjSiQCxF7e37YTT9dsmEhQkP4jXpiLpRItMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/99304566/usz305-libre.pdf?1677725287=&response-content-disposition=inline%3B+filename%3DComparison_of_Three_Devices_to_Measure_P.pdf&Expires=1708763101&Signature=RZrAauffmLzMG89wfq5TSywm6Su-6tQKdgfYrTy09jplQe~ujSfHnj9g4yvJB3YIQP5m~4RCsi~Nr8RNZQQuCKXlwG0sor6ymoFEI3IXGP2eF1WIjWb03JJ1FlaUR983LjlvcOz~zwCAKINMckEJLUP74MJU2W-lfU5Ep~jvWcfOyJ06gv3PV1i9~HESX0w2EJ-xCe72KEN0FcIETeM4~38fVP9KLzdAQcdB5ok1-kRC4rrU4LXqMJ8W49rLTfkqKbjE6JtVBtdzseV4rgbzXDEXJ3~M53nDM-tJjWnJZuohlTJSqczjSiQCxF7e37YTT9dsmEhQkP4jXpiLpRItMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/99304566/usz305-libre.pdf?1677725287=&response-content-disposition=inline%3B+filename%3DComparison_of_Three_Devices_to_Measure_P.pdf&Expires=1708763101&Signature=RZrAauffmLzMG89wfq5TSywm6Su-6tQKdgfYrTy09jplQe~ujSfHnj9g4yvJB3YIQP5m~4RCsi~Nr8RNZQQuCKXlwG0sor6ymoFEI3IXGP2eF1WIjWb03JJ1FlaUR983LjlvcOz~zwCAKINMckEJLUP74MJU2W-lfU5Ep~jvWcfOyJ06gv3PV1i9~HESX0w2EJ-xCe72KEN0FcIETeM4~38fVP9KLzdAQcdB5ok1-kRC4rrU4LXqMJ8W49rLTfkqKbjE6JtVBtdzseV4rgbzXDEXJ3~M53nDM-tJjWnJZuohlTJSqczjSiQCxF7e37YTT9dsmEhQkP4jXpiLpRItMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

