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Abstract

The classical commutative coding theory has been recently extended to noncommutative rings of polynomial type.
There are many interesting works in coding theory over single Ore extensions. In this review article we present the most
relevant algebraic tools and properties of single Ore extensions used in noncommutative coding theory. The last section
represents the novelty of the paper. We will discuss the algebraic sets arising in noncommutative coding theory but for
skew PBW extensions. These extensions conform a general class of noncommutative rings of polynomial type and cover
several algebras arising in physics and noncommutative algebraic geometry, in particular, they cover the Ore extensions
of endomorphism injective type and the polynomials rings over fields.
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1. Introduction

The algebraic tools involved in the study of commutative coding theory have been recently extended to
noncommutative skew cyclic codes. The main algebraic object in the classical commutative cyclic coding
theory is the F-algebra F[z]/(z™ — 1), where F is a finite field and (2™ — 1) is the ideal generated by z™ —1
(see for example [10], [19], [33]). In the skew cyclic coding theory this object is replaced by A/(z"™ — 1),
where A is the Ore extension F[z;o], with ¢ an automorphism of F, o more general, by A/Af, where
A = Flz;0,0], with § is a o-derivation of F and f a polynomial of A (see [2]). Even more, the field F can
be replaced by an arbitrary ring R (see [11]).

In this review paper we have in mind two main purposes: To review the basic algebraic tools of the
noncommutative coding theory over skew polynomial rings and, using this information, to investigate
analogue tools for skew PBW extensions. These extensions conform a general class of noncommutative
rings of polynomial type and cover several algebras arising in mathematical physics and noncommutative
algebraic geometry, in particular, they cover the Ore extensions of injective type. The focus of this work
is algebraic and the paper not should be understood as a contribution to noncommutative coding theory.
The novelty of the paper is only in the last section where we extend to skew PBW extensions some
results about algebraic sets of Ore extensions arising in coding theory.

The paper is organized as follows: In the second section we will review the most important algebraic
tools and the general theory the of skew cyclic codes, i.e., the coding theory over single Ore extensions. In
particular, we will consider the following aspects of the classical coding theory, but in the noncommutative
context: linear codes, skew cyclic codes, dual codes, generator matrix, parity check matrix, length and
dimension of skew codes, similarity of polynomials, Vandermonde and Wronskian matrices, skew algebraic
sets, bound of a polynomial, remainder and evaluation codes, maximum rank distance, minimal Hamming
distance, linearized polynomials, among others. The structure and properties of skew cyclic codes depend
on R,0, and f. The most remarkable case with practical applications is when R = F is a finite field and
0 =0 (see [2], [6], [11], [13], [14], [15]). Another key case is when R = F(t), with FF a finite field and 6 = 0.
We will study first the general theory and tools of the skew cyclic codes for the case when R = F is a
finite field and A := F|z; 0, 4], and after this, we will study the mentioned remarkable particular cases.
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In the third section we will review some basic facts about the skew PBW extensions that will use in
the last section. The last section is dedicated to extend to skew PBW extensions some of the results
presented in the previous sections, more precisely, we will study the algebraic sets, the ideal of points
and the relationship between them. Some properties of affine algebraic sets of commutative algebraic
geometry will be extended. The results will be illustrated with examples.

2. Coding Theory over Single Ore Extensions

Following mainly [2], [3], [11], [13], [14], [16], [17], [20] and [22], we will review in this section the most
important algebraic tools and the general theory the of skew cyclic codes, i.e., the coding theory over
single Ore extensions. All that we will present in this section is known and have been published
before in the specialized literature. For simplicity, we will avoid to indicate the reference from which
we have taken a definition or a result, only in some places we will point out the precise reference used.

For completeness, and in order that the non specialized readers can follow this paper, we will include
some proofs omitted in the literature.

Let R be a ring, o be an automorphism of R and ¢ be a o-derivation of R, i.e., a functiond : R — R
such that 6(r + s) = 0(r) + d(s) and d(rs) = o(r)d(s) + d(r)s, for all r, s € R. With this, we consider the
skew polynomial ring R[x; o, d], also called Ore extension ([35]). Recall that A := R[z;0,0] is a
noncommutative ring of polynomial type with rule of multiplication

xr =o(r)z + 6(r), for every r € R.

See [34] (or also [27]) for the algebraic and homological properties of skew polynomial rings. Let f be
a monic nonzero polynomial of A of degree n > 1, f := 2" + fo_12" 1 4+ --- + fy, and let Af be the
left ideal of A generated by f. We consider the left A-module A/Af; note that A/Af is a left R-module
with the canonical product r - @ := 7a, for all r € R and a € A. Since f is monic, we have the following
isomorphism of left R-modules:

n—1
pr:R" — AJAf, (ro,r1,...,Tn-1) — Zn:ﬂ’ (2.1)
i=0

Indeed, it is clear that py is an R-homomorphism; let (ro,71,...,r,—1) € ker(pys), then there exists a € A
such that Z;L;Ol rixt = af, assume that a # 0, let a := a,,x™ + - - - + ag, with m > 0 and a,,, # 0, then

|
-

n

’f’il‘i:(aml‘m-l-"')(In-f—‘“):amIm+n+“',

Il
=)

i

a contradiction. So, @ = 0 and hence r; = 0 for 0 < ¢ < n — 1. This proves that py is a monomorphism.
Now let g € A, since f is monic there exists ¢ € A such that g = qf + h, where h € A with h = 0 or

deg(h) < n —1, whence g = h. This proves that ps is an epimorphism.
Definition 2.1. Let R be a ring and A := R[x;0,0] be as before.
(i) An R-linear code € is a submodule of the left R-module R"™. The elements of R™ are called words.

(i) A module (0,9, f)-skew cyclic code C is a left A-submodule of AJAf. If f = a™ —r or
f =a™—1, the codes are called module (0,8, r)-skew constacyclic or module (o,d)-skew
cyclic, respectively. The polynomial f is the modulus of the module skew cyclic code C.

(iii) If f is a two-sided polynomial, i.e., Af = fA, then a module skew cyclic code is called an ideal
skew cyclic code.

Remark 2.2. (i) Fixing R, 0,9 and f, we will simply talk about skew cyclic codes. Observe that if C is
a skew cyclic code, then p;l(C) is an R-linear code. In some papers a skew cyclic code is defined as an
R-linear code € such that p;(€) is a submodule of the left A-module A/Af (see [11]). This is because

there exists a bijective correspondence between
the collection of R-linear codes such that its images by py are submodules of the left A-module A/Af
and the collection of skew cyclic codes.

(if) Consider the particular case when § = 0 and f = 2™ — 1. Then, C is a skew cyclic code if and
only if

(ro,m1,...,mn—1) € p;l(C) = (0(rn=1),0(10),...,0(rn—2)) € p;l(C).

In fact, observe that (o(rn,—1),0(r0),...,0(rn—2)) = p;l(x(ro + 7z + -+ rp_12"1)). The name given
to codes as cyclic codes is justified in the particular case when | o |= n.
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Definition 2.3. For Z := (z1,...,2,), 2" := (21,...,2,,) € R", the inner product of Z and Z' in R"
is defined as

Z-Z' =2+ + 2z,
Let € be an R-linear code. The dual code of €, denoted €L, is the R-linear code defined by
¢t:={ZeR"|Z-Z' =0, forall Z' € €}.
The R-linear code € is self-orthogonal if € C ¢1. € is self-dual if € = L.

Definition 2.4. Let C be a skew cyclic code. The dual code of C, denoted C*, is the R-linear code ¢+,
where € := p;l(C).

Remark 2.5. Observe that if C be a skew cyclic code, then C* := ¢ is not necessarily a skew cyclic
code, i.e., py(Ct) = ps(€t) could not be a submodule of A/Af. In Subsection 2.3 we will consider a
particular situation in which this C* is a skew linear code.

From now on in this paper we will assume that R is an IBN ring (Invariant Basis Number),
i.e., if M is a free left R-module of finite bases, then all bases of M have the same number of elements
(see [21] or also [25]). With this in mind, we recall next the notion of generator matrix for R-linear codes.
In the next subsection we will present this notion for skew cyclic codes over finite fields.

Definition 2.6. Let € be an R-linear code of R™. Assume that € is R- free of finite dimension s and
let X :={v1,...,vs} be a R-basis of €, with v; :== (vi1,...,0im) € € C R", 1 < i < s. The generator
matriz of € with respect to X, denoted Gx (<), is defined by

V11 -+ VUin
Vsl = VUsn

It is clear that the structure and properties of skew cyclic codes depend on R, 0, and f. The most
remarkable case with practical applications is when R = F is a finite field and § = 0 (see [2], [6], [11],
(13], [14], [15]). Another key case is when R = F(t), with F a finite field and § = 0. We will study
first the general theory and tools of the skew cyclic codes for the case when R = F is a finite field and
A :=F[z;0,4], and after this, we will study the mentioned remarkable cases.

2.1 Main Tools of the Skew Cyclic Coding Theory

Let F be a finite field of characteristic ¢, ¢ be an automorphism of F and § be a o-derivation of F. We
will recall in the present subsection the general theory and the main tools involved in the study of the
skew cyclic codes over the Ore extension A := F[x; 0, d]. We fix the modulus f € A of degree n > 1.

2.1.1 Basic Definitions and Elementary Facts

(A) Recall that |F| = ¢*, where k := dimg, (F) and Z, is the prime subfield of F (see [38], or also [26]); up
to isomorphism, [F consists of the roots of the polynomial 21" — z; Aut(F) & Zy, and every automorphism
is a power of the Frobenius automorphism defined by

¢:F—>TF, z—29 z€TF. (2.2)
§ is necessarily a o-inner derivation, i.e., there exists w € F such that
d(z) = w(o(z) — z), for every z € F. (2.3)

In fact, recall that the group F* is cyclic generated by any t-th primitive root z of unity, where t := ¢* —1.

Then, for o # iF, w := J(i(()'i"_)% is the claimed element since given z € F* there exists [ > 1 such that z =

2z} and (2.3) can be proved by induction on . If o = i, then § = 0: Indeed, §(z8) = ngflé(zo) =0 and
21 := z{ also generates F* since ged(g, ¢* — 1) = 1, whence for every z € F, §(2) = 6(2}) = 121716(21) = 0.

(B) Since A is a left (and right) euclidean domain, then A is a left (and right) principal ideal domain,
and consequently, a left (and right) noetherian domain (see [34], or also [27]). Hence, a skew cyclic code
has the form Ag/Af, for some g € A with Af C Ag. Thus, there exists h € A such that f = hg, i.e., g is
a right divisor of f, and we write g |, f. Therefore,

there exists a bijective correspondence between the skew cyclic codes and the monic right divisors of f.
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(C) Observe that the skew cyclic code Ag/Af is a F-vector of dimension deg(f) —deg(g). Ag/Af is a
subspace of the F-vector space A/Af which has dimension n = deg(f). There are two trivial skew cyclic
codes: A/Af of dimension n and Af/Af of dimension 0.

Definition 2.7. Let C := Ag/Af be a skew cyclic code.
(i) The length of C is n.
(i) s:=deg(f) — deg(g) = dimp(C) is the dimension of C.
(iii) The generator matrix of C, denoted G(C), is the matriz of Msxn(F) defined by the coefficients of

9,79, ...,2° g, disposed by rows and completing with zeros.

Proposition 2.8. Let C := Ag/Af be a skew cyclic code of dimension s. Then, € := p;l(C) is a F-linear
code of dimension s and there exists a basis X of € such that G(C) = Gx(€).

Proof. Since p;l is a F-isomorphism, then € is a F-linear code of dimension s, moreover, Y is a F-basis of
C if and only if p;l (Y) is a F-basis of €. In the F-vector space A/Af, observe that Y := {g,7g,...,x5 1g}

is a F-basis of C: In fact, since A is domain, Y has exactly s elements, moreover, if z1,...,25_1 € IF are
such that 20 + 21T + - + 25125~ 1g = 0, then (29 + 212 + - + z,_12°"1)g = pf, for some p € A, but
since s + deg(g) = n, we conclude that p=0,s80 zg = --- = 251 = 0.

Now let X := p;l(Y) = {vg,...,vs_1}, where
v; = p;l(ng) = (Vi1, .-+, Vin) and v;1, ..., Vs, are the coefficients of xig, 0 <i < s — 1.

Now it is clear that G(C) = Gx(€). O

Proposition 2.9. Let € be a F-linear code with dimp(€) = s.

(i) dimp(€t) = n —s. Moreover, there exists a F-basis X+ of €+ such that Gx.(€+)Z'T = 0, for
every Z' € €. In particular, Gx 1 (€H)Gx(€)T =0.

(i) (eh)t =c.
(iii) Let Z' € F". Then, Z' € € if and only if Gx.(€+)Z'T = 0.
It is said that Gx.(€1) is a parity check matriz of €.

Proof. (i) Since F is a field, it is clear that every F-linear code has a finite F-basis, thus, ¢+ has a
finite F-basis X+ C F"; of course X1 satisfies Gy (€1)Z'T = 0, for every Z' € €. In particular,
Gx1(€H)Gx(€)T = 0. Only remains to show that X1 has n — s elements. Let [ be the size of X1, we
consider the F-linear operator

NG
2 (Z-24,...,7 - Z,),

where X := {Z,...,Zs} is a F-basis of €. Observe that ker(T) = ¢+ and Im(7T') is the F-space generated
by the columns of Gx(€). From this we get that n=10+s,s0l=n—s.

(ii) Tt is clear that € C (€1)L, but from (i), dimp((€1)1) =n — (n — 5) = 5, s0 € = (€))L,

(iii) =): Evident.

<): From Gx1 (€+)Z'" =0 we get that Z’ € (¢+)+ = ¢. O

(D) Given two polynomials g1, g2 € A, not both zero, there exists a unique monic polynomial d € A
such that d | ¢1,d |, g2 and if h € A is such that h |, g1,h |, g2, then h |. d. In fact, d is the monic
generator of the left ideal Agy + Ago, i.e., Ad = Agy + Ago. The polynomial d is called the greatest
common right divisor of g1 and go, denoted by gerd(g1, g2). We say that g1, go are relatively right-
prime if d = 1. Now we assume that g1, g2 € A are nonzero, then there exists a unique monic polynomial
l € A such that g1 |, ,g2 | [, and if h € A is such that g1 | h,g2 | h, then [ |, h. In fact, [ is the
monic generator of Ag; N Age, i.e., Al = Ag; N Ago. We denote | = lelm(gy, g2) and [ is called the least
common left multiple of g1 and g2. In [35] has been proved that

deg(g1) + deg(g2) = deg(gerd(g1, 92)) + deg(lclm(gy, g2))- (2.4)

Similar definitions and statements are true for the left side.

(E) The following example in [11] shows that a right divisor is not necessarily a left divisor: Let
F be the field of 4 = 22 elements, F = {0,1,w,w?}, then w® = 1, s0 0 = (w — 1)(w? +w + 1), i.e.,
w? = —w — 1 = w + 1; if ¢ is the Frobenius authomorphism, then for every z € F, ¢?(z) = 2* = 2, i.e,
¢? = ip. Then, in A := F[z; ¢] we have
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(22 +wz +w)(z +w) =23 + w?z +w?,

so x +w is a right divisor of 23 4+ w2z + w?, but it is not a left divisor: Contrary, let zox? 4+ 212+ 29 € A
such that (z + w)(222% + 212 + 20) = 2° + w2z + w?, then

3+ w4+ w? = 2323 + (wze + 23)2% + (w21 + 28)z + wzo,
therefore
z% =1, wzy + 22 = 0,wz; + 2(2) = w?, wzy = w?,

S0 zg = w and hence wz; =0, i.e., z; = 0, whence zo = 0, a contradiction.
(F) Let g,h € A, we say that g, h are right associated, denoted g ~, h, if there exists u € A* such
that ¢ = uh. It is clear that this is an equivalence relation. Observe that

g ~ h if and only if g |, h and h |, g.

In fact, if g ~, h, then g = uh, for some v € A*, so h = u~lg, whence g |, h and h |, g. Conversely,
assume that g | h and h |, g, then there exist u,u’ € A such that h = ug and g = v’h. Then, g = v'ug
and h = wu'h; if g = 0, then h = 0 and g ~, h; assume that g # 0, then h # 0, whence 1 = «'u and
1=uwuu/, ie., u € A*. Therefore, g ~, h.

Left associated polynomials are defined similarly. Observe that these definitions are not left-right
symmetric. In the next item we will consider a close related notion which is left-right symmetric.

(G) Let g,h € A, we say that g, h are left similar, denoted g =2 h, if there exists an isomorphism
of left A-modules A/Ag <+ A/Ah. In a similar way can be defined the right similarity of polynomials.
We will prove next that g ~; h if and only if g ~, h. By symmetry, we will only show that if g ~; h,
then g ~, h. Let A/Ag % A/Ah be an isomorphism of left A-modules, let (1) := p, with p € A, then
a(g) = 0 = ga(l) = gp = gp, so there exists ¢ € A such that gp = gh. We define A/hA LR A/gA by
B(a) :=qa, for a € A. 8 is well-defined since if @ = b, then a — b = he, for some ¢ € A, so qa — qb = gpe,
i.e., ga = ¢b. It is clear that 3 is a homomorphism of right A-modules. Thus, we have a function A
defined by A(a) := B. Observe that A(az o ap) = Aas) o Aay), with A/Ag 2% AJAh 22 A/Ak:
Indeed, let oy (1) := p1, with gpy = g1k, and ay(1) := Pa, with hps = gok, then (ag 0 a1)(1) = p1pa, with
9(p1p2) = (q1g2)k, s0 (B2 0 1)(1) = [g21] and B2(B1(1)) = B2(@) = B2(I)q1 = [a2]q1 = [g2q1]. Moreover,
A(igjag) =iasga and A(iajan) = ia/na- Hence, B = A(a) is an isomorphism and so is 871, ie., g =, h.

Thus, we will simply write g & h. It is clear that & is an equivalence relation.

Note that if g ~, h then g & h (also, if g ~; h then g ~ h). Indeed, there exists u € A* such that
g = uh, we define

AJAg = AJAh, @+ a, for a € A. (2.5)
o is well-defined since if @ = b, then a — b € yg for some y € A, so a —b = yuh, i.e., a = b. It is clear that
« is a homomorphism of left A-modules. If a(@) = 0, then a = yh for some y € A, so a = yu~lg, i.e.,
@ = 0. This proves that « is injective. Clearly « is surjective.

(H) A polynomial p € A is irreducible if it satisfies the following conditions: (i) p # 0 (ii) p ¢ A* (iii)
if p = hk for some h,k € A, then h € A* or k € A*. We know that A is a left and right principal ideal
domain, using this, in [3] it is proved that A is an unique factorization domain (UFD) in the sense
of the following definition: Every element 0 # a ¢ A* can be factorized in a finite product a = py - - - p; of
irreducible elements p; € A, 1 < ¢ <t, and if p; ---py = q1 - - - g5, Where p;, g; are irreducible, 1 <7 < ¢,
1 < j <s, then s =t and there exists a permutation 7 in the symmetric group S; of all permutations of
the set {1,...,t} such that ¢; = pr@, 1 <i <t

Related to this we have the following basic facts (see [3]):

(a) Let p € A, p is right prime if p ¢ A* and if b,c € A are such that p |, be, then p |. b or p |, c.

(b) Consider C[z; 0], with o(z) := Z, z € C. For any z € C, x — z is irreducible, but if z € C — R,
then x — z is not prime: In fact,

(@=2) | (2 +2)(@—2) =% = |2 = (& — |2]) (= + |2]),
but (x — 2) {, (x — |z]) and (z — 2) f» (z + |2|)-

(c) Since A is a left principal ideal domain, then for p € A, p is irreducible if and only if Ap is a left
maximal ideal of A.

(d) Related to (b), since A is a left and right principal ideal domain, every right prime element of A
is irreducible.

Remark 2.10. Some definitions and facts of this subsection are valid without assuming that F is finite,
inclusive, some of them are valid for any domain, i.e., for arbitrary rings without zero divisors (see [3]).
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2.1.2 Roots of Polynomials and Algebraic Sets
Recall that we are assuming that A := F[z;0,d]. Now we will consider right roots, right remainders of
polynomials of A and skew algebraic sets. Some related key matrices will be also studied. We will follow
[2], [11], [20] and [22].

Let g € A and z € F, then there exist unique ¢ € A and r € F such that

g=qlz—z)+r.

Definition 2.11. With the previous notation, r is the right evaluation of g in z, i.e., g(z) :=r. We
say that z is a right root of g if g(z) =0, i.e., if r =0.

Thus,
z is a right root of g if and only if (x — 2) |, g.

The habitual replacing the variable x by z is not a well-defined notion for the evaluation of polynomials,
for example, if o # ip and u € F is such that o(u) # u, then for g := uz = zo~!(u) in F[z;0] and any
0 # z € F we have g(z) = uz = zo~(u) = 01 (u)z, i.e., u = 071 (u), a contradiction.

Example 2.7 in [11] shows that a polynomial of degree n may have more that n right roots: We
consider again F[z; ¢] as in part (E) of the previous subsection, then

2+1=@+1)(z+1) = (z+wv)(z+w)=(z+w)(r+w?),

i.e., —1,—w, —w? are right roots of 22 + 1. On the other hand, if the field of coefficients is infinite, then
a polynomial may have infinitely many right roots. In fact, consider Clz; o], with o(2) := %, z € C, then
2?2 — 1= (z +2z)(z — 2), for any z on the unit circle.

Definition 2.12. For i > 0, the i-th norm on F is defined by
No(z) :=1, Niy1(z) := 0(N;(2))z + 6(N;(2)), for any z € F.
The right evaluation of a polynomial can be computed using the norm.
Proposition 2.13 ([22], Lemma 2.4). Let g=go+ -+ gmz™ € A and z € F. Then,
9(2) = 22120 9iNi(2).
Proof. Observe that
9= 2ito9ilNi(z) = XLg gin’ = 3210 9iNi(2) = 3070 gz — Ni(2)).

If we prove that for every i > 0, z° — N;(2) € A(x — z), then there exists ¢ € A such that g =
q(z—2)+>"1" , 9:N;(z), so by the uniqueness of the right evaluation we conclude that g(z) = 0" g; Ni(2).

We prove the claimed by induction. For i = 0 we have 2% — No(z) = 0 € A(z — 2). For i = 1,
x — Ni(z) =2 — z € A(z — z). Assume that the assertion is true for ¢, then

ot = Nipa(z) = 2™ = o(Ni(2))z — 6(Ni(2)) = 2! + o(Ni(2)) (@ — 2) — o(Ni(2))z — 6(Ni(2)) =
o(N;(2))(z — z) + z(a* — Ni(2)) € A(z — 2).

Proposition 2.14. Let D be o or § and
F[D;o] :={>",9:D"| g € F,m >0}
where ¢;D* : F — T is defined by (¢;D%)(z) := ¢;D*(2), z € F. Then,

(i) F[D;o0] is a ring, where the addition is the habitual addition by coefficients and the multiplication is
the composition of functions.

(if) The function

L:A— F[D;o]
g:i= Zgi:ri — L(g) =Ly = Zgi’Di
i=0 1=0

is a surjective ring homomorphism, where A = Flx;0] if D = o and 6 = 0, and A = Flz;0,0] if

D=3#0.
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Proof. (i) Evident.

(ii) All conditions of a ring homomorphism can be easy checked except, probably, the product. We
have to show that

L(gix'h;z?) = L(gix") o L(hja?), for all 4,j > 0 and g;, h; € F.
The proof of this identity is by induction on i. We consider first that D = ¢. For ¢ = 0 the assertion is
trivial; let 4 = 1, then

gizh;x? = gio(h;)zI™ — gio(h;) DI = gjo(h;)o? T, so for z € F, (gio(h;)o™)(2) = gio(hj)o?T1(2);
L(giz) o L(hja’) = (9:D) o (h;D?), so for z € F, (9:D) o (h;D?)(2) = (gi0) © (h;j07)(2) = gio(h;)a7 ! (2).

We assume that the identity is true for ¢, from this we get

L(giw hjal) = L(gix'zhjal) = L(giz'o(hy)aI ™) = L(gia') o L(a(hy)2’ ™) = (¢;D7) o (o(h;)D7H), s0
for z € F, (¢;D) o (o(h;)DIt1)(2) = gio™™ 1 (h;)oH1(2);

L(gix"™) o L(hja?) = (g:D™') o (h;D7), s0 for z € F, (¢; D) o (h;D7)(2) = gio™ (hy)o™ 7+ (2).
Now we assume that D = §. For ¢ = 0 the statement is trivial. Let ¢ = 1, then
gizhjz? = gio(hy)a? ™ + g;6(hy)2? — gio(h;)6" ™ + g;6(h;)87, so for z € F,
(950 ()0 1+ i (Ry)87) (=) = gicr ()67 + (=) + gid ()39 (=)
L(gix) o L(hja?) = (gi0) o (h;6?), so for z € F, ,
(915) o (hjéﬂ)(z) = gzd(hﬁj(z)) = giU(hj)5j+l(Z) + gzé(h])éj (Z)
We assume that the identity is true for ¢ and from this we get
L{gia*Thyad) = L(gaiah;al) = L(gixio(hy)ai+! + gia'd(hy)at) =
L(gia') o L(o(hyj)a?™) + L(gia’) o L(6(hy)a’) = (g:6") o (0(h;)67 ") + (9:0°) 0 (3(h;)d7), so for 2 € F,
(9i6") 0 ((hy)07H1)(2) + (g:6") 0 (8(hy)07)(2) = (9:0") (0 (hj)67 1 (2)) + (9:6") (3(R;)é7 (2));
L(giz"th) o L(hjal) = (gi0"T") o (h;67) = g;6" o (6 0 hjd7), so for 2 € T, (gid" o (§ 0 h;d7))(2) =
9i0°[0(h;67 (2))] = gi0°[o(hj)67 " (2) + 6(h;)07 (2)] = (9:0°) (o(hy)07H(2)) + (9:0°) (3 (h;)d (2)).

It is clear that L is surjective. This completes de proof. O

Remark 2.15. (i) As we observed in (2.3), ¢ is neccesarily a o-inner derivation, and it is well-known
that Flz; 0, 8] = Fly; o], with y := . —w (see [34] or also [27]). Thus, for § # 0 in the previous proposition,
we have also a surjective ring homomorphism from F[y; o] into F[D; o].

(ii) The operator evaluation of g at z € F is L4(z) = Y.", ;D'(2).

We return again to the general case A := F[z; 0, ).
Definition 2.16. Let Z := (21,...,2.) € F". Then,
(i) The Vandermonde matrixz of Z is defined by

1 1 1
iz | R MG e
Nooa(n) Nooa(z2) o Nooalz)

(ii) The Wronskian matriz of Z is defined by

21 29 e Zr
D(z)  D(z2) -+ D(z)
WI'T(Z) = . . . . )
Drii(zl) Dril(ZQ) . Drfl(zr)

where D =0 if 6 =0 and D =9 if § # 0.

(iii) For z € F and u € F*, let 2% := o(u)zu~t +5(u)u™t. We say that 2,2’ € F are conjugate, denoted
2z =2/, if there exists u € F* such that 2’ = 2%. The conjugacy class of z is

A(z) == {z" |u e F*}.

(iv) For z €T,
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C(z) ={ueF*|z"* ==z} U{0}.

Proposition 2.17. = is an equivalence relation in F.
Proof. z = z taking u = 1; if 2 = 2/, then 2’ = z since z = (z’)“fl. In fact,

ocluH)2Zu+d(u Hu=cu Ho(uw)zut +6(wuHu+d(uHu=2z+ o H)(u) + §(u= )u =
24+ 8(utu) =2 +6(1) = 2.

If z =2/ with 2/ = 2" and 2/ = 2" with 2" = (2/)", then z = 2" since z” = z*. Indeed,

2 =o(w)zut +6(u)ut and 2"’ = o(v)Zv ! +6(v)v T,

2 =o)o(w)zut +5(wu ot + 6(v)vt = o(vu)zuT v + o (v)d(w)uT v + S(v)vT =

o(vu)zu" v + §(vu)uT o = 2vu,

Proposition 2.18. Let w € F as in (2.3). Then,

(i) For every z € F and u € F*,
2% =o(u)(z +wu"t —w.

(ii) A(—w) = {—w}. For z # —w, |A(z)| = (Ilv;l, with r := ged(l, k), where | is such that o = ¢'.

q—1
Thus, there are q" conjugacy classes: The conjugacy class of —w and q¢" — 1 classes with gfj
elements in each class. In particular, if o = ¢, then r =1 =1 and there are q conjugacy classes.

(iii) If 6 =0, 0 = ¢ and q = 2, then there are two conjugacy classes: The class of 1 with 2F —1 elements
and the class of 0 which is {0}.

(iv) For z € F, C(z) is a subfield of F. If 6 = 0, then C(1) = {u € F | o(u) = u}. If 6 # 0, then
C(0) ={uecF|do(u)=0}.

(v) For z,z' € F, z =2/, if and only if, there exists u € F* such that (x — z")u = o(u)(x — 2), if and
only if, v —z~x— 2.

(Vi) Forz# 2 €F, ldm(z — z,x — 2') = (x — 2% ~*)(x — 2) = (x — 2~ ) (x — 2').

(vii) If g=(x — 2z1) -+ (x — zpm), with z; € F, 1 < i < m, and g(z) = 0 for some z € F, then z = z; for
some 1 <1 <m.

Proof. (i) From (2.3) we get
24 =co(u)zu™t + S(u)ut = o(u)zu™t + w(o(u) —w)u=t = o(u)(z + w)u™! —w.

(i) By (i), for every u € F*, (—w)* = o(u)(—w+w)u™! —w = —w, so A(—w) = {—w}. Let z # —w,
by (i), there exists a bijective correspondence between A(z) and {o(u)u~"' | u € F*}, but the cardinality
of this last one set is Zi%? with 7 as in the statement of the proposition. In fact, in F* we define the
relation u =< v if and only if o(u)u™! = o(v)v~!. It is clear that < is an equivalence relation, then
the cardinality of {o(u)u™! | u € F*} is the number of different classes. To proof the claimed we want
to show first that all classes have the same cardinality, namely, ¢" — 1. Let [u] be the class of u, then

[u] = {v e F* |o(w)u™t =o(w)v !} ={v e F* | o(uv™!) = uv~'}. Let
(F)?:={a € F* | o(a) = a};
notice that h : (F*)® — [u], a — ua™!, is a bijective function: Firstly, h(a) € [u] since o(ua~!)(ua=1)"! =
o(u)o(a) tau™t = o(u)a"tau" = o(u)u~"; now, if ua;* = uay ', then a; = ay, i.c., h is injective; finally,
if v € [u], then we define a := uwv™!, and hence, o(a) = o(uv™') = uwv™! = q, ie., a is a fixed point
of h and h(a) = ua™! = u(uv=')"! = v, i.e, h is surjective. We will show that |(F*)7| = ¢" — 1, i.e.,
[u] = ¢" —1. Since o = ¢!, for some 0 < I < k—1, we get that a € (F*)° if and only if « € F* and a? = a.
Let fi(z) =27 —x € Zg[z], then all roots of fi(z) are simple and F; := {z € E | 29" =z} is a field of
size ¢', where E is the field of decomposition of fi(z). Let F := (F*)° U{0} = FN F,, then |(F*)7| =
|F| —1=q" — 1, where r := ged(l, k). Finally, let t := [F*/ x|, so [F*| = |[ua]| + - - - + |[we]| = t(¢" — 1),
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e, t= Zi—j, but ¢ = |A(z)|. This completes the proof of claimed. The last assertion of (ii) is trivial.
(iii) This follows from (ii) since in this situation w = 0. Observe that A(1) = {o(u)u™! | u € F*}.
(iv) Let z € F and 0 # w,v € C(z). Then, as was observed in the proof of Proposition 2.17,

(z%)? = 2™, but (2%)? = z since (z*)? = o(v)z*v™ ! + §(v)v~! = o(v)zv™! + §(v)v~! = 2¥ = 2. Thus,

uv € C(2). Now, u~! € C(2) since from o(u)zu™t + 6(u)u™! = z we get z = o(u) " 'zu — o(u)"16(u), but

—o(uw)1o(u) = d(u "y, s0 z =o(u Dz )P+ 5w (w )L de, u! € C(2). Finally, if u —v =0,

then u — v € C(2); let u — v # 0, then let 2/ := o(u —v)z(u — v) "' + §(u — v)(u — v) ", so from this we

obtain o(u—v)z+0(u—v) = 2’(u—v), whence o(u)z+0(u) —o(v)z—(v) = 2’ (u—v) = zu—2zv = z(u—v),

so z = 2z’. Thus, u — v € C(z). This completes the proof that C(z) is a subfield of F.

Let 6 = 0 and u # 0. Then, u € C(1) if and only if o(u)u™! + d(u)u™t =1, i.e.,, o(u) = u.
Let § # 0 and u # 0. Then, u € C(1) if and only if §(u)u=! =0, i.e., 6(u) = 0.
(v) z = 2/ if and only if there exists u € F* such that 2/ = o(u)zu~! + §(u)u~! if and only if

(x—2"u=(z—(oc(u)zu "t +6(u)u1))u = zu—0o(u)z —§(u) = o(u)r+6(u) —o(u)z —6(u) = o(u)(r - 2).
If (x — 2)u = o(u)(x — 2), then (z — 2")u ~, (z — z), whence (z — z")u = (z — 2), so there exists an

isomorphism of left A-modules A/A(z — 2")u — A/A(x — z), and from this we know that there exists an

isomorphism of right A-modules A/(z — z')ud — A/(x — 2)A, but A/(x — 2/)A = A/(xz — 2")uA, so we
have an isomorphism of right A-modules A/(z —2")A — A/(x — 2)A, ie., (x —2) = (x — 2’). Conversely,
assume that (z—z) ~ (z—2'), then we have an isomorphism of left A-modules A/A(z—2") % A/A(z—2z),

and from this «(0) = 0 = o((z — 2)) = (z — 2)a(1) = (z — 2')g, for some g € A, with § := «(1) # 0

since « is injective. There exist unique ¢, € A, with r € F* such that g = g(z — 2) 4+ r, hence, g = 7.

Let u := 7, from 0 = (z — 2')§ we get that (z — 2/)u = v(x — z), for some v € A. Taking the degree at

both sides we get that v € F*, moreover, v = o(u). Thus, (z — 2')u = o(u)(z — z), with u € F*.

(vi) We prove first that (z — 2% ~2)(z — z) = (x — 2°~*)(x — 2'): Observe that 2’*'~* = a2’ 4+ b and

2% = az+b, with a :== 0(z —2/)(z — 2/) "L and b = 6(z — 2/)(z — 2/)~", then (z — 2’7 ~%)(z — 2) =

(x—az —b)(x —2z) and (z — 277 ) (& — 2) = (x —az — b)(x — &), i.e.,

(x— 2"z —2) = 2% — 2z — (a2 +b)x+ (az' +b)z,
(x— 27" )(x —2) =22 — 22/ — (az 4+ b)z + (az + D)7,

then a direct computation shows that (z — 2'* ~%)(z — 2) — (z — 27 ) (x — 2/) = 0.

Let [ := (x — 2/¥ ~%)(x — 2) = (¢ — 2°~%)(x — 2'), then (z — 2) |, { and (x — 2/) |, I. Now let h € A
such that (x —z) |, h and (z —2') |, h, then there are f1, fo € A such that h = f1(z —2) = fo(z —2’). Set
qri=(@—2)7 —2)"tand qo .= 1+ (z — 2')(2' — 2)7L. It is not difficult to show that (fo — f1)q1 = f1
and (fa — f1)ga = fo, thus q1 |, f1 and g |, fo. However ¢ = o((z' — 2)"")(z — 2/ %) and ¢ =
—o((z = 2')"1)(z — 2*~%). From this, it follows that [ |, h.

(vii) From g(z) = 0 we get g = q(x — 2) for some ¢ € A, but since every (z — z;) is irreducible and A
is UF D, then there exists ¢ such that x — z &~ x — z;, so from (v), z = z;. O

Now we pass to study the algebraic sets in the context of the skew polynomial ring A := F[z; 0, J].

Definition 2.19. Let g € A. The right vanishing set of g, also called the set of right roots of g, is
denoted by V(g), i.e.,

Vig) :={z€F|[g(z) =0} (2.6)

A subset X C F is algebraic if there exists 0 # g € A such that X C V(g). The monic polynomial
0 # mx of smallest degree such that X C V(mx) is called the minimal polynomial of X. The rank of
X is defined by rank(X) := deg(mx). A monic polynomial g € A is a W -polynomial (Wedderburn
polynomial) if g = mx for some X CF.

Next we will show some results about the sets of right roots, algebraic sets and minimal polynomials.
We start with the following elementary facts, some of them well-known, and others, probably new: The
Zariski topology for F and the left ideal of points. These results will generalized in the last section to
skew PBW extensions.

Proposition 2.20. (i) Let X C T be algebraic. Then, mx is well-defined.
(ii) For any g,h,t € A, V(h) CV(g) = V(ht) C V(gt).
(iii) Let I be a left ideal of A and

V({I):={z€F|h(z) =0, for every h € I}.
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Then, V(I) =V (g), where I = Ag.
(0) =F=V(), withl :==lclm(z — z | z € F). Thus, F is algebraic.
(A)=v1)=0

(HUV(J) CV(INJ), where I,J are left ideals of A.

(Zke}c Ik) = ﬂkeic V(]k)'
F has a Zariski topology where the closed sets are the algebraic sets.

. Thus, () is algebraic.

(v) Let X CTF. Then,
I(X):={ge€ A|g(z) =0 for every z € X}

is a left ideal of A, called the left ideal of points of X. Some properties of the left ideal of points

are:
(a) I(D) = A.
(b) Let X # 0. Then, I(X) = Al, where | =lclm(x — 2 | z € X).

)
)
() IFX,YCF, X CY = I(Y) C I(X).

(d) If g € A, then Ag C I(V(g)). Thus, if I is a left ideal of A, then I C I(V(I)).

(e) X CV(I(X)). Thus, every subset X is algebraic and the above topology is the discrete topology.
(f) Ifge A, V(I(V(g)) =V (g). Thus, if X =V(g), then V(I(X)) = X.

(g) I(V(I(X)))=1(X).

() T(Urex Xk) = Meex 1(Xk)-

Proof. (i) If X = () then ) = V(1), i.e., 0 is algebraic and mg = 1.
Assume that X # () and let 0 # g, h € A be monic polynomials of smallest degree such that X C V(g)
and X C V(h), we have to show that g = h. For this we observe first that if p,q € A and z € F, then

(p+q)(2) = p(2) +q(2).

In fact, there exist unique ¢q1,q2 € A and 71,72 € F such that p = ¢1(x — 2) + r1 and g = g2(x — 2) + 7o,
sop+q=(q1+¢q)(x—2)+ (r1 + r2), so the claimed follows by unicity.

For g, h we have g = ¢gh + r for some unique ¢, € A with deg(r) < deg(h) or r = 0. Let z € X since
h = ¢(x — z) for some ¢ € A, then gh = gc(z — 2), i.e., (¢gh)(z) = 0. From this, g(z) =0 = (¢gh +r)(z) =
gh(z) + r(z) = r(z), so necessarily » = 0 because of the condition on the degree of h, whence, g = ¢h,
but from the degree condition we get that ¢ € F*, but since g and h are monic, then g = h.

(ii) There exist unique ¢,r € A such that g = ch 4+ r; let z € V(h), then h = ¢(x — z) for some g € A,
whence g = cq(x — z) + 7, but z € V(g), so r = 0. Thus, g = ch, and hence, gt = cht. From this, if
z € V(ht), then ht = a(z — z), for some a € A, whence gt = ca(z — 2), i.e., z € V(gt).

(iii) Since in A every left ideal is principal, then there exists g € A such that I = Ag. From this it is
clear that V(I) C V(g). Let qg € I and z € V(g), then g(z) = 0, and as we saw in (i), this implies that
(g9)(2) =0, i.e., z € V(I). This proves that V(g) C V(I).

(iv) (a) It is clear that V(0) = F. For the second equality,  — z |, [, for every z € F, so F C V (I), i.e.,
F=V().

(b) Evident.

(¢) Since INJ CI,J, then V(I)UV(J) CV({INJ).

(d) Since Iy € >, cx I for every k € K, then V(3 . Ix) € Ngex VIk). Let 2 € Myexe V(i)
and let g € >, ., Ir, then g = gp, + -+ + gr,, with gr, € I;, 1 < j < t, then, as we saw in (i),
9(2) = gr, (2) + -+ 4+ gr, (2) = 0, whence z € V(3 cc Ii). Thus, Ny VUIR) S V(O e Ii)-

(e) This follows from (a)-(d).

(v) From the proof of (i) we get that I(X) is a left ideal of A.

(a) This is trivial.

(b) For every z € X, x — z |- [, so I(z) = 0, whence (al)(z) = 0 for every a € A. Hence, Al C I(X).
Let h € A such that I(X) = Ah, then h(z) = 0 for every z € X, so x — z |, h for every z € X, hence
| h, whence h = pl for some p € A. This means that Ah C Al. Thus, Ah = Al.

(c) This is trivial.

(d) Since g(z) = 0 for every z € V(g), then g € I(V(g)), whence Ag C I(V(g)). The second assertion
in (d) follows from (iii).
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(e) For X = () the assertion follows from (a) and (iv)-(b). Let X # 0. If z € X, then for every
g € I(X), g(z) =0, and this means that z € V(I(X)). Therefore, X C V(I(X)).

Thus, if X = 0, then ) = V(A) = V(1) is algebraic; if X # ), then from (b), I(X) = Al and X C V(I),
so X is algebraic.

(f) From (e), V(g) € V(I(V(9g))). Let z € V(I(V(9g))), from (d), g € I(V(g)), so g(z) = 0, ie,
z € V(g). Therefore, V(I(V(g))) C V(g).

(g) From (d), I(X) C I(V(I(X))). From (e), X C V(I(X)), so from (c), I(V(I(X)) C I(X).

(h) Since Xy € Ui Xk for every k € K, then I(U,cxc X&) € 1(Xk), so I{Upex Xx) € Npexc L(Xk).
Let g € MNpexc [(Xk) and let z € (J,cxc X&, then there exists k € K such that z € Xj, then g(z) = 0,
whence g € I(U, ¢ Xk). This completes the proof. O

Proposition 2.21. Let X CTF. Then,
(i) rank(X) <|X].
(i) If X ={z1,...,2-}, then

mx =lelm(z — 2z1,...,2 — 2,).

(i) Let Y CF. Then, mxyy = leml(mx,my) and rank(X UY) < rank(X) + rank(Y").

(iv) Let g € A of degree > 1. Then g is a W-polynomial if and only if g = lclm(x — 2q,...,2 — 2;.) for
some distinct elements zy,...,z, € F.

(v) If X ={z,..., 2}, then rank(X) = rank(V,.(21,..., 2)).

Proof. (i) We know that X is algebraic. If X = (), then mg = 1 and hence rank(X) = 0 = |X|. Let
X # (). The idea is to find a monic polynomial g € A of degree < m := |X| such that g(z) = 0 for every
z € X. As in [20], the proof is by induction on m. For m =1, let X := {z}, then the statement is trivial
taking g := x — z. Let X :={z1,...,2m—1, 2m}. By induction, there exists a monic polynomial ¢’ € A of
degree < m — 1 such that ¢'(z;) =0 for every 1 <i < m — 1. Let g := lclm(z — 2y, ¢’), then g(z) = 0 for
every z € X since  — 2, |» g and ¢’ |, ¢g; moreover, g is monic, and from (2.4), deg(g) < m.

(i) Let I := lelm(z — 21, ..., 2 — z). It is clear that X C V/(I); if h € A is monic such that X C V(h),
then © — z; | h for every 1 < i <, sol |, h, whence deg(l) < deg(h). This proves that [ is the monic
polynomial of smallest degree such that X C V(I), i.e.,, l = mx.

(iii) X C V(mx) and Y C V(my), then

XUY CV(mx)UV(my)=V(Amx)UV(Amy) C V(Amx N Amy) = V(lclm(mx, my)).

Thus, X UY C V(I), with [ := lclm(mx, my); let b € A monic such that X UY C V(h). We have
to show that deg(h) > deg(l). We have X C V(h) and Y C V(h), then mx |, h and my |. h. In
fact, h = gqmx + r for some ¢,r € A, with r = 0 or deg(r) < deg(mx); let z € X, then h(z) = 0 =
(gmx)(z)+7r(z) = 0+7r(z) = r(z), and this implies that » = 0 (contrary, there exists a monic polynomial
" of degree < deg(mx) such that X C V ('), a contradiction). Thus, h = gmx, so mx |, h. Similarly,
my | h. Therefore, [ | h, whence deg(h) > deg(l).

For the second assertion, rank(X UY') = deg(mxyy) = deg(leml(mx,my)), but from (2.4) we know
that deg(leml(mx, my) < deg(mx) + deg(my) = rank(X) + rank(Y").

(iv) =) This part follows from (ii).

<) The idea is to show that g = mx, with X = {z1,...,2:}. Since for every 1 <i <r, x — 2 |, g,
then X C V(g); let h € A monic such that X C V' (h), then for every 1 <i <7,  — z; |, h, hence g |, h,
so deg(g) < deg(h). This proves that g = mx.

(v) We will follow the ideas of [20]). Let V := V,.(z1,...,2.). For proving that rank(X) =
rank(V,(z1,..., %)), we will start by noting that rank(X) = r if and only if rank(V) = r. Suppose
that rank(X) = r and the rows of V are not linearly independent, then there exist cg,c1,...c,—1 € F,
at least one of which is not zero, such that coV(1) + - +¢._1V) = 0. If g := Z:;ol c;x' then g # 0
and, using Proposition 2.13, it follows that g(z;) = 0 for each 1 < j < r. Thus rank(X) < r, a
contradiction. Reciprocally, if rank(V) = r, then V(),..., V() are linearly independent. Therefore,
coVy + -+ ¢—1V(y = 0 is true only in the case that ¢cg = -+ = c¢,.—1 = 0. As a consequence, given
g=> ¢z’ withn <r—1,if g(z;) = 0 for each 1 < j < r, necessarily g = 0. Whence, rank(X) = r.
Now, let ¢ := rank(V), with ¢ < r — 1. Without lost of generality, it is possible to assume that the first
t columns of V conform a basis for its column space. Taking X' := {z1,...,2:} and ¢’ := mx/, we have
rank(X’) < ¢t. We may suppose that ¢’ = 212_11 b;xz’, adding zero coefficients if it is necessary. Thus,
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g(zj)=0foralll <j <t But VEY . V() can be written as a linear combination of V(1) ... V(®),

Hence (bo br_l) V@ =0, for t+1 < j <'s. Thus, ¢'(#;) = 0 for all 1 < j < ¢ and, there-
fore, rank(X) = deg(mx) < t. For to show that ¢ < rank(X) = deg(mx), let s := deg(mx). Then,
2t = g;mx +r;, with r; = 0 or deg(r;) < deg(my), for s+1<i <r. Ifr; = Z;é diz?, evaluating in z;,

we obtain that N;(z;) = r;(z;) = z;(l) di Ny (z;) for 1 < j <, that is, V;) = d((]i>V(1) + o4 dg?lv(s),
for each s + 1 < i < r. Therefore, the row space of V is generated by its first s rows. In consequence,
t = rank(V) < s = rank(X). O

Corollary 2.22. Let X CF. Then, I(X) is generated by a W -polynomial.

Proof. If X = 0, then I(§) = A = (1} and 1 = my. For X # (), the assertion follows from (v)-(b) of
Proposition 2.20 and (ii) of Proposition 2.21. O

2.1.3 The Bound of a Polynomial

Following [17], now we will define the bound of a given polynomial of A . Some elementary properties will
be considered. The results can be applied in particular to the modulus f (see Definition 2.1), however,
in this section f will represent an arbitrary polynomial of A. Recall that A = F[z; o, d].

Proposition 2.23. Let f € A. Then,

(i) Let I be the largest two-sided ideal of A contained in Af. Then, there exists a two-sided polynomial
f* € A such that I = Af* = f*A. f* is unique up to a non-zero element of F. Moreover, the
largest two-sided ideal of A contained in fA coincides with I.

(ii) Let f* #0. Then, f* is a two-sided multiple of f of least degree.
(i) Af* = Annu(A/Af).

(iv) The lattice of left A-submodules of AJAf coincides with the lattice of left AJ/Af*-submodules of
AJAf.

Proof. (i) Since A is a left and right principal ideal domain there exist polynomials f*, f/ € A such
that I = Af* = f'A. If f* = 0, then clearly Af* = f*A. Suppose that f* # 0, then f’ # 0 and
from Af* = f’A we get that deg(f*) = deg(f’), hence [ = zf*, with z € F*, Then, Af* = zf*A, so
frA=z2"TAf* = Af*.

Uniqueness of f*: For f* = 0 the statement is true. Let f* # 0 and g € A such that Ag =1 = gA.
Then Af* = Ag, g # 0 and g = zf*, with z € F*. By symmetry, g = f*z’ with 2’ € F*.

Finally, let J be the largest two-sided ideal of A contained in fA. By symmetry, there exists ¢g* € A
such that J = g*A = Ag*. Let h € A be a polynomial such that Ah = Af + Ag*. Then, h = af + bg*,
for some a,b € A. Since Ag* C fA, it follows that g* = fay, for a non-zero a; € A. Thus,

hay = afa; +bg a1 = afar + balg* = afar + ba) far = (a + ba}) far.

Therefore, h = (a + ba}) f, i.e., h € Af and Ah C Af. However, Ag* C Ah, so that J = Ag* C Af. The
maximality of I implies that J C I. Similarly, it is shown that I C J. From the latter it follows that
g* = zf*, with z € F*.

(ii) Let h € A be a two-sided multiple of f. Then h = af = fb, for some a,b € A. By (i),
I = f*A= Af* is the largest two-sided ideal of A contained in Af and fA. Thus, hA = Ah C I and,
therefore, h = f*p = qf* for certain p,q € A. This implies that deg(f*) < deg(h).

(iii) Since f* € Af, Af* C Anna(A/Af). If h € Anna(A/Af), then hl =0, i.e., h € Af. Thus, the
two-sided ideal Ann(A/Af) is contained in Af, whence Anng(A/Af) C Af*.

(iv) This follows from the fact that A/Af is a left A/Af*-module since Af*(A/Af) = 0. O

Definition 2.24. Let f € A. The polynomial f* is called the bound polynomial of f. Moreover, f is
bounded if f* # 0.

The part (iv) of the previous proposition explains the importance of the bound polynomial in coding
theory. Some other properties involving f* are presented next.

Proposition 2.25. Let f € A.
(i) f is a two-sided polynomial if and only if f* = f.
(ii) If f is bounded, then dimp(A/Af*) < co and AJ/Af* is an artinian ring (left and right).
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(iii) If f is irreducible and bounded, then Af* is mazximal and AJAf* is a simple artinian ring.

Proof. (i) =) Since f* € Af, deg(f*) > deg(f), but according to Proposition 2.23 (ii), deg(f*) < deg(f).
From this we get that f* = zf, with z € F*. From 2.23 (i), f* = f.

<) This follows from 2.23 (i).

(i) Let deg(f*) = n, since A is a left euclidean domain, {1,z,...,2" '} is a F-basis of A/Af*. Any
left ideal of A/Af* is a vector subspace of A/Af*, so A/Af* is left artinian. Since o is bijective and
Af* = f*A, then considering the coefficients of A on the right side we obtain that A/Af* is right artinian.

(iii) Af* is maximal: Af* # A, contrary Af = A= fA, so f is invertible, a contradiction. Since f is
irreducible, then Af is a maximal left ideal of A. In fact, let Ag such that Af C Ag, then f = pg, for
some p € A, sop € A* or g € A*. In the first case Ag = Af and in the second case Ag = A.

In order to proof of the maximality of Af*, we need the following two preliminary facts.

(a) Let I # 0 be a two-sided ideal of A. Then, there exists a* € A — {0} such that I = a*A = Aa™
Since A is a domain of left and right principal ideals, then I = aA = Ad/, for some a,a’ € A — {0}.
Therefore, there exist u,v € A such that a = ua’ and ¢’ = av, so a = uav and o’ = ua’v. Since
ua € I = aA, then ua = auv’, for some v’ € A. Hence, a = au'v, so v'v = 1, i.e.,, v € F*. Thus,
aA = Ad' = Aav, so aAv~! = Aa, i.e., aA = Aa. Similarly, v € F* and a’A = Ad’, so we can take
a*:=aora*:=d.

(b) Let I1,I> # 0 be two-sided ideals of A. If I; C I, then there exists a two-sided ideal I3 of A
such that Iy = IxI3, with I; C I3: By (a), 1 = a*A = Aa* and I = b*A = Ab*. Then, a* = b*c,
for some ¢ € A. Given f € A, there exist f’, f € A such that fa* = a*f" and fbo* = b*f. Therefore,
b*fc = fb*c = fa* = a*f = b*cf’, whence fc = cf’. Since f runs through A, then f’' and f also run
through A, hence, ¢* := ¢ defines a two-sided ideal I3 := ¢* A = Ac* that satisfies Iy = 5[5, with I; C Is.

Now we can complete the proof of the maximality of Af*. Let L be a two-sided ideal of A such that
Af* C L. We have to show that either L = Af* or L = A. By (b), taking I := Af* and I := L,
there exists a two-sided ideal K such that Af* = LK, with Af* C K. If K ¢ Af, then A = Af + K,
soL=LAf+ LK =LAf+ Af* CAf+ Af* C Af, whence L C Af*, i.e., L=Af*. If K C Af, then
K CAf*, so K =Af*, whence Af* = LAf*. This implies that L = A since A is a domain and f* # 0.

A/Af* is a simple artinian ring: This follows from the just proved and (ii). O

In [17] has been computed the bound f* of a given bounded polynomial f € A assuming that A is
finitely generated as module over its center Z(A).

Proposition 2.26 ([17], Proposition 2.4). Assume that A is finitely generated as module over its center
by ay,...,ar € A. Let 0 # f € A. Then, f is bounded and

fr=ldm(f, fars- -, fa,), where fo, is such that Af,, = Annx(a;), with @; := a; + Af, 1 <i <r.

Proof. f is bounded: First observe that Af N Z(A) is a non zero two-sided ideal of A contained in Af
(see [17], p. 273), 50 Af N Z(A) C Af*, whence f* # 0.

Now we will show that f* = lclm(f, fa,,- .-, fa,). Initially we will prove that f* = lclm(fa,, ..., fa,.):
We have

Alelm(fo,,. .., fa,) = Afa, N---NAf,, =Anny(ag) N---NAnny(a;) and Af* = Anny (A/Af),

hence Af* C Alelm(f,,, ..., fa,.). On the other hand, let p € Alclm(fa,, ..., fo.) and g € A, then there
exist q1,...,q € Z(A) such that ¢ = qra1 + - - - + ¢ra,. Therefore,

pq:pqlial‘.‘-f-pqriarqupa*l_i__._qﬂ?afr:ﬁ’
sop € Anng(A/Af) = Af*. Hence, Af* = Alclm(fa,, ..., fa,), L., f* =lcm(fo,,. .., fa,)-
Now, since f|,f*, then f* = lclm(f, fa,, ..., fa,). .

2.1.4 F-Linear Evaluation Codes
There are two key types of F-linear codes that we present next.

Definition 2.27. Letr > 1 and k € {1,...,r}.

(i) Let Z := (z1,...,2r) € F" such that rank(V,(Z)) > k. The remainder evaluation code of
length r and support Z is defined as

(Z) = {(9(21),...,9(2) €F") | g € A,deg(g) < k — 1}.
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(ii) Let Z := (z1,...,2,) € F" such that rank(Wr,.(Z)) > k. The operator evaluation code of length
r and support Z is defined as

Coe(Z) = {(Ly(21), ..., Lo(z) EFT) | g € A, deg(g) < k — 1}.

Proposition 2.28. Letr > 1, Z := (z1,...,2,) € F" and k € {1,...,r}. Then,
(i) €x(Z) is a F-linear code of dimension k.
(i) €,2(2) is a F-linear code of dimension k.

Proof. (i) Since for g,¢' € A, z,2/ € F, we have (g + ¢')(2) = g(z) + ¢'(2) and (2'g)(z) = 2'g(z), then
€:(Z) is a F-subspace of F", i.e., € (Z) is a F-linear code. Next we will show that dimy(€,(Z2)) = k.
Observe first that €;(2) is generated as F-space by k vectors:

(1(Z1)a EERE} 1(27“))3 (.CU(Zl), s 7‘%'(27“)) R (xkil(zl)a s »xkil(zr))v

thus, we have the matrix

1(z1) - 1z) 1 1
e z(fl) x(fr) B 2 2
o (z) o 2F () o (z) - 2F ()

Observe that the rows of M are the first k& rows of V,.(Z), so rank(M) = min{l,k}, where [ :=
rank(V,(Z)), hence I > k. Thus, rank(M) = k. This means that dimp(€x(Z2)) = k.

(ii) For g,¢' € A, 2,7 € F, we have L4(2) + Lg(z) = Lgrg(2) and (2'Ly)(2) = L,14(2), so € £(Z)
is a F-subspace of F", i.e., € £(Z) is a F-linear code. Moreover, € »(Z) is generated as F-space by k
vectors:

(21,1 2), (D(z1),s - (D(2) .., (DF1(z21),..., (D*1(2,)),

then we have the matrix

Zl ... Z’”
D(z1) - D(z)
N := ) .
D) oo DA(z)
Observe that the rows of N are the first k& rows of Wr,.(Z), so rank(N) = min{s, k}, where s :=
rank(Wr,(Z)), hence s > k. Thus, rank(N) = k. This means that dimg (€ (Z)) = k. O

2.1.5 Distance of F-Linear Codes

In this subsection we recall two classical notions of distance for F-linear codes. We will follow [2] and
[10].

Definition 2.29. Letr > 1 and F7 :={z € F | 0(2) = z}.

(i) If Z := (z1,...,2r) € F", the rank of Z, denoted rank(Z), is the dimension of the F7-vector
subspace of F spanned by z1,..., 2.

(ii) For Z = (z1,...,2,),Z' == (21,...,2.) € F" the rank distance is defined by
dyank(Z, Z") :=rank(Z — Z")
and the Hamming distance is defined by
dy(Z,2") =|{ie {1,...;r} |z # =z} |.
(i) If € is a F-linear code of F", the minimal rank distance of € is defined by

dyank(€) = min{dyank(Z,2') | Z, 7' € €, Z + Z'}

and the minimal Hamming distance of € is defined by
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dp(€) :=min{dy(Z,2') | 2,2’ € €, Z + Z'}.
(iv) Let € be a F-linear code of F". € is a MRD (Maximum Rank Distance) code if
drank(€) = r — dimp(€) + 1.
¢ is a MDS (Maxzimum Distance Separable) code if
dp(€) =r — dimp(€) + 1.

Some properties of the defined distances are presented in the next proposition.
Proposition 2.30. With the notation of the previous definition,
(i) dvank(Z,2") < du(Z,2"), for all Z,Z' € F".

(ii) drank(Z, Z") > 0; dyani(Z, 2') = 0 if and only if Z = Z'; dyani(Z, Z') = dranic(Z", Z); dyanic(Z, Z') <
Qrank(Z, Z") 4+ dyan(Z", Z"), for every Z'" € F". Thus, drank s a metric over F".

(i) du(Z,2) > 0; du(Z,2") = 0 if and only if Z = Z'; du(Z,2') = du(Z',2); du(Z,2") <
duy(Z,Z")+dy(Z",2"), for every Z" € F". Thus, dy is a metric over F".

(iv) Let € be a F-linear code of F" with dimp(€) = k. Then,
dp(€) <r—k+1 and deank(€) <r—k+ 1.

(v) Let € be a F-linear code of F" with dimp(€) = k. € is MRD if and only if for every matriz
Y € M_iyxr(F?) of rank v — k, the rank of YGx1 (€T over F is r — k. Moreover, € is MRD
if and only if €+ is MRD.

(vi) Let € be a F-linear code of F" with dimp(€) = k. € is M DS if and only if any r — k columns of
Gx1(€Y) are linearly independent. Moreover, € is M DS if and only if €+ is MDS.

(vii) Let Z := (21,...,2:) € F" such that rank(V,(Z)) = r. Then, for every k € {1,...,r}, €x(2) is
MDS.

(viii) Let Z := (21,...,2,) € F" such that z1,...,z are linearly independent over F?. Then, for every
ke{l,...,r}, €c(2) is MRD.

Proof. (i)-(iii) are evident.
(iv) Since dimp(€) = k, there exists at least one word Z # 0 in € such that the number of its non
zero entries is < r — k + 1. In fact, consider a generator matrix Gx () of €,

Vi1 - Vir
Gx(€) =
Vg1 - Ukr

In the first row of Gx () there is at least one non zero entry, say, vij,. By elementary row operations we
can assume that

vir e 1 e wp,
Gx(@)=|: ... o )
vkl o 0 e vg,
where the j;-th column of Gx (€ is (1,0,...,0)T. We can repeat this procedure for any other row; observe
that ji, ..., Jji are different. Thus, considering any row of G x (&), for example, the first one, we conclude

that the number of non zero entries in this first row is < » — k + 1. This proves the claimed. Therefore,
there exists 0 # Z in € such that dg(Z,0) <r —k+ 1, whence dg(€) <r—k+1.

Now, from (i), dyank(Z, Z') < dp(Z,Z'), for all Z, Z’ € €, 30 dyank(€) < dp(€) <r—k+ 1.

(v) See [10], Theorem 3.

(vi) =): By the hypothesis, dy(€) = r —k+ 1, then every nonzero word of € has at least r —k+1 non
zero entries. Assume that Gy (€1) has r — k columns linearly dependent, then there exists 0 # Z € F"
such that Gy 1 (€+)ZT = 0, where the number of non zero entries of Z is < r — k. But since Gy 1 (€1)
is a check parity matrix of €, then Z € € (Proposition 2.9), a contradiction.
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<): Assume that there exist Z, Z’ € € such that dg(Z,Z') <r —k+1. We have Gx1 (¢+)Z =0 =
Gx1(€H)Z' s0 Gx1(€1)(Z —Z") = 0. But the number of non zero entries of Z — Z’ is < r —k + 1, then
Gx1(€1) has r — k columns linearly dependent.

Since (€+)+ = €, for the second statement it is enough to prove that if ¢ is M DS, then ¢+ is M DS.
We have to show that any k columns of Gx(€) are linearly independent. Contrary, assume that G x (€)
has k columns linearly dependent. Consider the submatrix M of size k x k formed by these columns.
Then rank(M) < k, whence the rows of M are linearly dependent, i.e., there exists a linear combination
of the rows of M that is zero, and hence, for the same linear combination on the rows of Gx (€), we have
that at least k entries in this combination are zero. This implies that we have a word in € where the
number of non zero entries is < r — k. This is a contradiction since € is M DS.

(vii) From (iv) we know that for every k € {1,...,r}, dug(€x(Z)) < r — k + 1. Suppose that there
exists k € {1,...,r} such that dy(€x(Z)) < r — k + 1, then there exist Z',Z" € €,(Z) such that
du(Z',Z") <r—k+1,s0 Z' — Z" € €,(Z) is such that at least k coordinates of Z’ — Z' are null, i.e.,

there exists g € A such that deg(g) <k —1 and g(z;,) = - = g(2;,) = 0. Then, (z — 2;,) |, g for every
1 <j <k, whence lelm(z — z;,, ..., —2;,) |, g. Since rank(V,(Z)) = r, then rank(V,(z;,,...,2,)) =k,
but from Proposition 2.21, for the algebraic set X := {z;,,..., 2}, we have

rank(V,(ziy, ..., 2, )) = rank(X) = deg(mx) = deg(lelm(z — 2, ...,z — z;,)),

so deg(g) > k, a contradiction. This completes the proof of (vii).

(viii) By Proposition 2.9, (€. £(2)1)* = €, 2(Z), hence, from (v), we will show that for every
ke{l,...,r}, € c(Z2)t is MRD. Thus, we will prove that drank(€r.2(2)1) = 7 —dimp(€x £(Z)1) +1 =
r—(r—k)+1=k+1, for every k € {1,...,r}. The idea is to show that for every k € {1,...,r}, there
is not a word in € £(Z)* of rank < k+ 1 over F°. Contrary, assume that there is a k € {1,...,7} and a
word Z' := (21,...,2.) € € £(Z)F of rank t < k + 1, i.e., dimpo (2],...,20) =t < k+1; let {ug,...,u}
be a F?-basis of (2,...,2), then there exists a matrix M € My, (F?) such that Z' = (u1,...,us)M,
and from Proposition 2.9, Gx (€ £(Z))Z'T =0, i.e., Gx(Ck c(Z2))MT (u1,...,u)T = 0, but according
to the proof of Proposition 2.28, Gx (€, £(Z)) = Wry (Z) (the rectangular Wronskian matrix, defined
as in Definition 2.16, but with only k rows; k < r), but since t < k, Wr; .(Z)MT (u1,...,u;)T = 0. Let
Z" = (2,...,2]) == ZMT; since D is F-linear (see Definition 2.16), we obtain that Wr,,.(Z)M7T =
Wr.(Z"), hence Wry(Z")(uy,...,us)T = 0. Now, as 21,..., 2, are linearly independent over F° and the
rank of M over F? is t (the fact that the rank of M is ¢ can be explained in the following way: there
exists a matrix N € M,y(F?) such that U = Z'N, where U := (u1,...,us), so MN = I;, whence,
t = rank(MN) < min{rank(M),rank(N)}, but rank(M) < ¢, rank(N) < t), then 27,..., 2} are linearly
independent over F?, hence det(Wr(Z")) # 0, a contradiction.

2.2 The Case A := F[x;0]

Let F[x; 0, 0] be as in the previous subsections. As we observed at the beginning of subsection 2.1, since
F is a finite field then § necessarily is a o-inner derivation, but in such case it is well-known that F[z; o, 0]
is isomorphic to Fy; o], where y := 2 — w, with w as in (2.3) (see [34] or also [27], Chapter 1). Thus,
over finite fields, the Ore extension F[z; 0, §] can be reduced to one of automorphism type, i.e, where the
o-derivation is trivial. In this subsection we will study the case A := F[z;0] and we fix the modulus
f € A of degree n > 1. Of course all results of the previous subsection can be applied in this situation,
but some additional properties will be added. We will mainly follow [11], and also, [13] and [15].

2.2.1 Two-Sided Polynomials

The next proposition establishes conditions under which a given polynomial of A is two-sided. For this,
recall that Z(A) = F?[z®], where s is the order of o (see [32] or also [27]).

Proposition 2.31. g € A is a two-sided polynomial if and only if g = cxth, for some c €F, t > 0 and
h € Z(A). In particular, for a € F*, "™ — a is a two-sided polynomial if and only if ™ —a € Z(A) if and
only if o(a) = a and s | n, where a € F and s is the order of o.

Proof. =): If ¢ =0, then we can take ¢ =0,t =0, h =1. Let g :=go + - + gmaz™ # 0, with g,,, # 0.
We can assume that g is monic. In fact, g = g (g, g0 + -+ +2™) = gmg', with ¢’ == g go + - + ™.
We have Ag = gA, so, since Ag,, = gmA, we get Agmg = gmg' A = gmAg’, but since g,, # 0, then
g'A = Ag'. Therefore, if we prove the claimed for monic polynomials, then ¢’ = ¢’z*h, with ¢/ € F, t > 0
and h € Z(A), so g = cazth, with ¢ = g,

We will prove the claimed by induction on m. If m = 0, thenc =g =1 € F, t =0 and h = 1.
If m =1, then g = go + x; if go = 0, then we get the claimed with ¢ = 1, ¢t = 1 and h = 1. Assume
that go # 0; if 0 = ip, then A is commutative and g € Z(A), thus ¢ = 1,¢ = 0,h = ¢g. Hence, assume
that go # 0 and o # ip. Then, there exists z € F such that o(z) # z; consider gz € gA = Ag, then
(9o + )z = Z'(go + x), with 2’ € F, from this we get that goz + o(2)x = 2'go + 'z, so z = 2’ and
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o(z) =z’ = z, a contradiction. This completes the proof of case m = 1.

Assume the claimed proved for non zero monic two-sided polynomials of degree < m — 1. We will
consider two possible cases.

Case 1. go # 0. If 0 = iy, then A is commutative and g € Z(A), thus ¢ = 1,¢ = 0,h = g. Now assume
that o # ip. Let G be the set of non zero coefficients of g. Arise two cases.

Case 1.1. There exists g € G such that o' # ip. Then, there exists u € F such that o'(u) # u, so
gu = u'g, for some v’ € F, from this we get that u = v’ and ¢'(u) = v’ = u, a contradiction.

Case 1.2. For every g; € G, o' = ip. Let s be the order of o, then s | [. In particular, m = ts, with
t € N. Thus, g = go + gs2* + 252 + - -+ + gaa', where G C {go, gs, 925, - - - , gts }, With g;s = 1. We
want to show that o(g;) = ¢; for every g; € G, if so, then g € Z(A), and we finish the case 1. Assume
that there exists ¢; € G such that o(g;) # g1, with [ = rs, for some 0 < r < ¢t — 1. Consider gz € gA,
then gz = (po + x)g, for some pg € F (recall that g is monic). From this we get that o(g,s) = grs, i.€.,
o(g1) = gi, a contradiction. Thus, g € Z(A), c=1and ¢t = 0.

Case 2. go = 0. Let [ be minimum such that g; # 0. Then g = 2'¢’, with [ > 1 and 0 # ¢’ € A monic.
Observe that 2! and ¢’ are two-sided: In fact, z'A = Ax! and Ag = Axlg’ = 2'Ag’ = 2'g’A = gA, but
since A is a domain, then Ag’ = ¢g’A. By induction, there exist ¢/ € F, I’ > 0 and h € Z(A) such that
g =2 h, hence g = 2'¢z! h = o' (¢ )V h, so we obtain the claimed with ¢ := o'(¢/) and t ;=1 +1'.

<): If ¢ = 0, then clearly Ag = gA. Let ¢ # 0 and p = po + p1z + - - - + pix! € A, then

gp = cxthp = calph = c(ot(po)zt + ot (pr)z'™ + -+ + ot (p) 2 t)h =
[0t (po)cat + ot (pr)cac eat + -+ + ot (p)exlc text]h =
[0t (po) + o (pr)cae™ + - + o' (p)ea'cexth = [0 (po) + o' (pr)cxe™ + -+ + o' (pr)calc Mg,

so gA C Ag. Now,

pg = (po+pix+---+pat)ex’h = h(po + prz+ - -+ pzt)ex’ = cathlo ™ (po) + o~ (prclo(c))z+ -+
o~ (el (e)a!] = glo ™ (po) + o (preT o (0)x + -+ o e o (e))al],

so Ag C gA.

Now we consider the particular case when ¢ is the modulus f, with f := 2" —a, a € F*. If 2" —a
is a two-sided polynomial, we will show that 2™ — a is central. For b € F, (2" — a)b = p(z™ — a), with
p € A, then necessarily p € F and ab = pa, so p = b, i.e., 2 — a commutes with any element of F; now,
(" —a)x = q(x™ — a) for some q € A, then deg(q) =1, so ¢ = qo + q1x, and from this necessarily ¢; = 1
and qo = 0, i.e., ™ —a commutes with z. This implies that 2™ —a is central. Conversely, if 2" —a € Z(A),
then obviously ™ — a is a two-sided polynomial. The last assertion of the proposition is trivial. O

2.2.2 Similarity of Polynomials
Definition 2.32. Let g = go + -+ x™ € A be a monic polynomial, m > 1. The companion matriz
of g is defined by

0 1 0 0
0 0 1 0
Cy:=| : : € Mysm (F).
0 0 0 1
—g —91 —92 - —gm-1

Proposition 2.33 ([23], Theorem 4.9). Let g,h € A be monic polynomials of degree m > 1. Then,
g~ h if and only if there exists a matriz B € GL,,(F) such that Cy = o(B)C, B~1.

Proof. =): Let a: AJAg — A/Ah be an isomorphism of left A-modules. Then « is an F-isomorphism.
Consider the function S, : A/Ag — A/Ag, a — Ta, for a € A. Observe that S; is a well-defined o-semi-
linear homomorphism, i.e., Sy(za) = 0(z)S4(a), for z € F. Despite of S is not F-linear, notice that
O, is the matrix of S, in the canonical F-basis X, := {1,7,...,2m "1} of A/Ag (we dispose the scalars
by rows, see [23], p.10). Similarly, C}, is the matrix of S}, : A/Ah — A/Ah in the canonical F-basis
Xy ={1,7,...,am '} of A/Ah. Let B be the matrix of « in the canonical F-bases X, and X}, then
B € GL,(F). We want to show that CyB = ¢(B)C}. Since « is A-linear we have a 0S; = S, 0. In
fact, let a € A, then a o Sy(@) = a(Ta) = a(za) = za(a) and Sy, o a(@) = Sy (b) = zb = zb = za(a). Let
@=apl +aT+ -+ aym 2™ € A/Ag, with a; € F, 0 <i < m — 1, then a(S,(@)) = Si(a(a)) and we
can express this equality by the coordinates in the canonical bases, i.e., in a matrix form:

(0'((1,0), s »U(amfl))CgB = (O'(ao), ceey U(amfl))U(B)Ch7 for every (a07 s ;amfl)'
As o is bijective, then CyB = o(B)C},.
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<): Now we assume that there exists a matrix B € GL,,(F) such that Cy = o(B)C»B~"'. Let
a: AJAg — A/Ah be the F-linear isomorphism corresponding to B in the canonical F-bases as before.
We want to show that a is A-linear. From CyB = o(B)C), we get that a o S; = S}, o a, but this means
that « is A-linear, so g =~ h. O

2.2.3 Skew polynomials and linearized polynomials

Recall that [F| = ¢*, where k := dimy, (F) and Z, is the prime subfield of F. In this subsection we will
assume that ¢ = ¢ is the Frobenius automorphism. Related to Proposition 2.14 we have the following
subset of the commutative polynomial ring F[y].

Definition 2.34. Let £ := {>_", gy | g € F,m > 0}. The elements of £ are called q-linearized
polynomials.

Observe that if g € A, the function F — F defined by z — g(z) is not, in general, Z,-linear. But if
g € £, then the function, also denoted by g, and defined by

FLF
z = g(2)
is Zg-linear. In fact, this function is additive since
(z+42)7 =29 429 and if u € Zg and z € F, then (uz)d = ud 27 = uz?.

This justifies the name of the elements of £. If X := {z,...,25_1} is a Zg-basis of F, then M, will
denote the matrix of g in the basis X.

Proposition 2.35. Let £ be the set of g-linearized polynomials. Then,

(i) £ is a ring, where the addition is the usual addition in F[y] and the product o is the composition
of polynomials, i.c., zy? o 2'y? = 22'"y?""  with z,2' € F.

(ii) The function

A:A— L
m m .
> gt > gyt
=0 1=0

s a ring isomorphism.

(i) Let X :={z0,...,25-1} be a Zy-basis of F. The Moore matriz of X is defined by

20 21 o Rk—2 Rk—1
q q . q q
M(X) 20 21 k-2 Fg-1
k—1 k—1 k—1 k—1
23 2 ezl 2l

Then, M(X) € GLy(F).

(iv) Forg:= Z;:Ol giyqi € £, the Dickson matriz of g (also known as q-circulant matriz) is defined

by
90 g1 o 9k—2 k-1
gr_y 96 T 913—3 Gi—o
D, = . . . .
P P P P
T9 g 98

Then, Dy = M(X)M,M(X)"1,

(v) The following ring isomorphisms hold:

AfeF —1) = 2/(y"" —y) = Myur(Zy).
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Proof. (i) The composition of polynomials is associative; the unity element is 1y‘10 = y; the distributive
law holds. Thus, £ is a ring. ‘ ‘

(ii) It is clear that A is additive; A(g;z’g;27) = A(gio®(g;)z't7) = A(gigglxi*'j) = gigglyqlﬂ and
Agiz)A(g;y?) = giy? o gjy? = gig?lyql+]7 so A is multiplicative; A(1) = y. Thus, A is a ring
homomorphism. Since F[y] is F-free and £ C F[y], then A is injective; it is clear that A is surjective.

(iii) Observe that M (X) = Wry(Z), with Z := (29,...,25-1) and D := 0 = ¢ (see Definition 2.16).
Since 2o, ..., zk—1 are linearly independent over Z,, Corollary 4.14 of [22] says that Wr(Z) is invertible.

(iv) We will follow the proof of Lemma 4.1 in [39]. First observe that

g go 9(11 T 91;—2 9k-1 Y Y

g4 Ir—1 9o gz Gh y? y?
= ) : . =D, :

P -1 k-1 P k-1 ko1 k-1

a - ST AR y* y*

so [g(z)7] = Dg[zg"} = D,M(X). On the other hand, [g(z;)?'] = M(X)M,. Indeed, let M, := [m;;],
then g(z;) = mso20 + - - + Mig—12k—1, for 0 < i < k —1 (recall that we dispose the scalars by rows), but
. J J J J J i
since m;; € Zg, then g(z;)7 = miozd + - +mi_12]_ = 2§ mio + -+ z{_;mip—1. Hence, g(z;)? =
28 moy 4 -+ 20 my_1; (see [39], p. 85), i.e., [g(2;)7] = M(X)M,. Therefore, D,M(X) = M(X)M,,
ie., Dy = M(X)M,M(X)"!,

(v) Since the order of the Frobenius automorphism is &, then from Proposition 2.31, 2% —1 € Z(A) is a
two-sided polynomial, whence, (z%—1) is the two-sided ideal A(z%—1) = (zF—1)A. As A(z%—1) = y?" —y
and A is an isomorphism, then A/(z% — 1) = £/(qu — ).

For the second isomorphism of (v), we recall that My (Z,) and Endgz_ (F) are isomorphic rings, so
we will prove that Endg, (F) and S/(qu — y) are isomorphic rings. For this, note first that Endgz, (F)
is an F-space with natural product (z - 0)(u) := z - 0(u), for 6 € Endz, (F) and z,u € F. Moreover,
observe that {o? | 0 <i < k — 1} is an F-basis of Endy, (F). In fact, notice first that o € Endg, (F) since
0(2'z) = 0(2')o(z) = 2'0(2), with 2’ € Zg and z € F; dimg(Endz, (F)) = k since dimgz, (Endg, (F)) = k?
and dimg, (F) = k; finally, {¢* | 0 < i < k — 1} is F-linearly independent since if not so, there exist
gos---,9k—1 € F, which are not all zero, such that Zf;ol gio® = 0, so for every z € T, Zf;ol giz? =0,
i.e., the non zero polynomial zfz_ol giy? € Fly] has ¢* different roots, a contradiction.

Therefore, we define

Clearly, © is additive, O(ir) = y + <qu — ), O is bijective. Finally, © is multiplicative since for z € I,

. . . i J it . i . J it
(gi0" 0 9;07)(2) = gi0"(9;27) = gig? 27, Le., gio' 0 gjo) = gigh o'
O

Remark 2.36. Observe that A, £ and M (Z,) are Z4-algebras and the isomorphisms in the previous
proposition are isomorphisms of Z,-algebras.

2.3 The Case A :=F(f)[x; 6] and f=x"—1

In this subsection we consider skew cyclic codes in the particular case when A := F(¢)[z; o], where F is a
finite field. This special situation of noncommutative coding theory was studied in [13]. Observe that in
this situation the finite field F was replaced by the field of fractions F(¢) which is not finite. Moreover, in
[13] it is additionally assumed that if the order of o is n > 1, then the modulus f is taken as f = a™ — 1.
This special restriction is not assumed in the general theory that we studied in the previous subsections.
In this subsection we will review some key topics investigated in [13].

2.3.1 Algebraic Structure

According to Definition 2.1, we will have R-linear codes as submodules of the left R-module R", where
R :=T(t), i.e., a F(t)-linear code € is a F(t)-subspace of the F(¢)-vector space F(¢)"; a skew cyclic code
C is a left A-submodule of A/Af, but since A is a left (and right) euclidean domain, and hence a left
(and right) principal ideal domain, C has the form Ag/Af, for some g € A, with Af C Ag. Recall
that A/Af is a F(¢)-vector space with canonical F(¢)-basis X := {1,7,...,2" — 1}; the length of C is n
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and the dimension of C (as F(t)-vector subspace of A/Af) is n — deg(g) (see Definition 2.7). Finally,
F(t)? :={z € F(t) | 0(2) = z} and Z(A) = F(¢)?[z"], hence, the modulus [ is a two-sided polynomial,
ie, Af = fA is a two-sided ideal of A and A := A/Af is a ring. Actually, A is a F(t)?-algebra.

Proposition 2.37 ([13], Theorem 1). Let F, o, A and f be as before. Then,
(1) Aut(F(t)) = PGL(FF) (the projective linear group).
(i) For every 0 € Aut(F(t)), | 6 |< oco.

)
)
(iil) A X Myun(F(t)7) (isomorphism of F(t)? -algebras ).
(iv) For every 0 < k < n, there exists a skew cyclic code C of dimension k.

Proof. (i) Recall first that PGL2(F) := GLy(F)/Z(GL2(F)), where GLo(F) is the full linear group of all
2 x 2 invertible matrices over F; moreover, for 8 € Aut(F(t)), 6(z) = z, for every z € F. So we define

Q : GLy(F) — Aut(F(t)),
G:= CCL Z — Og,
Og : F(t) — F(t)

at+b
t— cird"

It is well-known that © is a surjective function (see [26], Corollary 2.6.14). Actually, 2 is a surjective
group homomorphism, where the composition of automorphisms in Aut(F(¢)) works from the left to the
right; moreover, G € ker(2) if and only if ?fis =t,i.e.,b=c=0anda=d. Thus, ker() = Z(GL(F)).

(ii) This follows from (i) since PGLy(F) is a finite group.

(iii) Since f is linear over Z(A), then f is irreducible over Z(A). This implies that Af = fA is a
maximal ideal of A. In fact, Z(A)f is a maximal ideal of Z(A) and Z(A)/Z(A)f is a field; consider the
the canonical injective ring homomorphism 0 : Z(A)/Z(A)f — A/Af, Z — Z, with z € Z(A); let J be a
two-sided ideal of A such that Af C J, then J = Ag, for some g € A; the idea is to show that J = A or
J=Af. We have 0~ (Ag/Af) = Z(A)/Z(A)f or - (Ag/Af) = {0}. In the first case, 1 € 1 (Ag/Af),
so 1 = ag, for some a € A, whence ag — 1 = qf = ¢pg, for some q,p € A, thus (a — gp)g = 1, so
J = Ag = A. In the second case, 071 ({g}) = {6}, S0 9(6) =0=g,s0g€ Af, iec., J=Ag= Af.

Therefore, A is a simple left (and right) artinian ring. Indeed, A is simple since Af is maximal.
Let Iy 2 I D I3--- be a chain of left ideals of A, then I; = Ag;/Af, with g; € A, for ¢ > 1, then
Agr 2 Ags D Ags - -+, but deg(g;) < deg(f) = n, for every ¢ > 1, so the chain is finite.

By the Artin-Wedderburn theorem, A = M, (D), where D = End 4(M) is a division ring, M is a
simple left A-module and r := dimp(M). We can take M := A/A(x—1). In fact, we have the isomorphism
of left A-modules M = (A/Af)/(A(x —1)/Af) and A(x — 1)/Af is a maximal A-submodule of A/Af.

D = F(t)?: In fact, given ¢ € D, let g := ¢(1) € M, with g, € A, and let gy = py(z — 1) + Ay, with
py € A and Ay € F(t), we will prove that Ay € F(¢)?. We define

A:D S F(E)7, ¢ g

A €F@)7: p(x—1) = 0 = 2 —1¢(1), hence (z — Dpe(z —1) + (x — 1Ay = 0, ie., (z— DAy = 0, so
o(Ag)x — Ap = q(x — 1), for some ¢ € A, whence g € F and o(N\y) = g = Ap.
It is clear that A is additive and A(ipr) = 1. A is multiplicative:

(610 62)(1) = 61(T32) = 61(TaaL) = Tia1(1) = TG
961 = Por (T = 1) 4+ Xg1s 9o = Do (2 = 1) + Agy,
Gir9ps = D(x — 1) + Ay Ag,, for some p € A (here we use that Ay, € F(¢)7).

Since D is a division ring, A is injective. A is surjective: Let A € F(t)?, we define ¢(g) := g\, with
g € M; ¢ is well-defined since A € F(t)7; it is clear that ¢ € D and A(¢) = .

Finally, » = n: It is well-known (see [24], Theorem 1.8, Chapter VI) that dimgy- (F(t)) =| o |= n,
but since dimg)(A) = n, then dimg()- (A) = n, so n? =12 ie., r=n.

(iv) Observe that in the particular case of skew cyclic codes that we study in this subsection,

there exists a bijective correspondence between
the collection of left ideals of A and the collection of skew cyclic codes.

So, the claimed follows from the ring isomorphism A = M,, ., (F(t)?). In fact, for every 0 < k < n,
in My, un(F(t)7) there exists a left ideal Iy, of dimension nk as F(¢)?-vector space, namely, the matrices
with the last n — k columns are null. Thus, I} = (F(¢)7)"* =2 F(¢)*, i.e., I1 is a left ideal of M, x,(F(t)?)
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with F(¢)-dimension equals k. O

Since the left A-submodules of A coincide with its left ideals, we have the following consequence of
(iii) of the previous proposition.

Corollary 2.38. If C is a skew cyclic code, then there exists and idempotent € € A such that C = Ae,
and conversely.

Proof. According to (iv) of the previous proposition, A is a semisimple ring, and since C is a left ideal of
A, then C is a direct summand of A, so we get the claimed. |

2.3.2 Dual Codes

Let C be a skew cyclic code. In this section we will prove that C* is a skew cyclic code. For this we
introduce the following notation.

Definition 2.39. Forg € A, let .g be the homomorphism of left A-modules defined by .g(h) :== hg = hg,
for h € A. The matriz of .g in the canonical basis X is denoted by M(g).

Proposition 2.40 ([13], Section 3). Let g := go + 12+ -+ + gn—12" ' € A. Then,

go g1 In—1
o M@ = |7 e el ).
0" Mg1) 0" Hg2) - " o)

(i) For every Z € F(t)", ps(ZM(39)) = ps(Z)g.
(iii) The function
M:A— M,xn(F(t), g— M(9)
is an injective homomorphism of F(t)?-algebras.

(iv) Im(.M(g)) = p; " (A9).
(v) The function

0: 4 A, O(g) = 0" (go)a" + 0" g )a" 1 -+ o(gn_1)a

is a ring anti-isomorphism such that ©% =i4.
(vi) M(©(g)) =M(9)".

(vii) If C is a skew cyclic code, then C* is a skew cyclic code. More exactly, if C = A€, where € is an
idempotent of A, then p;(Ct) = A(O(1 —e)).

Proof. (i) The result is trivial computing g(z?), for 0 < i < n — 1. For example, .g(I) = g =
9o+ q1x+ -+ gn12" ! = gol+ 1T+ +gn_12"tand gz ) = 2" (go + 17+ -+ F gpo1az" ) =
o™ Hgo)zn~ + 0" Hg)) T+ 0" Hg2)T + -+ + 0" H(gn)2m

(ii) Since py is F(¢)-linear, it is enough to show the claimed for Z = e;, 1 < i < n, where ¢; is the
i-th canonical vector of F(¢)". pr(e;M(g)) = pr(M(g);), where (M(g); is the i-th row of M(g), but
pr(e))g = a'g = x'g = pp(M(7):). B

(iii) It is clear that M is additive, injective, M (1) = I,, (the identical matrix), M is F(t)?-linear.
Finally, M is multiplicative since, from (ii), for every 1 < i <mn,

pr(eM(g)M(g") = p(eiM(9))g’ = ps(e)gg = pslei)gyd’,
pr(eiM(gg’)) = ps(ei)gyg’s
but py is injective, so e;M(g)M(g') = e;M(gg’), hence M (g)M(g') = M(gg') = M (g q).

(iv) Im(.M(g)) is the F(t)-space generated by the rows of M(g), i.e., the F(t)-space generated by the
vectors e; M(G),...,e,M(g), but e; = p;l(a:i), hence, from (ii), Im(.M (g)) is the F(¢)-space generated
by {e:M(9)}i=y = {p; ' (¢7g)}oy, ie., Im(.M(g)) = p} ' (A7)

(v) Is is clear that © is additive, and since 6™ = ip(;), then ©(1) = 1. © is anti-multiplicative:
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O(zat 2/ x9) = (20 (2 )xiti) = o=+ (2) o3 (2! )zn—(i+7),
O(2'23)O(zat) = on—i (2 )an—I o™ =i(2)a" i = gn =i (2 )an—ign=i(2)zn—i = oI (2!)on—(+3) (z)gn—(+d),

Now we prove that ©2 = i 4:

02 (zz?) = O(on—i(2)a"—t) = gn—(n=1) (gn—i(z))an—(n—0) = 2z7 for z € F(t) and 0 < i < n — 1.

(vi) This follows from (v) and (i).
(vii) By (ii), we have the following commutative diagram of F(¢)-vector spaces:

F(ty» MO pyn M2 piyn
bl
€ (1-%)

Observe that the second row is exact: g € ker(.(1 — €) if and only if g(1 —€) = 0 if and only if g = ge
if and only if g € Im(.€). Since py is an isomorphism, then the first row is exact. Hence, if € := p]Tl(C)7
then C = ps(€) = A€ = Im(.€), whence € = p;l(Im(.E)) =Im(.M(€)) = ker(.M (1 — €)). Moreover, from
(v), g € AB(1 — @) if and only if § = gO(1 — €) if and only if gO(e) = 0, so from the exactness of a
similar commutative diagram we get that Im(.M(©(1 —€))) = ker(.M(0(€))). But from Definition 2.3,
¢t = ker(.M(e)T), from (vi) we conclude that €+ = ker(.M(©(e))) = Im(.M(O(T — €))). Hence, from
(iv),
=p; YAB(T —?)), ie., pr(Cr) =ps(€t) = AO(T —@).
2.3.3 Computation of Generating Idempotents
Proposition 2.41 ([13], Proposition 9). Let C = A€ be a skew cyclic code, with e € A be an idempotent.

Then, for g := gred(e,x™ — 1), g is a minimal generator of C.

Proof. Since g |, e, then e = pg, for some p € A, so € € Ag; moreover, g = ue + v(z™ — 1), for some
u,v € A, whence § = ue = ue, so g € Ae. Hence, C = Ae = Ag. Let h € A such that C = Ah, then
deg( ) < de g(h). Indeed, h = pg, for some p € A, hence h — pg = g(z™ — 1), for some ¢ € A, but

— 1 =tg, for some t € A, so h = pg + qtg = (p + gt)g, thus deg(h) > deg(g). O

Proposition 2.42 ([13], Proposition 10). Let g, h € A such thatlclm(g, h) = " —1 and deg(g)+deg(h) =
n. Then,

(i) gred(g,h) =1.
(ii) Let u,v € A such that 1 = ug + vh. Then, e := ug is such that € is a generating idempotent of Ag.

Proof. (i) We have deg(lclm(g, h)) = n = deg(g) + deg(h) — deg(gred(g, b)) (see (2.4) and Remark 2.10),
whence deg(gred(g, h)) =0, so gred(g, h) = 1.

(i) From 1 = ug + vh we get 1 = ug + vh = ug + vh, i.e., A = Ag + Ah. Actually, A = Ag D Ah.
In fact, g | (™ —1) and h |, (2™ — 1), so Af C Ag and Af Q Ah, hence dimp(;)(Ag) + dimp(;) (Ah) =
dimg(y) (Ag/Af) +dimpg) (Ah/Af) = n—deg(g) +n —deg(h) = n = dimg)(A), so dimg(;)(AgN.Ah) = 0,
ie., AgN .Ah = 0. Therefore, € = 7g is a generator idempotent of the left ideal Ajg. O

3. Skew PBW Extensions

In this section we recall some basic facts about the class of noncommutative rings of polynomial type
known as skew PBW extensions.

Definition 3.1 ([30],[32]). Let R and A be rings. We say that A is a skew PBW extension of R
(also called a 0 — PBW extension of R) if the following conditions hold:

(i) RC A.
(ii) There exist finitely many elements x1,...,x, € A such A is an R-free left module with basis
Mon(A) := {z* =z -+ 2% | a = (a1,...,05) € N*}, with N:={0,1,2,...}.

In this case we say that A is a ring of left polynomial type over R with respect to {x1,...,zn}.
The set Mon(A) is called the set of standard monomials of A.
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(i) For every1 <i<n andr € R— {0} there ezists ¢;,, € R — {0} such that

xir — ¢ir%; € R. (3.1)

(iv) For every 1 <1i,j <n there exists ¢; ; € R — {0} such that

TiT; — Ci jT;Tj € R+ Rxy+---+ Rx,,. (32)
Under these conditions we will write A := o(R){(z1,...,%n).
Associated to a skew PBW extension A = o(R)(z1,...,z,) there are n injective endomorphisms
o1,...,0, of R and o;-derivations, as the following proposition shows.

Proposition 3.2 ([30], Proposition 3). Let A be a skew PBW extension of R. Then, for every 1 <i <n,
there exist an injective ring endomorphism o; : R — R and a o;-derivation §; : R — R such that

xir = oy (r)z; + 6;(r),
for each r € R.
Two remarkable particular cases of skew PBW extensions are recalled next.
Definition 3.3 ([32], Chapter 1). Let A be a skew PBW extension.
(a) A is quasi-commutative if conditions (i11) and (iv) in Definition 3.1 are replaced by
(#4d") For every 1 <i<mn andr € R— {0} there exists a ¢;, € R — {0} such that
TiT = Ci T (3.3)
(") For every 1 <4,j < n there exists ¢; ; € R — {0} such that
TiT; = Cj i %5 (3.4)

(b) A is bijective if o; is bijective for every 1 <i <n and ¢; ; is invertible for any 1 <1i,j < n.

If A=o(R){x1,...,x,) is a skew PBW extension of the ring R, then, as was observed in Proposition
3.2, A induces injective endomorphisms oy, : R — R and og-derivations 0 : R — R, 1 < k < n. Moreover,
from the Definition 3.1, there exists a unique finite set of constants c;;,d;;, az(-f) € R, cij # 0, such that

TjT; = CijTixj + az(-;)ml + et agl)xn +d;;, for every 1 <i < j<n. (3.5)
If A is quasi-commutative, then 0, = 0 for every 1 < k < n and pq,r, Pa,s = 0 in Proposition 3.5.

Many important algebras and rings coming from mathematical physics and non-commutative alge-
braic geometry are particular examples of skew PBW extensions: Habitual ring of polynomials in
several variables, Weyl algebras, enveloping algebras of finite dimensional Lie algebras, algebra of ¢-
differential operators, many important types of Ore algebras, in particular, the single Ore extensions of
Section 2, algebras of diffusion type, additive and multiplicative analogues of the Weyl algebra, dispin
algebra U(osp(1,2)), quantum algebra U’(so(3, K)), Woronowicz algebra W, (sl(2, K)), Manin algebra
O4(M2(K)), coordinate algebra of the quantum group SL,(2), g-Heisenberg algebra H,,(¢), Hayashi al-
gebra W, (J), differential operators on a quantum space Dq(Sq), Witten’s deformation of U(sl(2, K)),
multiparameter Weyl algebra A9T(K), quantum symplectic space O, (sp(K?")), some quadratic algebras
in 3 variables, some 3-dimensional skew polynomial algebras, particular types of Sklyanin algebras, ho-
mogenized enveloping algebra A(G), Sridharan enveloping algebra of 3-dimensional Lie algebra G, among
many others. For a precise definition of any of these rings and algebras see [31] and [32]. The skew PBW
has been intensively studied in the last years (see [32]).

Next we will fix some notation and a monomial order in A (see [32], Chapter 1).

Definition 3.4. Let A be a skew PBW extension of R with endomorphisms o; as in Proposition 3.2,
1<i<n.

(i) Fora=(a1,...,a,) EN", g®:=0(" - 00", |la| i =a1+ -+ an. If 6= (01,...,0n) € N, then
a+/3: (al"_ﬁlw"van'i_ﬂn)-

(ii) For X =z € Mon(A4), exp(X) := a and deg(X) := |a|.
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(i) Let 0# f € A. Ift(f) is the finite set of terms that conform f, i.e., if f =1 X1+ + et Xy, with
X; € Mon(A) and ¢; € R — {0}, then t(f) := {1 X1,...,c: Xs}.

(iv) Let f be as in (iii), then deg(f) := max{deg(X;)}i_;.
In Mon(A) we define

= 2
or

% = 2P == { 2 # 2P but |a| > ||
or

2% £ 2% |a| = |B|but Fi with a1 =B1,...,s-1 = Bi_1, > ;.

It is clear that this is a total order on Mon(A), called deglex order. If 2 = 2% but @ # z°, we write
x® = 28, Bach element f € A — {0} can be represented in a unique way as f = c;x®* + - - - + c;x®¢, with
¢ € R—{0}, 1 <i<t, and 2% » --- > x*. We say that 2 is the leading monomial of f and
we write Im(f) := x*; ¢; is the leading coefficient of f, lc(f) := ¢1, and c12** is the leading term
of f denoted by It(f) := c1z®. We say that f is monic if le(f) := 1. If f = 0, we define Im(0) := 0,
lc(0) := 0, It(0) := 0, and we set X > 0 for any X € Mon(A). We observe that

2% = 2% = Im(z7z%2?) = Im(2x7282*), for every 27, 2> € Mon(A).

The next proposition complements Definition 3.1.

Proposition 3.5 ([30],[32]). Let A be a ring of a left polynomial type over R w.r.t. {z1,...,xn}. Aisa
skew PBW extension of R if and only if the following conditions hold:

(a) For every x® € Mon(A) and every 0 # r € R there exist unique elements ro := c®(r) € R — {0}
and po,r € A such that
zr =10z + Pa,r, (3.6)

where por = 0 or deg(pa,r) < |a| if pa,r # 0. Moreover, if v is left invertible, then ro is left
invertible.

b) For every x®,z” € Mon(A) there exist unique elements ca.g3 € R and pa.g € A such that
e e
xaxﬁ — Ca,ﬁxa+ﬂ +pa,ﬁv (37)
where cq.p s left invertible, po.g =0 or deg(pa,g) < |a+ B| if pa,g # 0.

We conclude this subsection recalling some of the main ingredients of the Grobner theory of skew
PBW extensions, namely, the Division Algorithm and the notion of Grébner basis of a left ideal of
A. For all details see [32], Chapter 13. For the condition (ii) in Definition 3.8 below, some natural
computational conditions on R will be assumed.

Definition 3.6. A ring R is left Grébner soluble (LGS) if the following conditions hold:
(i) R is left noetherian.

(ii) Given a,ry,...,rm € R there exists an algorithm which decides whether a is in the left ideal Rri +
o« + Rry,, and if so, finds by, ..., by € R such that a =byry + -+ + by

(iii) Given ry,...,mm € R there exists an algorithm which finds a finite set of generators of the left
R-module

SyZR[’I”l Tm} = {(bl,,bm) cR™ | b17”1+"'+bm7‘m :0}

Definition 3.7. Let 2%, 2% € Mon(A). We say that x® divides 2°, denoted by x® | 2°, if there exists a
unique 2% € Mon(A) such that 2* = Im(2%2%) = 297 and hence B =0 + a.
Definition 3.8. Let F' be a finite set of nonzero elements of A, and let f,h € A. We say that f reduces

to h by F in one step, denoted f LN h, if there exist elements f1,...,fr € F and r1,...,ry € R such
that

@) Im(f;) | Im(f), 1 < i <, i.e., there exists an x* € Mon(A) such that Im(f) = Im(z*Im(f;)),
i.e., a; +exp(Im(f;)) = exp(Im(f)).
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(i) le(f) = rio® (le(f1))can,fr + -+ + o (le(fi))cay, f,» Where co, p, are defined as in Theorem 3.5,

i.e., Cay,fi = Cayexp(lm(f;))-
(iii) h=f— S\ rx® f;.
We say that f reduces to h by F, denoted f L)+ h, if there exist hy,...,hi—1 € A such that

f

f is reduced (also called minimal) w.r.t. F if f = 0 or there is no one step reduction of f by F, i.e.,

one of the conditions (i) or (ii) fails. Otherwise, we will say that f is reducible w.r.t. F. If f i_)+ h
and h is reduced w.r.t. F, then we say that h is a remainder for f w.r.t. F.

F F F F

h1 ha hi—1 L

By definition we will assume that 0 .

Proposition 3.9 (Division algorithm). Let F' = {f1,..., f:} be a finite set of nonzero polynomials of A
and f € A, then there exist polynomials q1,...,q,h € A, with h reduced w.r.t. F, such that f L+ h
and
f=ah+ - +afit+h,
with
Im(f) = max{Im(Im(q1)lm(f1)), ..., Im(Im(q:)Ilm(ft)), Im(h)}.

Definition 3.10. Let I # 0 be a left ideal of A and let G be a nonempty finite subset of nonzero
polynomials of I. G is a Grobner basis for I if each element 0 # f € I is reducible w.r.t. G.

Proposition 3.11. Let I # 0 be a left ideal of A. Then,
(i) If G is a Grébner basis for I, then I = (G} (the left ideal of A generated by G).

(ii) Let G be a Grobner basis for I. If f € I and f ~G++ h, with h reduced, then h = 0.

(i) Let G ={g1,...,9t} be a set of nonzero polynomials of I with lc(g;) € R* for each 1 <14 <t. Then,
G is a Grébner basis of I if and only if given 0 # r € I there exists an i such that lm(g;) divides
Im(r).

Remark 3.12. (i) We remark that the Grobner theory of skew PBW extensions and some of its impor-
tant applications in homological algebra have been implemented in Maple in [7] and [8] (see also [32]).
This implementation is based on the library SPBWE.1ib specialized for working with bijective skew PBW
extensions. The library has utilities to calculate Grébner bases, and it includes some functions that
compute the module of syzygies, free resolutions and left inverses of matrices, among other things. For
the implementation was assumed that A = o(R)(z1,...,2,) is a bijective skew PBW extension of an
LGS ring R and Mon(A) is endowed with some monomial order >.

(ii) From now on in this paper we will assume that A := o(R){x1,...,Zn) is a bijective
skew PBW extension of R, where R is a left noetherian domain. This implies that A is a left
noetherian domain (see [32], Chapter 1). In the examples where we use the library SPBWE.1ib we have
assumed additionally that R is LG'S. This implies that A is LGS (see [32], Chapter 15).

4. Algebraic Sets and Ideals of Points For Skew PBW Extensions

This last section represents the novelty of the present work and is dedicated to extend to skew PBW
extensions some results of the previous sections, more precisely, we will study the algebraic sets, the ideal
of points and the relationship between them. Some properties of affine algebraic sets of commutative
algebraic geometry (see [9], Chapter 1) will be extended in this section, as well as Proposition 2.20. We
will assume on A the conditions in (ii) of Remark 3.12.

As was pointed out in the introduction, the focus of the section is algebraic and not should be
understood as a contribution to noncommutative coding theory.

4.1 Roots of Polynomials

For n > 1, let R™ be the left R-module of vectors over R of n components. Let f € A and Z :=
(#1,...,2n) € R™. By Proposition 3.9,there exist polynomials g1, ..., ¢, h € A, with remainder h reduced

wrt. F:={z1 —21,...,Tn — zn}, such that f i>+ h and

In general, h is not unique, and even worse, it could not belong to R, as the next example shows.
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Example 4.1. Consider the Witten algebra (see [32], Chapter 2) A := c(Q)(z,y, z) defined by
Zx =xz2 —x, 2Y = Yz + 2y, yr = 2xy.
For Z := (1,—-2-3) € Q% and f := 2%y + 2z +yz € A, with SPBWE.1ib the Algorithm Division produces
f=Gey+in@E-1)+1(y+2)+0(z+3)+az+yz— 3,
ie., q = %azy+%y, q2 = i, qgs=0and h=zz+yz — %
Even for quasi-commutative skew PBW extensions the situation is similar. In fact, consider a 3-
multiparametric quantum space (see [32], Chapter 4) A := o(C)(z,y, z) defined by

yxr = 2ixy, zx = ixz, 2y = —iyz.
For Z := (4,2i,3i) € C3 and f := 2%y + y2? + z2 € A, with SPBWE.1ib we found that
= Gizy — Yiy)(x — i) + 2y — 20) + 0(z — 30) + y22 + z2 + L4,
ie, qu = sizy — Tiy, @2 .= %, g3 =0 and h = yz? + xz + Li.

Thus, the evaluation of a polynomial f € A in a given Z € R™ as the remainder in the Division
Algorithm is not a good idea. However, the following notion does not depend on the Division Algorithm.

Definition 4.2. Letn > 1, f € A and Z := (21,...,2,) € R". Z is a root of f if and only if f is in
the two-sided ideal generated by 1 — 21, ...,y — 2n. This condition is denoted by f(Z) = 0.

Thus,
f(Z)=01if and only if f € (Z),
where the two-sided ideal generated by x1 — 21,...,2, — 2z, is simply denoted by (Z), i.e.,
(Z):={(x1— 21, ., Tnn — Zn)- (4.1)

Definition 4.3. Let f € A. The vanishing set of f, also called the set of roots of f, is denoted by
V(f), and defined by
V(f):={ZeR"| f(Z)=0}. (4.2)

If S C A, then
V(S):={ZeR"| f(Z)=0, for every f € S}. (4.3)

A subset X C R™ is algebraic if either X = R™ or there exists g # 0 € A such that X C V(g).

4.2 Algebraic Sets and Ideals of Points

Some classical properties of affine algebraic sets of commutative algebraic geometry (see [9], Chapter 1)
will be extended in this subsection as well as Proposition 2.20.

Theorem 4.4. (i) Let f,g,h € A and Z := (z1,...,2,) € R".

(a) If f(2) = 0=9g(Z), then (f + 9)(Z) = 0.
(b) V(f) S V(gfh).
(ii) Let I := Ag be a left principal ideal of A. Then, V(I) = V(g). The same is true for right and
two-sided principal ideals of A.
(iii) (a) V(0) = R™.
(b) @ is algebraic.
(¢c) If SCT C A, then V(T) CV(S).

(d) If S C A, then V(S) =V (AS) =V (SA) = V(ASA).

(e) VI(HUV(J)CV({INJ), where I,J are left (right, two-sided) ideals of A.

() VO rer Ik) = Niex VUk), where Iy, is a left left (right, two-sided) ideal of A.
(h) Let Z :=(z1,...,2,) € R". Then, {Z} CV((Z)).

(iv) Let X C R™. Then,

I(X):={g9geAl|g(Z)=0, forevery Z € X}
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is a two-sided ideal of A, called the ideal of points of X. Some properties of 1(X) are:

) I(0) = A.
) For X,Y CR", X CY = I(Y) C I(X).
) If I is a left (right, two-sided) ideal of A, then I C I(V(I)).
) X CV(I(X)),
e) Ifge A, V(I(V(g))) =V(g). Thus, if X =V (g), then V(I(X)) = X.
) L(V(I(X)))=1(X).
)
)
)

IUkex Xk) = Npexc 1(Xk)-
Let Z := (#z1,...,2n) € R". Then, I{Z}) = (Z).

Proof. (i) (a) We have f,g € (Z),s0 f+g € (Z),ie., (f+9)(Z)=0.

(b) Let Z € V(f), then f € (Z), then gfh € (Z), i.e., Z € V(gfh).

(ii) It is clear that V/(I) C V(g). From (i)-(b) we get that V(g) C V(I).

(iii) (a) It is clear that V(0) = R™.

(b) Observe that for any Z := (z1,...,2,) € R*, Z € V(x1 — 21 + - -- + @y, — 25). Thus, we have the
nonzero polynomial g :==x1 — 21 + -+ + X, — 2, and § C V(g).

(¢) Evident.

(d) Since S C AS, then V(AS) C V(5); let Z € V(S) and g € AS, then g = p1s1 + -+ + psSt,
with p; € Aand s; € §, 1 < i < ¢ Since p;s; € (Z), then g € (Z), so V(S) C V(AS). Similarly,
V(S)=V(SA) =V(ASA).

(e) Since INJ CI,J, then V(I)UV(J) CV(INJ).

(f) Since I, € >, cxc I for every k € IC, then V(3 cxc Ir) € pexe V(Ix). Let Z € e V(Ix) and
let g € > pcxc Ik, then g = gg, + -+ + gk, with gp; € Iy;, 1 < j < t, then from (i)-(a) , g(Z) = 0, whence
Z € V(X ker ). Thus, e VIUIK) €V (X kex 1k)-

(h) Evident.

(iv) (a)-(c) are evident from the definitions.

(d) For X = () the assertion follows from (a) since § C V(A). Let X # (. If Z € X, then for every
g € I(X), g(Z) =0, and this means that Z € V(I(X)). Therefore, X C V(I(X)).

(e) From (d), V(g) C V(I(V(g))). Let Z € V(I(V(g))), since g € I(V(g)), then g(Z) = 0, ie.,
Z € V(g). Therefore, V(I(V(g))) € V(g).

(f) From (c), I(X) C I(V(I(X))). From (d), X C V(I(X)), so from (b), I(V(I(X)) C I(X).

(g) Since X C Upex Xk for every k € K, then I(Uycx Xr) € I(Xk), 50 I(Upexe Xk) € Npex L(Xk)-
Let g € Nyex 1(Xk) and let Z € (U, cc Xk, then there exists & € K such that Z € X, then g(Z) = 0,
whence g € I(Upcc Xk)-

(h) Evident. O

Definition 4.3 and the previous theorem induces the following consequences.
Corollary 4.5. (i) R™ has a Zariski topology where the closed sets are the algebraic sets.
(ii) If X C R™ is finite, then X is algebraic, and hence, closed.

Proof. (i) By Definition 4.3, R" is algebraic. From Theorem 4.4 we know that X = ) is algebraic.
Moreover, let X C V(f) and Y C V(g) be algebraic, with 0 # f € A and 0 # g € A, then, since A is a
left noetherian domain, A is a left Ore domain, i.e, Af N Ag # 0, whence

XUY cV(f)uV(g cV(D),

where 0 # 1 € Af N Ag. Finally, let {Xi}rex be a family of algebraic sets of R™, then for every k € K
there exists 0 # g € A such that X C V(gx), hence

()X S () Vige) = () V(Age) = V(D Agr) € V(Agi) = V(gi), for any k.
keK kek ke keK

(ii) We know that X = () is algebraic. Let § # X := {Z1,...,Z,}, then I(X) # 0. In fact, let
fi= (.1‘1 — Zﬂ) + -+ (.ICn — Zin)7 with Z; .= (27;17 .. -7Zin)7 1<t <r.

Let 0 #1 € AfyN---N Af,. Observe that [ € I(X): Indeed, for every i, | = p;f;, for some p; € A, so
U(Z;) = pifi(Z;) = 0. This shows that I(X) # 0. Thus, X C V(I(X)) C V() is algebraic.
O
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Definition 4.6. Let f € A— R. V(f) is called the skew hypersurface defined by f. In particular,
(1) V(f) is a skew plane curve if n = 2.

(ii) V(f) is a skew hyperplane if deg(f) =1, i.e., f =ro+rix1+--+rpn, withr; € A, 0<i <n.
Whenn =2, V(f) is a skew line.

Corollary 4.7. Let I be a left ideal of A. Then,
V<I) = V(fl) n--- ﬂV(fr), where I = Afl + +Afr
Thus, if fi € A— R, for 1 <i <, then V(I) is a finite intersection of skew hypersurfaces.

Proof. For =0, r=1and f; =0. Let I # 0, since A is left noetherian, there exist f1,..., f, € A such
that I = Afy +---+ Af,.. From Theorem 4.4,

VI =V((Af i+ +Af)=V(Af)Nn---nV(Af) =V(fi)n---NnV(f).
O

Remark 4.8. (i) There exist skew PBW extensions such that V(A) # (. In fact, let A := o(Q){(z,y, z)
defined by

yr =2xy — 1, zo0 = xz, 2y = yz.
Consider the left ideal I := A(z — 1) + Ay + Az and observe that
1l=—ylzx—1)+(x—-1y+0z=—y(z—1)+ (z—1)(y —0) + 0(z — 0),
ie, I =Aand (1,0,0) € V(1) = V(A).

(ii) According to Corollary 4.5, if R is finite, then R" is algebraic, and hence we do not need to assume
this condition on R™ in Definition 4.3. But if R is infinite, we can not assert that there is 0 # g € A such
that R™ C V(g). Consider for example that A := F[z1,...,z,] is the commutative ring of polynomials
with coefficients in an infinite field I, then I(F™) = 0 (see [9], Chapter 1) and contrary assume that there
exists 0 # g € A such that F* C V(g), hence I(V(g)) C I(F™) =0, but g € I(V(g)), a contradiction.

We conclude this subsection with a result that partially generalizes Proposition 2.31. Recall that
feAisnormal if Af = fA, ie., fis a two-sided polynomial.

Proposition 4.9. Assume that A is quasi-commutative.
(i) Let f = cx“h € A, where c € R* is normal in R, x® € Mon(A) and h € Z(A). Then, f is normal.

(il) Let f =crx®t +---+cz™ € A, withc; € R—{0}, 1 <i <t, and z** = --- = x*. If f is normal,
then ¢; is normal in R, for every 1 <i <'t.

Proof. » is the deglex order on Mon(A), but any other monomial order could be used (for other monomial
orders see [32], Chapter 13).

(i) Since the product of normal elements is normal and clearly A is normal, then we have to show only
that ¢ and 2 are normal elements of A. Let a := a12%' + - -+ + a 2P € A, with a; € R—{0}, 1 <j<s,
and 2%t = ... = 2P, We have ac = (a12”* + - 4+ asz®)c = a2Prc + -+ + as2Pc = ay10P (c)a +
ctasoP ()aP = ajcc 0P (c)aPr 4 HagecTroPs (e)Ps = clarcT o (¢)aP 4 - -+ ase 0P (c) 2P,
thus Ac C cA. Since A is bijective, then we can prove similarly that cA C Ac. Now, az® = (a12° +
st agr? )z = apaa® + o 4 agrPr® = arcia®a® + -+ agca®aPs = %0 (arch)zP 4+ -+
%0~ %(asc))xP, for some c; € R*, 1 <j <s, thus Az* C 2*A. In a similar way we can prove that
A C Azx®.

(ii) Let r € R — {0}, then rf € Af = fA, sorf = fg, for some g € A. Since A is a domain,
deg(rf) = deg(f) = deg(fg) = deg(f) +deg(g), so g € R— {0}, but as A is quasi-commutative, for every
1 <i<t, re =c;o%(g). This means that Re; C ¢;R. Considering now fr € fA = Af we get that
fr=hf, with h € R—{0}, so for every i, c;oc® () = he;, but since A is bijective, 0® (R) = R, and hence
¢;R C Re;. Thus, ¢;R = Rg;, i.e., ¢; is normal in R. O

For the habitual polynomials in one variable, the converse of the part (i) of the previous proposition
is true, as the following corollary shows. This corollary also complements the part (i) of Remark 4.8.

Corollary 4.10. Let S be a left noetherian domain and B := S[z| be the habitual ring of polynomials.
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(i) Let f € B, with lc(f) € S*. f is a normal polynomial if and only if f = cxth, where c € S* is
normal, t > 0 and h € Z(B).

(ii) Let F be an algebraically closed field and assume that S is an F-algebra with trivial center. Let
I = Bfy + -+ + Bf, be a left ideal of B, where 0 # f; is normal and lc(f;) € S*, for every
1<i<r. IfV(I)=10, then I = B.

Proof. Notice first that B is a quasi-commutative bijective skew PBW extension of S, so we can use all
the previous results.

(i) =) Let f := fo+ fiz -+ foz™ # 0, with f, # 0. We can assume that f is monic. In fact,
f= Falfa ot f frat -4 a™) = fuf s with f'i= fi fo+ fi frw+---+a". We have Bf = fB, but
from Proposition 4.9, f,, is a normal element of S, so Bf, = f,B, and hence Bf,f' = f.f'B = f.Bf’,
but since B is a domain, then f'B = Bf’. Therefore, if we prove the claimed for monic polynomials,
then f' = c/xth, with ¢/ € S* normal, t > 0 and h € Z(B), so f = cxth, with ¢ := f,c’ € S* normal.

We will prove the claimed by induction on n. If n =0, then ¢ = f =1 € §* normal, t =0 and h = 1.
If n =1, then f = fo + x; if fo =0, then we get the claimed with ¢ =1, ¢ =1 and h = 1. Assume that
fo #0;let s € S, then fs =bf, with b € B, this implies that b := by € S, and hence fos+ sz = by fo+boz,
whence s = by and fos = sfo, i.e., fo € Z(S). Therefore, f € Z(B) and we get the claimed with ¢ = 1,
t =0 and h = f. This completes the proof of case m = 1.

Assume the claimed proved for non zero monic normal polynomials of degree < n—1. We will consider
two possible cases.

Case 1. fo # 0. As before, let s € S, then fs =bf, with b € B, but this implies that b := by € S and
fis = sf; for every 0 <i <n— 1. Thus, f € Z(B) and we get the claimed with c=1,¢t =0 and h = f.

Case 2. fo = 0. Let | be minimum such that f; # 0. Then f = z'f’, with Il > 1and 0 # f' € A
monic. Observe that 2! and f/ are normal: In fact, /B = Bz! and Bf = Bz'f' = 2'Bf = ' f'B = fB,
but since B is a domain, then Bf’ = f’B. By induction, there exist ¢’ € S* normal, I’ > 0 and h € Z(B)
such that f/ = /2! h, hence f = z'dz''h = ¢ h, so we obtain the claimed with ¢ := ¢/ and t :== [ +1’.

<) This follows from the previous proposition.

(ii) From Corollary 4.7 we have that V(I) = V(f1) N ---NV(f.), but by (i), for every 1 < i < r,
fi = ciztih;, where ¢; € S* is normal, t; > 0 and h; € Z(B) = Z(9)[z] = F[z]. Since ¢; € S*, then
V(f;) = V(x'ih;), hence

V()2 V(z'*h)N---NV(z'"h,) D V(d), where d := gerd(z*hy,...,x'"h,) in Flz].

Since V(I) = 0, then V(d) = 0 with respect to R™, whence, V(d) = { with respect to F", but F is
algebraically closed, then d € F*. We have d = g1z hi+- - -+g,x'" h,., for some g1, ..., g, € F[z]. Let ¢ :=
c1 -+ ¢ € S*, since ¢; is normal and g; € Z(B), for every 1 < i < r, we get cd = gjcix! hi+- - -+gl.c,xt hy,
where every ¢} € B. Thus, cd =g{f1+---+g.fr € INS* ie., [ =B. O

4.3 Hilbert's Nullstellensatz Theorem for Skew PBW Extensions
The ring-theoretic version of the Hilbert’s Nullstellensatz theorem for skew PBW extensions has been
considered in the beautiful paper [36]. The algebraic characterization of the theorem given by the authors
of [36] does not use the notion of variety (see Theorem 3.1 in [36]). Applying the algebraic sets and the
ideal of points introduced in Definition 4.3 and Theorem 4.4, we present next the classical version of this
important theorem for quasi-commutative bijective skew PBW extensions of algebraically closed fields.
Our version covers the Nullstellensatz theorem of commutative algebraic geometry (see [9], Chapter 1).
We start recalling some notions and results related to prime ideals of an arbitrary ring (see [34] and
also [1], Definition 3).

Definition 4.11. Let S be a ring and I, P be two-sided ideals of S, with P # S.

(i) P is a prime ideal of S if for any left ideals L,J of S the following condition holds: LJ C P if
and only if LC P or J C P.

(ii) The radical of I, denoted /1, is the intersection of all prime ideals of S containing I.

(iii) An element a € S is I-strongly nilpotent if for any given sequence S := {a;};>1 of elements of
S, with a1 := a and a;41 € a;Sa;, there exists m(S) > 1 such that am(s) € 1. We say that a is
I-nilpotent if there exists m > 1 such that a™ € I.

(iv) P is completely prime if the following condition holds for any a,b € S: ab € P if and only if
ac€PorbeP.
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(v) P is completely semiprime if the following condition holds for any a € S: a® € P if and only if
a€ P.

It is clear that if a € S is I-strongly nilpotent, then a is I-nilpotent. If a € Z(S), then the converse
is true. Observe that any element a € S is S-strongly nilpotent and /S := S. If P is completely prime,
then P is completely semiprime. By induction on m it is easy to show that P is completely semiprime if
and only if the following condition holds: For any a € S and any m > 1, ™ € P if and only if a € P.

Proposition 4.12. Let S be a ring and P be a proper two-sided ideal of S. P is a prime ideal if and
only if the following condition holds for any elements a,b € S: aSb C P if and only ifa € P orb € P.

Proof. =): From aSb C P we get that SaSb C P, whence, Sa C P or SbC P,ie,a€ Porbe P.
<): Let L, J be left ideals of S such that LJ C P. Assume that L ¢ P and let a € L with a ¢ P.
Let b € J, then aSb C LJ C P, whence b € P. Thus, J C P. O

Proposition 4.13. Let S be a ring and P be a proper two-sided ideal of S. P is a prime ideal if and
only if the following condition holds for any left ideals L, J of S: If P C L and P C J, then LJ ¢ P.

Proof. =): Evident.

<): Let a,b € S such that aSb C P and suppose that a ¢ P and b ¢ P. Then, P C P + Sa and
P C P+ Sb, and from the hypothesis, (P + Sa)(P + Sb) ¢ P, hence, there exist p,p’ € P and s,s' € S
such that (p 4+ sa)(p’ + s'b) ¢ P, a contradiction. O

Proposition 4.14. Let S be a ring and I be a two-sided ideal of S. Then,
VI ={a € S| a is I-strongly nilpotent}.

Proof. Let a € S such that a ¢ v/I, then there exists a prime ideal P of S, containing I, such that a ¢ P,
hence, by Proposition 4.12, aSa ¢ P. This says that there exists b € S such that aba ¢ P. Let a1 := a
and as := aba. Thus, asSas ,(Z P and hence there exists ¢ € S such that ascas ¢ P. Let a3 := agcas.
Continuing this way we get a sequence {a;};>1 of elements of S such that a; ¢ P for every ¢ > 1, hence,
a; ¢ I for every i > 1. This means that a is not I-strongly nilpotent.

Conversely, assume that a € S is not I-strongly nilpotent, then there exists a sequence S := {a;}i>1
of elements of S, with a; := a and a;y1 € a;Sa;, such that for every i > 1, a; ¢ I. By Zorn’s lemma,
there exists a two-sided ideal P of S, containing I, maximal with respect to the condition SN P =
(observe that I O I and SN 1T = (). We will show that P is a prime ideal of S. It is clear that P # S.
Let L, J be left ideals of S such that P C L and P C J. Then, LNS # ) and J NS # 0, so there
exists a; € L and a; € J. Let k := max{i, j}, then ay41 € LJ, but ax1 ¢ P, ie., LJ ¢ P. Thus, from
Proposition 4.13, P D I is a prime ideal such that a ¢ P, so a ¢ /1. O

Lemma 4.15. Let A := o(F){x1,...,2n) be a quasi-commutative bijective skew PBW extension of F,
where F is a field. Then, for every Z := (z1,...,2zn) € F", (Z) is completely semiprime.

Proof. We have to show first that (Z) # A: Contrary, assume that 1 € A, then
1=pi(zi, — zi)q1 + - + pm(2i,, — 2i,, )Gm, With pj,q; € Aand i; € {1,...,n}, 1 <j <m.
By Proposition 3.9,

’,

q; = q;j(xi; — zi;) + hy, with q;-, h € A, hj reduced w.r.t. x;; —2;;, 1 <j<m.
So,

L=pi(zi, — 2, (@1 (T, — 2i,) + ha) + -+ pin(i, — 20, ) (@ (Ti, — 21,,) + ) =
(@i, — 2i) a1 (T, — 2ziy) + p1(@i, — zi)ha + -+ (@i, — 200, )Un (@i, — Zi) + D@0, — 2y ) o

Since every h; is reduced, then h; € F, but A is quasi-commutative, then 1 € I, where [ is a left ideal
of A generated by elements of the form ¢;;z;, — zz’-_y_, where ¢;;, zz" € F with ¢;; #0, 1 < j <m (actually,
in some cases ¢;; = 1 and z{j = z;;, and in other cases, when h; # 0, then ¢;; = 0y, (h;) and zgj =z, hj,
where o, is as in Proposition 3.2). It is clear from Definition 3.10 that the generators Ci;Ti; — zz/»j of I
conform a Grobner basis of I. Since 1 € I, from the part (iii) of Proposition 3.11 we get that z;; divides
1 for some j, a contradiction. Hence, (Z) # A.

Now, let f € A such that f2 € (Z). Applying again Proposition 3.9, there exist polynomials
Di,--.,pt, h € A, with remainder h reduced w.r.t. F := {z1 — 21,...,Zn — Zn}, such that

f=pi(r1—21)+- +pplan — 2,) + I
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Since h is reduced, then h € F. If h =0, then f € (Z) and the proof is over. Assume that h # 0, then
h? = (f - [pl(l'l - Zl) + - +pn(In - Zn)})Q € <Z>7
hence (Z) = A, a contradiction. O

Theorem 4.16 (Hilbert’s Nullstellensatz). Let A := o(F){(z1,...,2,) be a quasi-commutative bijec-
tive skew PBW extension of F, where F is an algebraically closed field. Assume that Z(A) is a polynomial
ring in n variables with coefficients in F. Let I be a two-sided ideal of A. Then,

(Iz(a)(Vz(a) () S VI CI(V(ID)),

where J :=1"Y(I),  : Z(A) — A is the inclusion of the center of A in A, Vz(a)(J) is the vanishing set
of J with respect to Z(A) and Iz(4)(Vza)(J)) is the ideal of points of Vi a)(J) with respect to Z(A).

Proof. T C I(V(I)): If V(I) = §, then I(V(I)) = A and hence there is nothing to prove. Assume that
V(I) # 0 and let f € v/I, then f is I-strongly nilpotent, and hence, I-nilpotent, so there exists m > 1
such that f™ € I. Let Z := (21,...,2,) € V(I), then f™ € (Z). From Lemma 4.15, f € (Z), i.e.,
1 e 1V (D).

(Iz(4)(Vz(a)(J))) € VI: Consider the inclusion Z(A) L Aand let J = I7Y(I). Then, J =1(J) =
I(I7Y(I)) C I, and let (J) := AJA be the two-sided ideal of A generated by J. We have (J) C I, so
\/m C VI, but (VJ) C /(J), where /J is the radical of J in the ring Z(A). In fact, let w € V/J,
then there exists m > 1 such that w™ € J C (J), but w € Z(A), then w is {J)-strongly nilpotent, i.e.,
w € \/(J). Thus, (v/J) C VI. Applying the classical Hilbert’s Nullstellensatz for Z(A) (here we use that
F is algeraically closed) we have v/.J = Iz(4)(Viz(a)(J)), so we get that (I7(a)(Vz(a)(J))) C V1. O

Example 4.17. Next we present some concrete examples of skew PBW extensions that satisfy the
hypothesis of Theorem 4.16. F denotes an algebraically closed field.

(i) It is clear that if A = Flxy,...,z,] and I is an ideal of A, then in Theorem 4.16 we have
(Lzta) (Vo () = I(V(1)), and hence, I(V(D)) = V1.

(ii) If ¢ # 1 is an arbitrary root of unity of degree m > 2, then the center of the quantum plane
A = Fylz,y] is the subalgebra generated by ™ and y™, i.e., Z(Fq[z,y]) = Flz™,y™] (see [37] or also
[32], Proposition 3.3.14). Recall that the rule of multiplication in A is given by yz = qzy.

(iii) The previous example can be generalized in the following way (see [5], Lemma 4.1, or also [32],
Proposition 3.3.15): Let ¢ € F — {0} and A := F,[z1,...,z,] be the skew PBW extension defined by
xjx; = qu;xy forall 1 <4 < j <n.Ifn>2and q#1is aroot of unity of degree m > 2, then

(a) If ¢ = —1, then

Z(A) =F[a?,...,22] when n is even.

(b) If ¢ # —1, then

Z(A) =F[z7,...,2"] when n is even.

(iv) Consider that for every 1 <1i,j <n, g;; € F — {0} is a nontrivial root of unity of degree d;; < oo
and let A :=Fq[zq,...,2,] be the skew PBW extension defined by z;z; = ¢;jz;z; for all 1 <i < j <mn.
Let k;; € Z such that |k;;| < d;;, led(kij,d;j) = 1 and ¢;; = exp(Zﬂ'\/fl’;Z) (choosing kj; := —k;;). Let
L; :=1em{d;;|j = 1,...,n}. Then Z(Fq[z1,...,2,]) is a polynomial ring if and only if it is of the form
Flztr, ... xkr] (see [4], Theorem 0.3 or also [32], Proposition 3.3.17).

9 n

Remark 4.18. In this last section we have studied only the algebraic sets of skew PBW extensions and
the results have been published separately in [29]. The other properties of noncommutative coding theory
considered in the second section for Ore extensions have not been investigated in this paper. Probably
this represents a challenge for our readers.
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