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Abstract
This article emphasizes the most fundamental rules to verify Goldbach's strong conjecture that an even number is the 
sum of two primes. One rule states that for an even number E to split into two primes there must be two equidistant 
prime numbers p and p' such that E/2 - p = p' - E/2. The strong conjecture also applies to biprime numbers that are 
x2 – y2. Two prime numbers equidistant with respect to an integer n have a specific property of Modulo when divided by 
the gap that separates them from n. The paper further proposes methods to convert even and odd numbers into sums of 
two and three prime numbers by the equation M ± 1 such that M is prime or multiple of primes except 2 and 3 knowing 
that there are two types of prime numbers 6x - 1 and 6x + 1. The data also show a strong correlation coefficient between 
close equidisant primes indicating they are likely to happen in a regular fashion. Finally, the paper describes new rules 
that explain how a prime numbers gives another one and this is where the truth of Goldbach's conjecture lies and show 
congruence rules between the two additive primes. These rules allow to demonstrate how an even ends up to be a sum 
of two primes and proves Goldbach's strong conjecture. This article can have new applications in computing and sheds 
new lights on the Goldbach's strong and weak conjectures.

Keywords: Goldbach, Strong Conjecture, Weak Conjecture, Primes. Addition, Equidistant Primes, Euclidean Division, Remainders, 
Prime Factor, Congruence Modulo, Gap, Correlation Coefficient

1. Introduction
There are two conjectures of Christian Goldbach (1690-1764) 
that have been the focus of mathematical research for a very long 
time, they are called the weak and the strong one [1]. The strong 
conjecture states that every even natural number greater than 4 is 
the sum of two prime numbers whereas the weak one says that 
every odd integer greater than 8 is the sum of three primes. Today 
websites such like https://www.dcode.fr/conjecture-goldbach 
or https://wims.univ-cotedazur.fr propose to put Goldbach's 
conjectures into practice to convert an even number into a sum of 
prime numbers. In addition, the Goldbach partition function is the 
function that associates to each even integer the number of ways it 
can be decomposed into a sum of two primes. Its graph looks like 
a comet and is therefore called Goldbach's comet [2]. Goldbach's 
weak conjecture has been verified for all integers up to 8,875.1030 

[3]. But what exactly do these conjectures mean in the strict 
mathematical sense? They postulate that by combining the prime 
numbers by adding them is enough to regenerate any even or odd 
number. In mathematics, the fundamental theorem of arithmetic, 
also called the unique factorization theorem states that every 

integer greater than 1 can be represented uniquely as a product 
of prime numbers and algorithms are today available to facotrize 
integers [4]. The difference between the Goldbach's conjectures 
and the unique factorization theorem is that the conjectures suggest 
that a number might be converted to many different sums of prime 
numbers while the latter says that there is only one product of 
prime numbers for an integer. Many attemps have been underken 
since then to provide a proof for their truthfulness [3,5,6]. 

These conjectures suggest that there are enough prime numbers to 
generate the entire set N of integers from 5 to infinity. However, the 
prime number theorem which describes the asymptotic distribution 
of prime numbers and allows us to calculate the density of prime 
numbers in a predefined area of numbers rather show that prime 
numbers become rarer as we tend to infinity so that these conjecture 
might not hold true to infinity [7,8]. We still cannot predict where 
and when a prime number appears by a unitary equation although 
many mathematicians still believe those conjectures hold true 
[6,9]. There have been many empirical verifications of it, up to 
astronomic numbers, but it has remained unproven since 1742 and 
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that what is still believed today. Therefore, Goldbach’s conjecture 
remains one of the best-known unsolved problems in mathematics. 
Otherwise some think they might be viewed as an axiom because if 
they are unrpoven then they must be true (https://www.irishtimes.
com/news/science/goldbach-s-conjecture-if-it-s-unprovable-
it-must-be-true1.4492890). Markaris et al presented a detailed 
study on the classification of even numbers by the equation 6x 
+ n (n= 0, n= 2 and n= 4) and a method for their conversion 
into sums of prime numbers. Armed with three theorems lean in 
favor of the truth of Goldbach's strong conjecture and discusses 
the distribution of prime numbers claiming that it is not random 
but rather predetermined [6]. It has shown that for every positive 
composite number n, strictly larger than 3, there are two primes 
equidistant with respect to n. The paper contains a proof of this 
prime symmetry property and, implicitly, of Goldbach’s conjecture 
for 2n as well [9,10]. 

The present article aims to define new rules of calculation as well 
as a method to put into practice the two Goldbach conjectures 
and discuss their mathematical meaning by resorting to deductive 
reasoning (if A then B).  It focuses on the rules of calculation of 
addition between prime numbers. Second, it proposes a simpler 
and elementary accessible method based on the equations M + 1 
and M + 5 (M is either prime or a multiple of primes except 2 
and 3) to convert an even or odd number into a sum of primes. It 
states specific rules based on the fact that there are two types of 
prime numbers 6x + 1 and 6x - 1. This new method is not only 
programmable but can be exploited on a large scale to verify 
Goldbach's conjectures. Finally, this article explains how a prime 
number leads to another by explaning the gaps that separate them 
and show new congruence rules that determine if two primes can 
add together to form an even. Globally, this paper provides a basic 
demonstration of Goldbach's strong conjecture and draws the 
limits of its truthfulness.

2. Results
In the first section of the article (2A), GSC will be assumed to be 
true and then the initial conditions required for it to be verified by 

computational rules will be defined. In the second section, we'll 
also look at the addition rules obeyed by GSC (2B). For the rest 
and until the end, we'll look at how to find prime numbers that 
satisfy this GSC for any even number. 

2A- Calculation rules for the strong and weak conjectures of 
Goldbach
1. If E = p1 + p2 and p2 > p1 → p1 < E/2 and p2 > E/2 → E/2 – p1 = 
p2 – E/2. E/2 is any integer   ≥ 4 and E any even ≥ 8 (this is true 
for this entire article). The prime numbers p1 and p2 are said to be 
equidistant relatively to E/2.  For the Goldbach's strong conjecture 
(GSC) to be true, there must exist at least two equidistant primes.
2. Two prime numbers p1 and p2 which are both < E/2 or both > E/2 
will not verify the Goldbach's conjecture E = p1 + p2.
3. If two prime numbers p and p' are equidistant with respect to 
any integer n then 2n = p + p'. Example, 37 and 29 are equidistant 
relatively to 33 and then 37 + 29 = 2 x 33 = 66. For any even 
number E ≥ 8 its half E/2 is surrounded by two equidistant prime 
numbers including one before (p1) and one after (p2) such that p1 + 
p2 = 2 x E/2 = E. That starts with 8 = 5 + 3 with E/2 = 4. This article 
will discuss in details this rule that determines if GSC is true.
4. The GSC therefore means that an even E is constructed with two 
prime numbers p and p' that are located at the same distance of E/2. 
These two primes are said to be equidistant relatively to E/2. It is 
under this condition that the GSC stating that an even E = p + p' 
is verified correctly. For example 100 = 3 + 97 such that 50 - 3 = 
97 – 50 or 18 = 5 + 13 then 9 - 5 = 13 – 9. Or  190 = 17 + 173 such 
that 95 – 17 = 173 – 95.
5. Suppose we have an even number that we want to convert to the 
sum of two prime numbers. For example, let's take 1256 and divide 
it by 2 = 628. We will look for the prime numbers that surround 
628 and find those that are at the same distance from 628. We have 
the two prime numbers 613 = 628 - 15 and 643 = 628 + 15. And so 
613 + 643 = 1256. 
Here is another example. The number randomly chosen 14896 the 
half of which is 7448. We have two prime numbers 7349 and 7547 
such that 7448 – 7349 = 99  and 7547 – 7448 = 99. Hence 7349 + 
7547 = 14896. See table 1 below for more examples of calculation.

E p1 + p2 E/2 E/2 - p1 p2  -  E/2 
66 29 + 37 33 4 4
1780 557+1223 890 333 333
37674 18191+19483 18837 646 646
1173850 174989 + 998861 586925 411936 411936
2460650 880069 + 1580581 1230325 350256 350256
690116436 678955259 + 11161177  345058218 333897041 333897041
9077236708 331582187 +  8745654521 4538618354 4207036167 4207036167
1574407869450  699845716519  + 874562152931 787203934725 87358218206 87358218206

Table 1: For the Goldbach's strong conjecture (GSC) to be verified and if an even E = p1 + p2  then E/2 – p1 = p2 – E/2. The table 
shows examples of verification of this rule with chosen numbers. Primes p1 and p2 shown are equidistant because E/2 – p1 = p2 – 
E/2.

6. If we already know its prime factors we can frame any biprime 
number by two perfect squares as follows: be a biprime number 
Nb= xy such x < y; we calculate (x + y)/2 = z and then y – z = t; 

then Nb = z2 – t2. For example let's take the biprime number 13 289 
= 97 x 137. Let's calculate (97 + 137)/2 = 117 and then 137 – 117 = 
20 then 13 289 = (117)2– (20)2 = (117 – 20) (117 + 20) = 97 x 137. 

https://www.irishtimes.com/news/science/goldbach-s-conjecture-if-it-s-unprovable-it-must-be-true-1.4492890
https://www.irishtimes.com/news/science/goldbach-s-conjecture-if-it-s-unprovable-it-must-be-true-1.4492890
https://www.irishtimes.com/news/science/goldbach-s-conjecture-if-it-s-unprovable-it-must-be-true-1.4492890
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There is a link between GSC and the remarkable identity x2 - y2 

which is used to factor biprime integers.
7. Let E be an even number and let E = 2pq (p and q are any prime 
factors > 2).
E/2 = p x q such that q > p and therefore E/2 = x2 – y2. First let 
calculate (p + q)/2 = M and   q – M = z → E/2 = M2 – z2 =  (M – z)
(M + z) → E = 2 (M – z) (M + z). Hence p = M – z   and q = M 
+ z. Therefore, there always exist two equidistant prime numbers 
such that p + z  = M  and  q – z = M to form E = 2pq or Nb = 
pq. Because p and q might be any prime number (except 2) then 
all prime numbers are equidistant relatively to an integer value M 
such that  p + z = M and  q – z = M. Given that M might be any 
integer then 2M might be any even which is therefore a sum of the 
two primes p and q. In fact  p + z = M and q – z = M → 2M =  (p 
+ z) +  (q – z) = p + q. The GSC also applies for biprime numbers. 
This is a demonstration going from the multiplicative structure of  
integers to the additive one. This means that prime numbers are 
equidistant in addition or multiplication when combined by two.
•	 Following the demonstration cited above we can substitute z 

by t and M by n kowing that   E is any even = 2pq (q > p ; q 
> 2 ; p > 2)  and n = (p + q)/2. So we have E/2 = pq = (n – t)
(n + t) = n2 - t2. Using the principle of equivalence we can 
say  that the factorization of a biprime number implies that an 
even is the sum of two prime numbers because it implies the 
existence of two prime numbers equidistant to n. Therefore 
E/2 = pq = (n – t)(n + t) ↔ p = n – t and q = n + t ↔ 2n = p 
+ q. This means that if all biprime numbers are written x2 - y2 

it is because all even numbers > 4 are sums of two equidistant 
primes.  

•	 Let us note in passing that prime numbers can be written as 
sums of squares. If a prime number is then written as x2 + y2, 
it will not have a prime equidistant from a specific mean. for 
example 89 = 64 + 25 does not have a symmetric prime at 
position 64 – 25 = 39 = 3 x 13. Here the mean value between 
89 and 39 is 64. This applies even for contiguous primes 
example 101 = 102 + 12 will not have a twin with respect to 
100 because 100 – 1 = 99 = 9 x 11. Here 100 is the mean value 
between 99 and 101.

•	 E/2 = pq and because q > p and q = E/2 + t and p = E/2 – t → 
q – p =  (E/2 + t)  –  ( E/2 – t) → q = p + 2t  → E/2 = p(p + 2t) 
→ E/2 = p2 + 2tp → t = (E/2 – p2)/p. Or E/2 = q(q – 2t) → E/2 
= q2 – 2tq → t = (q2 – E/2)/q → (E/2 – p2)/p = (q2 – E/2)/q.

8. As an important reminder, equidistant prime numbers introduced 
in this article are not to be confused with twin prime numbers. 
The difference between two twin prime numbers that = 2 is visible 
because it separates two numbers that follow each other in the 
set of integers. But the symmetry between two equidistant prime 
numbers is only visible between them when they are prime factors 
of a biprime number in product or when they add up to form an 
even number.  
9. A prime number p has an infinity of equidistant primes numbers. 
There is no prime number that does not have an equidistant prime 
number (except 2) and therefore GSC is true. A counterexample 
cannot be found to contradict this fact.  
10. This rule works with twin prime numbers because they are 
equidistant relative to the even number between them and their 

addition is in agreement with GSC. Twin prime numbers are not the 
only ones to be equidistant. But all prime numbers are equidistant 
relatively to a mean whey they are in a sum or in a biprime product. 
Two given primes are equidistant to one single value.
11. It is known that between E and 2E, there is always a prime 
number (Bertrand's postulate that for every n > 1 there is a prime p 
with n < p < 2n). Between 0 and E/2 on one hand, and E/2 and  E on 
the other hand, there would exist two equidistant primes satifsying 
the GSC and therefore Bertrand's postulate is not enough to prove 
GSC is true. 
12. Be E any even ≥ 8 (note E/2 is thus any integer n ≥ 4). Because 
there are always two integers such that (E/2 – x) ∈  [0 – E/2] 
and (E/2 + x)  ∈ [E/2 – E]   that are both primes∈ (noted p and 
p' respectively) then any even 2E = 2n = (E/2 – x) + (E/2 + x) = 
p + p'. Hence GSC is true. A counterexample cannot be found to 
contradict this fact.    
13. P and P' are two equidistant prime numbers relatively to E/2 
such that t = E/2 – P = P' – E/2. E/2 is any integer ≥ 4 and E any 
even ≥ 8 . Then, E/2 ≡ P ≡  P' modulo (t). Demonstration is below 
with r the remainder of the euclidean division.
P → E/2 ← P'.  E/2 – P = t and P' – E/2 = t
E/2 = at + r → P = E/2 – t = at + r – t →  P  =  t (a – 1) +  r 
E/2 = at + r → P' = E/2 + t = at + r + t → P' =  t (a + 1) +  r → E/2 
≡ P ≡  P' modulo (t).

Here are some examples below :
•	 666 = 2 x 32 x 37 and 89 + 577 = 666 (89 and 577 are primes)
666/2 = 333. 333 –  89 = 244. 577 – 333 = 244
333/244 = 1.364754098360655737704918032786885245901639
3  (r = 89)
89/244 = 0.3647540983606557377049180327868852459016393 
(r = 89)
577/244 = 2.364754098360655737704918032786885245901639
3 (r = 89)
•	 1764 = 22 × 32 × 72 

613 + 1151 = 1764 (613 and 1151 are primes)
1764/2 = 882
882 – 613 = 269
1151 – 882 = 269
882/269 = 3.278810408921933085501858736059479553903345
7 (r = 75) 613/269 = 2.278810408921933085501858736059479
5539033457 (r = 75)
1151/269 = 4.27881040892193308550185873605947955390334
57 (r = 75)
•	 If E/2 – P = t and P' – E/2 = t, Tables 2A-C show that t is 

either prime or composite for even numbers. Any integer is 
surrounded by two equidistant primes and any prime has a 
equidistant prime relatively to an integer. Equidistant primes 
give the same remainder when divided by t.

•	 Any integer increased or decreased gives either a composite 
or a prime number but both are likely to happen because if not 
there would be no prime numbers or much lesser in the set of 
integers. GSC means that for any integer N there is an integer t 
(t < N) such that N – t and N + t are equidistant prime numbers 
the sum of which gives any even and therefore any even is 
sum of two primes. However, these equidistant primes cannot 
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be predicted with an established equation which explain why 
this conjecture remains unsolved. We can however prove it 
by following the calculation rules described here. Otherwise, 
search for a counterexample to reject this rule.

Tables 2: Remainders (r) of the euclidean divisions and the 
difference (t) between an even or an odd number and the equidistant 

prime numbers that surround them. Euclidean divisions are 
calculated with X, Y and the number shown. Note t has specific 
values either prime or 3n in an increasing order. Equidistant 
primes X and Y give the same remainder. Equidistant primes are 
highlighted. Note that sum of the two equidistant primes  = 2 x the 
number shown (60 for 30; 58 for 29; 100 for 50; 98 for 49; 96 for 
48, and 94 for 47).

Tables 2: Remainders (r) of the euclidean divisions and the difference (t) between an even or an odd number and the

equidistant prime numbers that surround them. Euclidean divisions are calculated with X, Y and the number shown.

Note  t  has  specific  values  either  prime or  3n in  an  increasing order.  Equidistant  primes X and Y give  the  same

remainder. Equidistant primes are highlighted. Note that sum of the two equidistant primes  = 2 x the number shown (60

for 30; 58 for 29; 100 for 50; 98 for 49; 96 for 48, and 94 for 47).

Table 2A- Numbers 30 and 29.

X r (30 : X) r (Y : 30) Y t X r (29 : X) r (Y : 29) Y t

29 1 1 31 1 28 1 1 30

28 2 2 32 27 2 2 31

27 3 3 33 26 3 3 32

26 4 4 34 25 4 4 33

25 5 5 35 24 5 5 34

24 6 6 36 23 6 6 35

23 7 7 37 7 22 7 7 36

22 8 8 38 21 8 8 37

21 9 9 39 20 9 9 38

20 10 10 40 19 10 10 39

19 11 11 41 11 18 11 11 40

18 12 12 42 17 12 12 41 2x 6

17 13 13 43 13 16 13 13 42

16 14 14 44 15 14 14 43

15 15 15 45 14 15 15 44

14 16 16 46 16 16 16 45

13 17 17 47 17 12 17 17 46

12 18 18 48 11 18 18 47 2 x 9

11 19 19 49  10 19 19 48

10 20 20 50 9 20 20 49

9 21 21 51 8 21 21 50

8 22 22 52 7 22 22 51

7 23 23 53 23 6 23 23 52

6 24 24 54 5 24 24 53 2 x 12

5 25 25 55 4 25 25 54

4 26 26 56 3 26 26 55

3 27 27 57  2 27 27 56

2 28 28 58 1 28 28 57

1 29 29 59

6

Table 2A: Numbers 30 and 29.
Table 2B- Numbers 50 and 49.

X r (50 : X) r (Y : 50) Y t X r (49 : X) r (Y : 49) Y t

49 1 1 51 48 1 1 50

48 2 2 52 47 2 2 51 2

47 3 3 53 3 46 3 3 52

46 4 4 54 45 4 4 53

45 5 5 55 44 5 5 54

44 6 6 56 43 6 6 55

43 7 7 57 42 7 7 56

42 8 8 58 41 8 8 57

41 9 9 59 9 = 3 x 3 40 9 9 58

40 10 10 60 39 10 10 59

39 11 11 61 11 38 11 11 60

38 12 12 62 37 12 12 61 2 x 6

37 13 13 63 36 13 13 62

36 14 14 64 35 14 14 63

35 15 15 65 34 15 15 64

34 16 16 66 33 16 16 65

33 17 17 67 32 17 17 66

32 18 18 68 31 18 18 67 2 x 9

31 19 19 69 30 19 19 68

30 20 20 70 29 20 20 69

29 21 21 71 21 = 3 x 7 28 21 21 70

28 22 22 72 27 22 22 71

27 23 23 73 26 23 23 72

26 24 24 74 25 24 24 73

25 25 25 75 24 25 25 74

24 26 26 76 23 26 26 75

23 27 27 77 22 27 27 76

22 28 28 78 21 28 28 77

21 29 29 79 20 29 29 78

20 30 30 80 19 30 30 79 2 x 15

19 31 31 81 18 31 31 80

18 32 32 82 17 32 32 81

17 33 33 83 33 =  3 x 11 16 33 33 82

16 34 34 84 15 34 34 83

15 35 35 85 14 35 35 84

14 36 36 86 13 36 36 85

13 37 37 87 12 37 37 86

12 38 38 88 11 38 38 87

11 39 39 89 39 =  3 x 13 10 39 39 88

10 40 40 90 9 40 40 89

9 41 41 91 8 41 41 90

8 42 42 92 7 42 42 91

7 43 43 93 6 43 43 92

6 44 44 94 5 44 44 93

5 45 45 95 4 45 45 94

4 46 46 96 3 46 46 95

3 47 47 97 47 2 47 47 96

2 48 48 98 1 48 48 97

1 49 49 99

7
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Table 2B- Numbers 50 and 49.

X r (50 : X) r (Y : 50) Y t X r (49 : X) r (Y : 49) Y t

49 1 1 51 48 1 1 50

48 2 2 52 47 2 2 51 2

47 3 3 53 3 46 3 3 52

46 4 4 54 45 4 4 53

45 5 5 55 44 5 5 54

44 6 6 56 43 6 6 55

43 7 7 57 42 7 7 56

42 8 8 58 41 8 8 57

41 9 9 59 9 = 3 x 3 40 9 9 58

40 10 10 60 39 10 10 59

39 11 11 61 11 38 11 11 60

38 12 12 62 37 12 12 61 2 x 6

37 13 13 63 36 13 13 62

36 14 14 64 35 14 14 63

35 15 15 65 34 15 15 64

34 16 16 66 33 16 16 65

33 17 17 67 32 17 17 66

32 18 18 68 31 18 18 67 2 x 9

31 19 19 69 30 19 19 68

30 20 20 70 29 20 20 69

29 21 21 71 21 = 3 x 7 28 21 21 70

28 22 22 72 27 22 22 71

27 23 23 73 26 23 23 72

26 24 24 74 25 24 24 73

25 25 25 75 24 25 25 74

24 26 26 76 23 26 26 75

23 27 27 77 22 27 27 76

22 28 28 78 21 28 28 77

21 29 29 79 20 29 29 78

20 30 30 80 19 30 30 79 2 x 15

19 31 31 81 18 31 31 80

18 32 32 82 17 32 32 81

17 33 33 83 33 =  3 x 11 16 33 33 82

16 34 34 84 15 34 34 83

15 35 35 85 14 35 35 84

14 36 36 86 13 36 36 85

13 37 37 87 12 37 37 86

12 38 38 88 11 38 38 87

11 39 39 89 39 =  3 x 13 10 39 39 88

10 40 40 90 9 40 40 89

9 41 41 91 8 41 41 90

8 42 42 92 7 42 42 91

7 43 43 93 6 43 43 92

6 44 44 94 5 44 44 93

5 45 45 95 4 45 45 94

4 46 46 96 3 46 46 95

3 47 47 97 47 2 47 47 96

2 48 48 98 1 48 48 97

1 49 49 99

7

Table 2B: Numbers 50 and 49.
Table 2C- Numbers 48 and 47.

X r (48 : X) R (Y : 48) Y t X r (47 : X) R (Y : 47) Y t

47 1 1 49 46 1 1 48

46 2 2 50 45 2 2 49

45 3 3 51 44 3 3 50

44 4 4 52 43 4 4 51

43 5 5 53 5 42 5 5 52

42 6 6 54 41 6 6 53 2 x 3

41 7 7 55 40 7 7 54

40 8 8 56 39 8 8 55

39 9 9 57 38 9 9 56

38 10 10 58 37 10 10 57

37 11 11 59 11 36 11 11 58

36 12 12 60 35 12 12 59

35 13 13 61 34 13 13 60

34 14 14 62 33 14 14 61

33 15 15 63 32 15 15 62

32 16 16 64 31 16 16 63

31 17 17 65 30 17 17 64

30 18 18 66 29 18 18 65

29 19 19 67 19 28 19 19 66

28 20 20 68 27 20 20 67

27 21 21 69 26 21 21 68

26 22 22 70 25 22 22 69

25 23 23 71 24 23 23 70

24 24 24 72 23 24 24 71 2 x 12

23 25 25 73 23 22 25 25 72

22 26 26 74 21 26 26 73

21 27 27 75 20 27 27 74

20 28 28 76 19 28 28 75

19 29 29 77 18 29 29 76

18 30 30 78 17 30 30 77

17 31 31 79 31 16 31 31 78

16 32 32 80 15 32 32 79

15 33 33 81 14 33 33 80

14 34 34 82 13 34 34 81

13 35 35 83 35 12 35 35 82

12 36 36 84 11 36 36 83 2 x 18

11 37 37 85 10 37 37 84

10 38 38 86 9 38 38 85

9 39 39 87 8 39 39 86

8 40 40 88 7 40 40 87

7 41 41 89 41 6 41 41 88

6 42 42 90 5 42 42 89 2 x 21 

5 43 43 91 4 43 43 90

4 44 44 92 3 44 44 91

3 45 45 93 2 45 45 92

2 46 46 94 1 46 46 93

1 47 47 95   

8
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Table 2C- Numbers 48 and 47.

X r (48 : X) R (Y : 48) Y t X r (47 : X) R (Y : 47) Y t

47 1 1 49 46 1 1 48

46 2 2 50 45 2 2 49

45 3 3 51 44 3 3 50

44 4 4 52 43 4 4 51

43 5 5 53 5 42 5 5 52

42 6 6 54 41 6 6 53 2 x 3

41 7 7 55 40 7 7 54

40 8 8 56 39 8 8 55

39 9 9 57 38 9 9 56

38 10 10 58 37 10 10 57

37 11 11 59 11 36 11 11 58

36 12 12 60 35 12 12 59

35 13 13 61 34 13 13 60

34 14 14 62 33 14 14 61

33 15 15 63 32 15 15 62

32 16 16 64 31 16 16 63

31 17 17 65 30 17 17 64

30 18 18 66 29 18 18 65

29 19 19 67 19 28 19 19 66

28 20 20 68 27 20 20 67

27 21 21 69 26 21 21 68

26 22 22 70 25 22 22 69

25 23 23 71 24 23 23 70

24 24 24 72 23 24 24 71 2 x 12

23 25 25 73 23 22 25 25 72

22 26 26 74 21 26 26 73

21 27 27 75 20 27 27 74

20 28 28 76 19 28 28 75

19 29 29 77 18 29 29 76

18 30 30 78 17 30 30 77

17 31 31 79 31 16 31 31 78

16 32 32 80 15 32 32 79

15 33 33 81 14 33 33 80

14 34 34 82 13 34 34 81

13 35 35 83 35 12 35 35 82

12 36 36 84 11 36 36 83 2 x 18

11 37 37 85 10 37 37 84

10 38 38 86 9 38 38 85

9 39 39 87 8 39 39 86

8 40 40 88 7 40 40 87

7 41 41 89 41 6 41 41 88

6 42 42 90 5 42 42 89 2 x 21 

5 43 43 91 4 43 43 90

4 44 44 92 3 44 44 91

3 45 45 93 2 45 45 92

2 46 46 94 1 46 46 93

1 47 47 95   

8

Table 2C: Numbers 48 and 47.

•	 What do the weak and strong Goldbachs conjectures signify? 
They signifiy that whenever there is an even or an odd number, 
there will be a prime number (prime number theorem allows to 
count prime numbers before an integer). Let N be any integer, 
then N ±  t such that t < N and t is any non-zero integer would 
give any other number, prime or not. But there might always 
be a value t such that N – t and N + t are equidistant primes 
(Table 3). 

•	 Since 2N = (N - t) + (N + t) with t < N and since N ± t produces 
prime numbers equidistant or not (Table 3), then an even 
can be the sum of two primes.Therefore, prime numbers do 
happen equidistanty at all levels of divisibility of integers. An 
infinitely larger number will produce by the N ±  t equation  

an infinite number of prime numbers, equidistant or not. We 
understand why the equations of Fermat 2x + 1 (x = 2n and n is 
an integer > 0 ) and that of Mersenne 2n – 1( n must be prime 
for the Mersenne's number to be prime and so the equation is 
rather  2p – 1) were able to produce very long prime numbers. 
For instance, one of the Mersenne's numbers has 24 862 048 
digits. Altough both formula are not always giving prime 
numbers, they show that a very long number tending to +∞ 
and whatever the number of its prime factors can become 
prime when increased or decreased by one unit. This is why 
the simpler equations N ± t were used here to produce prime 
numbers some of which are equidistant with respect to the 
value obtained, by just adding or removing two units in series.
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Table 3. Formation of prime numbers and couples of equidistant numbers by the equation N ± t such that N and t are 

integers and t < N. Two numbers N are chosen, N = 20 and N= 37 while t is the sequence of evens or odd numbers < N. 

The equidistant prime numbers are highlighted. All other individual prime numbers are underlined. Note that the sum of

the two equidistant primes = 2N (or 40 for 20 and 74 for 37).  

20 37

-3 17 +3 23 -2 35 +2 39

-5 15 +5 25 -4 33 +4 41

-7 13 +7 27 -6 31 +6 43

-9 11 +9 29 -8 29 +8 45

-11 9 +11 31 -10 27 +10 47

-13 7 +13 33 -12 25 +12 49

-17 3 +17 37 -14 23 +14 51

-19 1 +19 39 -16 21 +16 53

-18 19 +18 55

-20 17 +20 57

-22 15 +22 59

-24 13 +24 61

-26 11 +26 63

-28 9 +28 65

-30 7 +30 67

-32 5 +32 69

-34 3 +34 71

-36 1 +36 73

 

9 
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14. Because all primes numbers are equidistant from each other 
relatively to any integer then any even can be sum of two primes. 
Thus we can deduce that GSC is true because there exists between 
1 and E/2 a prime number p, and another prime number p' between 
E/2 and E such that E/2 –  p = p' – E/2.  
•	 Therefore, Goldbach's conjectures are related to distribution 

of prime numbers around integers, and if these conjecture 
are true, this means that prime numbers are not randomly 
distributed because they would implie that there is at least two 
prime numbers that fulfill the rules stated above. 

•	 Goldbach's conjectures implies that if we take a very large 
integer N and divide it by all primers p < N so as to obtain 
N/2, N/3, we would have prime numbers before and after each 
fraction. Goldbach restricted himself to the two fractions of 
1/2 and 1/3. The strong conjecture is based on their distribution 
around N/2, the weak conjecture around N/3. In other words, 
prime numbers are present at all levels of divisibility of a 
natural integer, especially the fraction 1/2 and 1/3. We can 
round the decimal or irrational numbers obtained with these 
fractions to one unit, this will be recovered in the choice of 
prime numbers and their addition. Here is a simple example, 
100/2 = 50, 111/3 = 37. We have therefore to take 50 as the 
first lever to distribute 100 as a sum of two prime numbers and 
33 to distribute 111 as a sum of three prime numbers. Then 
100 = 41 + 59 and 101 = 37 + 31 + 43.

•	 Here we touch on the theorem of unique factorization which 
teaches us that prime numbers are the factors of any integer 
and are consequently its divisors and this is how they can by 

themselves reconstitute any integer by adding together by 2 
(≥ 4) or by 3 (≥ 8) and by much more. There is a relationship 
between divisibility and addition. As shown above with the x2 

– y2 equation, biprime numbers are formed of two equidistant 
primes.

15. A similar rule applies to the weak conjecture which states that 
if the odd number O does not have a prime number > its third 1/3, 
or if all prime numbers < O are also less than its 1/3, then the weak 
conjecture is inapplicable. In the conjecture O = p1 + p2 + p3, the 
three prime numbers p1, p2 and p3 cancel each other out to form the 
number O.
16. For an odd number O = p1 + p2 + p3 the sum of p1/O + p2/O + 
p3/O = 1. We also have (O - p1) + (O - p2) + (O - p3) = 2O. Taking 
(1/3 x O) – p1, (1/3 x O) – p2 and (1/3 x O) – p3 and if we have p3 
> p2 > p1 then (1/3 x O) – p3 = (1/3 x O) –  p1) + (1/3 x O) – p2) in 
absolute value. This means that for two prime numbers p1 and p2 
there is only one prime number that will add to them to form O. 
Since it is unusual to find three primes that are close to one-third of 
an odd number unless there are twin primes around or in a prime-
dense region, the weak conjecture holds true only if at least 1 of 
the three primes > 1/3 x O.
17. If the gap between two consecutive primes is > E/2 (half of an 
even number) or 1/3 of an odd number which are at the end of the 
gap, these numbers cannot be formed by the weak nor by strong 
Goldbach conjectures. However, to date the largest published 
gaps (wikipedia) do separate giant primes and therefore they 
remain very negligible compared to E/2 or 1/3 of the even and odd 
numbers placed at the ends of the gap.
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2B. Calculation rules to verify the strong and the weak conjectures 
of Goldbach 

2B1. Primes numbers and their multiples (except those of 2 and 3) 
are all 6x ± 1

•	 If we separate the even numbers and multiples of 3 from the 
rest of the natural numbers, we realize that the prime numbers 
and their multiples all line up in two separate lines that we call 
here the “P/M lines” (Table 4).

6x + 1 or 3x – 2 (P/M line) 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Evens 2n 2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98
Odds 3n 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99
Evens 2n 4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100
6x – 1 or 3x + 2 (P/M line) 5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101
 Evens 2 x 3n 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102

Table 4: Arranging the natural numbers in 6 categories shows that the prime numbers (P) and multiples of prime numbers (M) 
are 6x ±  1 or 3x ± 2. They form two lines called the P/M lines (P is prime and M is multiple of primes). Multiples of 2 (even 
numbers) and 3 are excluded from the P/M lines. There is a difference of 6 units between two consecutive P or M and this is also 
true for a P and M that follow each other. The data are shown for up to 100 but this is true to infinity.

•	 We already know that prime numbers are all 6x ± 1 except 
2 and 3. Those from the top P/M starting with 7 are 6x + 1 
whereas those on the one below starting with 5 are 6x – 1 
(Table 4). All multiples of prime numbers are also 6x ± 1 
except those of 2 and 3 (unpublished data not shown). These 
rules can help to transform an even number into the sum of 
two prime numbers.

If GSC is true then any even number denoted E is :
E = p + p' = (6x ± 1) + ( 6x' ± 1). This signifies that E is 6x; 6x – 2; 
or 6x + 2.

•	 If we take any odd number ≠ 3n and reduce or increase it by 
6 units in a sequential manner, at some point we have a prime 
number. It is therefore possible to transform an even number 
denoted by E into the sum of two prime numbers p and p' such 
that p < E/2 and p' > E/2 and p # p'. 

•	 Unlike factorization where a number has unique prime 
factors, GSC might hold true with many combinations of 
prime numbers. 

2B2 – An elementary Method for Converting an even number into 
an addition of two prime numbers 

•	 In this paper we pose the GSC as follows Even = p + p' and 
p#p'.

•	 First we set any even number E = Odd1 + Odd2 such that both 
Odd1 and Odd2 are not 3n. Odd1 and Odd2 are either primes 
or mutliples of prime numbers other than 2 and 3. Then E = 
↓Odd1↓ + ↑Odd2↑ which amounts to decreasing Odd1 by 6 and 
increasing Odd2 by 6 by scanning the P/M lines of table 4 from 
top to bottom or vice versa at a rate of 6. At some point or 
another, we might have two prime numbers that will add up.

•	 Because prime numbers are also 3x ± 2, Odd1 and Odd2 should 
not be multiples of 3 and if they are, they will have to be 
modified at the begining of the conversion. This article gives 
detailed examples of calculation. Not only must rules be stated, 
but it must also be shown how to verify them by calculation. 

We will start gradually with examples of calculation and step 
by step the method will become clearer.

 Examples : 
•	 378 = 189 + 189 because 189 is 3n, we will reduce it by 2 

and increase the other by 2 so 378 = 187 + 191. We can now 
apply the method of addition and subtraction of 6. 378 = 187 + 
191 → 378 = (187 – 6) + (191 + 6) → 378 = 181 + 197 (both 
primes). Or, 378 = 1 + 377 = 7 + 371 = 13 + 365 → 378 = 19 
+ 359 (both primes).

•	 1000 = 500 + 500. First we have to put ourselves on a P/M 
line and therefore we have to put 1000 in the form of a sum 
of two odd numbers which are not multiples of 3. 1000 = 497 
+ 503 but 497 is not prime. 1000 = (497 – 6) + (503 + 6) → 
1000 = 491 + 509. Both 491 and 509 are primes. 1000 = 1 + 
999  We cannot pose this equality because 999 is a multiple 
of 3, so we drop 1 and start with 5. 1000 = 5 + 995 = 11 + 989 
→ 1000 = 17 + 983.

•	 Let's take an even number that is one unit more than Fermat's 
number known as the 6th Fermat number 4294967297, which 
is composed of 10 digits.  4294967298 = 1 + 4294967297 
(note 1 is not prime) → 4294967298 = 7 + 4294967291. Let 
us take an even number which is one unit more than the 37th 
Mersenne number M(37) 137438953471, which is composed 
of 12 digits. 137438953472 = 1 +  137438953471 = 7 +  
137438953465 = 13 + 137438953459 = 19 +  137438953453 =  
25 + 137438953447 → 137438953472 = 31 +  137438953441.

2B3. Rules of the conversion of evens in sum of primes by GSC

As shown by table 4, odd numbers are either 3n, multiples of prime 
numbers, or primes. 
Prime numbers are odd numbers which have one unit more or less 
to be 3n therefore they are either 3x – 1 or 3x + 1. The 3x – 1 are 
also 3x + 2 and 3x + 1 are 3x – 2. These are the cases of all odd 
numbers which are not multiple of 3. On the other hand, 3x – 2 are  
6x + 1 and 3x + 2 are 6x – 1. For example 19 is 3x – 2 because it 
needs 2 units to be 3n (21), 19 is therefore 6x + 1. While 17 is 3x 
+ 2 and needs only one unit to be 3x and is 6x – 1. This interplay 
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between multiples of 3 and the 6x ± 1 equations is important for 
putting Goldbach's conjecture into practice.

→ The first rule. There are two types of prime numbers: those that 
are 6x + 1 and those 6x – 1. Note that 6x – 1 equation will be used 
as 6x + 5 because the two are the same given that 6x – 1 =  6x – 6 
+ 5 = 6(x – 1) + 5 = 6X + 5 (x ou X both are any non-zero integer).  
If we start with 1 and add 6 consecutively, we will have 6x + 1 
prime numbers. If we start with 5 and add 6 consecutively, we will 
have primes which are 6x – 1. If we start with a 6x – 1 prime we 
will have 6x – 1 primes, and 6x + 1 primes lead to 6x + 1 ones. 
For example:
92 = 1 + 91 = 7 + 85 = 13 + 79 (all 6x + 1 primes).
92 = 5 + 87 would not work because 87 is 3n. (see the second rule 
below).
96 = 1 + 95 = 7 + 89
96 = 5 + 91 = 11 + 85 = 17 + 79 (all 6x – 1 primes).
→The second rule. A 3n number will never lead to primes by the 
addition of 6. It only leads to 3n because 3n ± 6 is always 3n.
92 = 5 + 87 = 11 + 81 = 17 + 75 = 23 + 69 = 29 + 63 = 35 + 57....= 
89 + 3.

When we have a multiple of 3 we will first add or remove one 
or two units from it so that we can obtain prime numbers by 
successive additions or subtractions of 6.

→ The third rule.  « An even number ≥ 6 is either 6x, 6x + 2 or 6x 
+ 4 ». An even number that is 6x will be in the form of a sum = (6x 
+ 1) + (6x – 1) or (6x – 1) + (6x + 1). An even number that is 6x + 2 
makes a sum of 6x + 1 and 6x + 1 prime numbers. Finally, an even 
6x + 4 is a sum of two 6x – 1 primers which make 6x – 2. Indeed 
6x – 2 is the same as 6x + 4 because 6x – 2 = 6x – 6 + 4 = 6(x – 1) 
+ 4 = 6X + 4 so 6x + 4 given that X or x are any non-zero integer.

Examples.
•	 36 is 6x and 36 = 7 + 29 with 7 a 6x + 1 prime and 29 a 6x – 1 

prime the sum of which make 6x.
•	 38 is 6x + 2 and 38 = 7 + 31 with 7 a 6x + 1 prime and 31 a 6x 

+ 1 prime the sum of which make 6x  + 2.

•	 40 is 6x + 4 or 6x - 2 and 40 = 11 + 29 with 11 a 6x – 1 and 29 
a 6x – 1 the sum of which make 6x – 2 or 6x + 4.

•	 Care must be taken when applying these rules. For example, 
6x – 1 is also 6x + 5 and 6x –  2 is also 6x + 4. For example, 
11 + 89 = 100. We know that 11 is 6x –  1; 89 is 6x – 1 but 
100 is 6x + 4. In fact, 100 is 6x – 2, which is the same as 6x 
+ 4. Let's take another example: the number 124 = 23 + 101 
with 23 being 6x – 1 and 101 being 6x – 1. In fact 124 will be 
6x – 2. But 124 is also 6x + 4. In other words, 23 is 6x – 1 and 
therefore 6x + 5 and 101 is 6x  – 1 or vice versa and therefore 
124 is 6x + 4 or  6x  –  2. In fact, you have to put the prime 
primes that sum to 6x ± y (y < 6) and add the y's. The rule of 
6x ± 1 sums always applies when we apply Goldbach's strong 
conjecture.

2B4. Perform the conversion from an even to addition of prime 
numbers in a table

We will apply GSC to some even numbers using Tables 5 in 
accordance with the three rules stated above. 
•	 The even number to be converted must be set at the very 

beginning as M + 1 or M + 5 such that M is a multiple of 
prime numbers except 2 and 3 (M might be prime). M is 
therefore the leftt-hand term of the addition and 1 or 5 are the 
right-hand terms. 

•	 The method is to transfer 6 by 6 from the left-hand side of the 
addition (M) to the right-hand side (1 or 5). According to Table 
4, M – 6n and 1 + 6n or 5 + 6n either give a prime number or 
another M' number that is < M and that is a multiple of prime 
numbers. There is then a chance that two prime numbers will 
appear to the right and left of the addition.

•	 As soon as two prime numbers meet and sum, we mark them as 
an exact verification of GSC. Each sum of two prime numbers 
will be designated by the letter S followed by a number which 
indicates the order of its appearance. 

•	 Here the number itself is converted directly in sum of two 
primes (not by searching for equidistant primes as above but 
by finding out additive primes).

Tables 5 : Conversion of evens in sum of primes by the three rules stated. The sums are denoted S followed by a

number. Note a same sum can appear twice for a same number and in this case it is denoted the same way. The number

136 is posed as M + 5 (131 + 5 or 5 + 131), 218 as M + 1 (217 + 1 or 1 + 217) and 282 as M + 5 (277 + 5 or 5 + 277).

The number 2042 in separate tables is posed M + 1 (2041 + 1 or 1 + 2041).

Table 5-1. Numbers 136, 218 and 282.

Sum 136 Sum 218 Sum 282

S1 5 131 1 217 S1 5 277

11 125 S1 7 211 S2 11 271

17 119 13 205 17 265

S2 23 113 S2 19 199 23 259

S3 29 107 25 193 29 253

35 101 31 187 35 247

41 95 S3 37 181 S3 41 241

S4 47 89 43 175 47 235

S5 53 83 49 169 S4 53 229

59 77 55 163 S5 59 223

65 71 S4 61 157 65 217

71 65 S5 67 151 71 211

77 59 73 145 77 205

S5 83 53 S6 79 139 S6 83 199

S4 89 47 85 133 S7 89 193

95 41 91 127 95 187

101 35 97 121 S8 101 181

S3 107 29 103 115 107 175

S2 113 23 109 109 113 169

119 17 115 103 119 163

125 11 121 97 125 157

S1 131 5 127 91 S9 131 151

133 85 137 145

S6 139 79 143 139

145 73 149 133

S5 151 67 155 127

S4 157 61 161 121

163 55 167 115

169 49 S10 173 109

175 43 S11 179 103

S3 181 37 185 97

187 31  191 91

193 25 197 85

S2 199 19 203 79

205 13 209 73

S1 211 7 215 67

217 1 221 61

227 55

233 49

S12 239 43

245 37

S13 251 31

257 25

S14  263 19

S15 269 13

275 7

281 1

15
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Tables 5: Conversion of evens in sum of primes by the three rules stated. The sums are denoted S followed by a number. Note 
a same sum can appear twice for a same number and in this case it is denoted the same way. The number 136 is posed as M + 5 
(131 + 5 or 5 + 131), 218 as M + 1 (217 + 1 or 1 + 217) and 282 as M + 5 (277 + 5 or 5 + 277). The number 2042 in separate tables 
is posed M + 1 (2041 + 1 or 1 + 2041). Table 5-1. Numbers 136, 218 and 282.
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Table 5-2-1. Number 2042.

2042 2042 2042 2042

1 2041 127 1915 247 1795 367 1675

7 2035 133 1909 253 1789 S11 373 1669

S1 13 2029 139 1903 259 1783 S12 379 1663

19 2023 145 1897 265 1777 385 1657

25 2017 151 1891 271 1771 391 1651

S2 31 2011 157 1885 277 1765 397 1645

37 2005 S5 163 1879 S9 283 1759 403 1639

S3 43 1999 169 1873 289 1753 409 1633

49 1993 175 1867 295 1747 415 1627

55 1987 S6 181 1861 301 1741 S13 421 1621

61 1981 187 1855 307 1735 427 1615

67 1975 193 1849 313 1729 433 1609

73 1969 199 1843 319 1723 S14 439 1603

79 1963 205 1837 325 1717 445 1597

85 1957 S7 211 1831 331 1711 451 1591

91 1951 217 1825 337 1705 457 1585

97 1945 223 1819 343 1699 S15 463 1579

103 1939 229 1813 S10 349 1693 469 1573

S4 109 1933 235 1807 355 1687 475 1567

115 1927 S8 241 1801 361 1681

121 1921

16

Table 5-2-1: Number 2042.
Table 5-2-2. Number 2042.

2042 2042 2042 2042

481 1561 595 1447 709 1333 823 1219

487 1555 601 1441 715 1327 S25 829 1213

493 1549 607 1435 721 1321 835 1207

S16 499 1543 S18 613 1429 727 1315 841 1201

505 1537 S19 619 1423 733 1309 847 1195

511 1531 625 1417 S22 739 1303 853 1189

517 1525 631 1411 745 1297 859 1183

523 1519 637 1405 S23 751 1291 865 1177

529 1513 S20 643 1399 757 1285 871 1171

535 1507 649 1393 763 1279 877 1165

541 1501 655 1387 769 1273 883 1159

547 1495 S21 661 1381 775 1267 889 1153

553 1489 667 1375 781 1261 895 1147

559 1483 673 1369 787 1255 901 1141

565 1477 679 1363 793 1249 907 1135

S17 571 1471 685 1357 799 1243 913 1129

577 1465 691 1351 805 1237 S26 919 1123

583 1459 697 1345 S24 811 1231 925 1117

589 1453 703 1339 817 1225 931 1111

17

Table 5-2-2: Number 2042.
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Table 5-2-3. Number 2042.

2042 2042 2042 2042

937 1105 S27 1051 991 1165 877 1279 763

943 1099 1057 985 1171 871 1285 757

949 1093 1063 979 1177 865 S23 1291 751

955 1087 1069 973 1183 859 1297 745

961 1081 1075 967 1189 853 S22 1303 739

967 1075 1081 961 1195 847 1309 733

973 1069 1087 955 1201 841 1315 727

979 1063 1093 949 1207 835 1321 721

985 1057 1099 943 S25 1213 829 1327 715

S27  991 1051 1105 937 1219 823 1333 709

997 1045 1111 931 1225 817 1339 703

1003 1039 1117 925 S24 1231 811 1345 697

S28 1009 1033 S26 1123 919 1237 805 1351 691

1015 1027 1129 913 1243 799 1357 685

S29 1021 1021 1135 907 1249 793 1363 679

1027 1015 1141 901 1255 787 1369 673

S28 1033 1009 1147 895 1261 781 1375 667

1039 1003 1153 889 1267 775 S21 1381 661

1045 997 1159 883 1273 769 1387 655

18

Table 5-2-3: Number 2042.
Table 5-2-4. Number 2042.

2042 2042 2042 2042 2042

1393 649 1507 535 S13 1621 421 1735 307 1849 193

S20 1399 643 1513 529 1627 415 1741 301 1855 187

1405 637 1519 523 1633 409 1747 295 S6 1861 181

1411 631 1525 517 1639 403 1753 289 1867 175

1417 625 1531 511 1645 397 S9 1759 283 1873 169

S19 1423 619 1537 505 1651 391 1765 277 S5 1879 163

S18 1429 613 S16 1543 499 1657 385 1771 271 1885 157

1435 607 1549 493 S12 1663 379 1777 265 1891 151

1441 601 1555 487 S11 1669 373 1783 259 1897 145

1447 595 1561 481 1675 367 1789 253 1903 139

1453 589 1567 475 1681 361 1795 247 1909 133

1459 583 1573 469 1687 355 S8 1801 241 1915 127

1465 577 S15 1579 463 S10 1693 349 1807 235 1921 121

S17 1471 571 1585 457 1699 343 1813 229 1927 115

1477 565 1591 451 1705 337 1819 223 S4 1933 109

1483 559 1597 445 1711 331 1825 217 1939 103

1489 553 S14 1603 439 1717 325 S7 1831 211 1945 97

1595 547 1609 433 1723 319 1837 205 1951 91

1501 541 1615 427 1729  313 1843 199 1957 85

Table 5-2-5. Number 2042.

1042

1963 79

1969 73

1975 67

1981 61

1987 55

1993 49

S3 1999 43

2005 37

S2  2011 31

2017 25

2023 19

S1 2029 13

2035 7

2041 1

 The tables 5 show that when we start with the equation E = M + 1, we have a center of

symmetry beyond which we fall back on the same series of addition operations as is the case

with the number 2042 (Table 5-2-1 to 5-2-5) after the sum S29 = 2042 = 1021 + 1021. 

 The two terms of the sums always have the same unit digits and therefore for a given prime

number we only have one kind of prime numbers with a precise unit digit which is suitable

for constructing the sum. If you look at the unit digits of the prime numbers participating in

the sums you will see that they are periodically the same.

19

Table 5-2-4: Number 2042.
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with the number 2042 (Table 5-2-1 to 5-2-5) after the sum S29 = 2042 = 1021 + 1021. 

 The two terms of the sums always have the same unit digits and therefore for a given prime
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Table 5-2-5. Number 2042.

•	 The tables 5 show that when we start with the equation E = M 
+ 1, we have a center of symmetry beyond which we fall back 
on the same series of addition operations as is the case with 
the number 2042 (Table 5-2-1 to 5-2-5) after the sum S29 = 
2042 = 1021 + 1021. 

•	 The two terms of the sums always have the same unit digits 
and therefore for a given prime number we only have one kind 
of prime numbers with a precise unit digit which is suitable 
for constructing the sum. If you look at the unit digits of the 
prime numbers participating in the sums you will see that they 
are periodically the same.

•	 We see that with this method, we can verify the SGC on any 
length of the P/M lines and thus list many sums corresponding 
to the tested even. This article proposes this method for the 
first time.

2B5. The so-called weak Goldbach conjecture or Odd = p + p'+ p'' 
(p, p', p'' are prime numbers)

•	 Suppose a non-prime odd number O = p x q then O = (p - 1)q + 
q. Since p and q are primes then p - 1 is even which we denote 
by E and therefore O = E + q. In other words, a  nonprime odd 
number can be the sum of an even and a prime number. 

•	 If the odd number is prime we denote it by p' > 5. We know 
that if we have any prime number p' > p then p' - p = 2n and so 
p' = 2n + p. Therefore an odd number whether prime or not is 

the sum of an even number and a prime number. 
•	 Whether it is weak or strong Goldbach, it is verified with 

several sums, we can therefore apply the formula O = E + p 
starting with any prime number p removed from O and not 
only with p being a prime factor of O (in case it is composite) 
or p being the prime number preceding O (in case it is prime). 
Afterwards, it remains to convert E into the sum of two prime 
numbers.

•	 We deduce that if GSC is true then an O = E + p3 = p1 + p2 
+ p3  such that E = p1 + p2 and with p1, p2, and p3 being prime 
numbers. Therefore the weak conjecture depends on the truth 
of the strong conjecture. We will then set any odd number as 
Odd = E + p3 and then convert E to the sum of p1 and p2. Thus 
Odd = p1 + p2 + p3 with p1#p2#p3. 

•	 Odd = p + p ' + p'' = Even + p'' with E = ↓Odd1↓ + ↑Odd2↑. We 
apply the method described above based on the M + 1 and M 
+ 5  equations with the even thus chosen to convert it into the 
sum of two prime numbers.

For example: 
131 = 100 + 31 = 5 + 95 + 31 =  11 + 89 + 31 → 131 =  11 + 89 + 31
131 = 90 + 41 = 1 + 89 + 41 = 7 + 83 + 41  → 131 =  7 + 83 + 41
18 971 523 157 = 53+ 18 971 523 104 = 1 + 53 + 18 971 523 103  
= 7 +  53 + 18 971 523 097 → 18 971 523 157 =  7 + 53 + 18 971 
523 097.
Table 6 shows additional examples and how to apply the method 
by three steps.

Odd number (O) O = E + p3 (E = 2n) E = p1 + p2 O = p1 + p2 + p3
Step Remove a prime number from O such that 

E can be divided into two prime numbers.
Convert E into a sum of two prime 
numbers using M + 1 and M + 5 equations 
method

Final verification of weak 
Goldbach's conjecture

2053 1362 + 691 1362 = 293 + 1069 293 + 1069 + 691 
20995 10988 +  10007 10988 = 4909 +  6079 4909 + 6079 + 10007 
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3506641 173310 + 3333331  173310 = 61559 + 111751 61559 + 111751 + 3333331 
1025894774731 92589477472 +

100000000003  
92589477472 =
147895132739  +
777999641989  

147895132739  +
777999641989   +
100000000003  

Table 6: Conversion of an odd number into a sum of 3 prime numbers. The method involves three steps: first put the odd number 
in the form of E + p3 then convert E into p1 + p2. As a third step, O = p1 + p2 + p3. The weak Goldbach' conjecture is therefore here 
deduced from the strong one. In the table, all letters p indicate prime numbers. E is any even > 4 and O any odd number >8.

2C. Expalining the gap between prime numbers and the truth of 
the strong Goldbach's conjecture
There are three types of even numbers 6x, 6x + 2 and 6x – 2.
There are three tyes of odd numbers : 3n, multiple of pirme 
numbers except 3 and 2 (M) and prime numbers (P).
There are two types of primes numbers 6x + 1 and 6x – 1.
We can therefore understand the gaps between primes numbers 
and and anticipate them or calculate the probability of their co-
occurrence when it comes to equidistant prime numbers.
Here are examples of  representative cases.
1.	 If we have an even E = 6x, we must progress by regular 

intervals of 6x - 1 or 6x + 1 to find either a P or a M. We 
progress in the same way either from E/2 to 0 or E/2 to E. The 
process is symmetrical.

2.	 If we have an even 6x – 2, we add one unit and then advance 
by 6x therefore we span 6x + 1 intervals to get to the P/M line 
(see Table 4).

3.	 If we have  an even E = 6x + 2, we must subtract 1 to get to the 
P/M line (see Table 4) and then advance by intervals of 6x and 
therefore we advance by 6x - 1. We will then have P or M and 
we do the same either from E/2 to 0 or from E/2 to E.

Examples:
•	 The number E = 60 (E/2 = 30) is an even 6x. And therefore 30 

will be away from prime numbers by 6x + 1 or 6x – 1 gaps. 
Therefore we add values of 6x ± 1 to 30 to get  new primes. 
Here is the case when we add 6x + 1 primes: 30 + 7 = 37; 30 + 
13 = 43; 30 + 19 = 49; 30 + 31 = 61. Or adding 6x – 1 primes : 
30 + 5 = 35; 30 + 11 = 41; 30 + 17 = 47; 30 + 23 = 53.

•	 On the other hand, we must do the same to go down : 30 – 7 
= 23; 30 – 13 = 17; 30 – 17 = 13; 30 – 23 = 7. Or 30 – 5 = 25; 
30 – 11 = 19; 30 – 17 = 13; and 30 – 23 = 7.

π(30)
                               3	 5	 7	 11	 13	 17	
19	 23	 29

•	 The number E = 80 and E/2 = 40 is 6x – 2 (or 6x + 4). 
Therefore we add 1 and get to the 6x – 1 number 41 then we 
add 6 to go up to 47. 40 + 7 = 47; 40 + 13 = 53; 40 + 19 = 
59; 40 + 25 =  65; 40 + 31 = 71; 40 + 37 = 77.  Or reduce the 
number by 4 and we get 36 then advance by 6x – 1 or 6x + 1 
intervals.  Then we have 40 – 4 = 36 + 5 = 41 + 6 = 47 + 6 = 
53 + 6 = 59 + 6 = 65 + 6 = 71 + 6 = 77. Or 40 – 4 + 7 = 43 + 
6 = 49 + 6 = 55 + 6 = 61 + 6 = 67 + 6 = 73. We go down the 
same: 40 – 4 = 36 – 5 = 31 – 6 = 25 – 6 = 19 – 6 = 13 – 6 = 
7. Or 40 – 4 = 36 – 7 = 29 – 6 = 23 – 6 = 17 – 6 = 11 – 6 = 5. 

•	
 π(40)

	 3	 5	 7	 11	 13	 17	 19	
23	 29
31	 37

•	 The number E = 100 and E/2 = 50 is 6x + 2. We reduce it by 
one and then go up or down by 6x intervals. Then 50  – 1 = 
49 + 6 = 55 + 6 = 61 + 6 = 67 + 6 = 73 + 6 = 79 + 6 = 85 + 6 
= 91 + 6 = 97. Or 50 – 1 = 49 – 6 = 43 – 6 = 37 – 6 = 31 – 6 = 
25 – 6 = 19 – 6 = 13 – 6 = 7.

We can also substract 2 to get 6x and add 5 or 7 and then advance 
by 6x intervals. 50 – 2 = 48 + 5 = 53 + 6 = 59 and so on or 50 – 2 
= 48 + 7 = 55 + 6 = 61 + 6 = 67 and so on. We  do the same to go 
down.

 π(50)
	 3	 5	 7	 11	 13	 17	 19	
23	 29
31	 37	 41	 43	 47

Here are some other examples number E = 120, E/2 = 60; E = 140, 
E/ 2 = 70; and E = 180, E/2 = 90 to show that there are always 
more prime numbers between [0 – E/2] than [E/2 – E] because 
there are always more primes close to 0 (2; 3; 5; 7; 11;...) (2 is 
excluded here).
•	 We see that there is a limiting prime number (LPN) for every 

even number from which we cannot obtain it even if the LPN 
> E/2 (highlighted). For example, we cannot obtain 60 with 
prime numbers P < 31, nor 70 with P < 41 nor 90 with P < 47. 
Limiting prime numbers are highlighted also in the case of E = 
60, E/2 = 30; E = 80 and E/ 2 = 40; and E = 100, E/2 = 50.  The 
LPN is close to E/2 but > E/2. The LPN for the above numbers 
30; 40; and 50 are also highlighted.

  π(60)
3	 5	 7	 11	 13	 17	 19	 23	
29
31	 37	 41	 43	 47	 53	  559

π(70)
3	 5	 7	 11	 13	 17	 19	 23	
29
31	 37	 41	 43	 47	 53	 59	 61	
67

π(90)
3	 5	 7	 11	 13	 17	 19	 23	
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29
31	 37	 41	 43	 47	 53	 59	 61	
67	 71
73	 79	 83	 89

•	 Using the rules stated in this article, let us explain the gaps 
between prime numbers (from 40 to 97 as examples). First let 
us mark them (bold) 

40 41 42 43 44 48 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 
82 83 84 85 86 87 88 89 90 91 92 96 94 95 96 97 In the first place, 
we must separate the prime numbers 6x – 1 and 6x + 1 and identify 
their sequences. We have on one hand 41 (6x – 1) → 47 → 53 → 
59 → 65 (M) → 71 → 77 (M) → 83 → 89. On the other hand, we 
have 43 (6x + 1) →  49 (M) → 55 (M)→ 61 → 67 → 73 → 79 
→ 85 (M) → 91(M) → 97. So there are gaps of 6n between prime 
numbers P of the same writing in equation 6x ± 1. However, there 
are other gaps like between 41 and 43; 67 and 71; and 89 and 97.
40 41 42 43 44 48 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 
82 83 84 85 86 87 88 89 90 91 92 96 94 95 96 97
•	 The number P 41 is two units from 43. How to explain this? 

In fact 41 is 6x – 1 and 43 is    6x + 1 and therefore (6x + 1) – 
(6x – 1) = 2 (here we assume that x is any integer > 0). This is 
also the case of 59 (6x – 1) and 61 (6x + 1) and of all the twin 
prime numbers.

•	 Between 67 and 71 we have four units. In fact 67 is 6x – 1 or 
6x + 5 and 71 is 6x + 1 and thus (6x + 5) – (6x + 1) = 4. We 
have to make [(6x + 1) – (6x – 1)] but [(6x + 5) – (6x + 1)] 
when calculating the gaps to avoid negative values (to stand 
in the N set of integers).

•	 Let us explain the difference between 97 – 89 = 8. Because 97 
is 6x + 1 and 89 = 6x – 1, they do not progress by 6 intervals. 
The last prime number 6x + 1 before 97 is 79 and 97 – 79 = 
18. And because 89 – 79 = 10 therefore the gap between 79 
and 97 is 18 – 10 = 8.

•	 Let us take this sequence of prime numbers and explain the 
gap between 181 and 191.

•	 157163 167 173 
•	 179181 191 193   197	 199   211  223   227  229
•	 Again 191 is 6x – 1 (and thus 6x + 5) and 181 is 6x + 1. An so 

191 is preceded by numbers 191 – 6 = 185 – 6 = 179 while 181 
– 6 = 175 – 6 = 169 – 6 = 163. The last prime number before 
191 is 179 and 191 – 179 = 12. But 181 (6x + 1) – 179 ( 6x – 
1) = 2. Therefore the gap between 181 and 191 = 12 – 2 = 10.

•	 By those rules combined we explain any gap occurring 
between primes. First 6x – 1 and    6x + 1 progress in two 
different overlaping series ; either a prime number P or a 
multiple of primes (M) occupies a position corresponding to 
6x – 1 or 6x + 1. The gap between primes is 6n between the 
6x – 1 primes on the one hand, and between 6x + 1 primes on 
the other hand. But the gap is 2, 4, 8, 10 or 2n between prime 
numbers 6x –  1 and 6x + 1 and it depends on how many times 
a number M occupies the 6x ± 1 positions of the lines P/M 
(see table 4).

•	 Be an Even = E and E/2. We have four possibilities

1.	 M → E/2 ← M. Two numbers M occupy the equidistant 
positions.

2.	 M → E/2 ← P. There is only one prime without an equidistant 
one because there is instead a M number.

3.	 P → E/2 ← M. There is only one prime without an equidistant 
one because there is instead a M number. 

4.	 P → E/2 ← P. There are two-equidistant primes. 
Let us assume that these 4 possibilities are equiprobable because 
we cannot anticipate or predict where a prime number P ou M 
will appear. In this case, there is a 25% chance or a probability of 
0.25 that Goldbach's conjecture holds true. Hence it is true.Note 
that this should be assessed for every prime of π(n) or π(E/2) (n or 
E/2 any integer ≥ 4) to determine if its equidistant number at E/2 
is P or M.  
•	 We also see that the prime numbers are formed symmetrically 

from E/2 to 0 and from E/2 to E. On one side subtraction 
and on the other side addition. This also supports Goldbach's 
conjecture because without this symmetry there would be no 
equidistant prime numbers and the even number E cannot be 
converted into the sum of two prime numbers. Prime numbers 
are always formed in the same way even if we cannot translate 
it into an equation. This equation must give all equidistant 
primes numbers produced by any integer n ≥ 4. 

•	 We all know that π(E) (E any even ≥ 8) contains equidistant 
primes to E/2 but what we are missing is to directly deduce 
equidistant prime numbers from an integer by a formula or a 
theorem. Otherwise, pose an axiom that states that any integer 
n or E/2  ≥ 4 is surrounded by at least one couple of equidistant 
primes and assume it is true unless one counterexample is 
found.

•	 Even if a gap comes after E/2, prime numbers > E/2 and close 
to E will combine with increasingly smaller prime numbers < 
E/2 and close to 0 and since the latter are more numerous, they 
will increase the chances that two equidistant prime numbers 
appear.

 
2D- Examples of applying the rules described to convert an integer 
≥ 4 into the sum of two prime numbers

2D-1. Posing the mathematical problem of Goldbach's strong 
conjecture

Here we will consider Goldbach's strong conjecture as being for an 
even number ≥ 8. E = p + p' such that p' > p and p'#p. So E ≥ 8 and 
E/2 ≥ 4 recall that E/2 is any integer ≥ 4.  To prove the GSC, we 
need to predict at least one pair of two prime numbers equidistant 
at E/2. If we set p = E/2 - t and p' = E/2 + t, in other words, we have 
to predict the value of t. For a number E that tends to infinity, t can 
also tend to infinity.

There are well-known prime number postulates that have become 
theorems, but which unfortunately can't help to solve Goldbach's 
strong conjecture. For example, the prime number theorem : « The 
number of primes less than x tends asymptotically towards x/log x: 
n/ln(n) We have improved the approximation by taking: π(n) ~ n /
(ln(n) – 1) » gives just an approximation to the number of primes 
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before a natural number, but in no way predicts the position of the 
equidistant primes. Similarly, Bertrand's postulate : « Between n 
and 2n, there is always a prime. In other words, the gap between a 
prime number p and its successor is smaller than p » indicates the 
presence of a prime number between n and 2n, but does not predict 
its position. Also, the theorem « Between n and 2n and n > 6, there 
is at least one prime in 4k - 1 and at least one in 4k + 1 - Proven 
by Erdös. Example between 7 and 14: 7 = 4x2 - 1; 11 = 4x3 - 1; 13 
= 4x3 + 1 » doesn't predict the position of all equidistant primes 
either. 

We can't use the laws of probability calculation, because the 
positions of numbers are not events that happen in a dependent or 
independent way.  The formula nln(n), which approximates the nth 
prime number, is of no help, as variations of a few or several units 
will distort the calculation, since exact values of t are required.  The 
GCS problem can be posed as follows: we have an even number 
E ≥ 8 (E/2 ≥ 4) and a prime number p, we have p + 2t = p' and 
we need p + t = E/2 and E/2 + t = p' so that E = p + p'. We know 
that by adding 2n to a number P1, we'll get another prime number 
P2 at some point, and we know that there's always an even or odd 
natural number at equal distance between P1 and P2. For example, 
between 11 and 31, there's the number 22 at equal distance. Or 31 
+ 47 = 78 and therefore 39 in the middle between 31 et 47. But the 
real problem here is that we have a prime number p, and we have 
to add a certain value of 2n = 2t to it, so as to predict in advance 
that it is indeed E/2 that is at equal distance between p and p'. 
This article will show that the only safe approach is to analyze the 
remainders of Euclidean divisions of p and p'. This approach will 
be discussed in this article (see below). It can be used to predict 
whether adding 2t to p will produce an equidistant p' or not. It's all 
about analyzing successive Euclidean divisions. Furthermore, this 
article will also define which values of t added to or substracted of 
E produce prime numbers.

2D2. The gap between equidistant primes has specific values 
depending on whether the even sum of two prime numbers is a 
multiple of 3 or not

•	 E is any even ≥ 8 and E = (P1 – t) + (P2 – t) and thus P1 and 
P2 are equidistant primes. In tables 7-9, t values are going to 
be determined for four numbers (E = 200, E = 400, E = 600 
and E = 2000). Therefore, equidistant primes before and after 
E/2 are located and then t calculated and shown in the tables. 
The data show that t has specific values depending on E if it is 
a multiple of 3 or not. 

We see that t represents the gap that separates each of the two 
equidistant prime numbers from E/2 with E any even ≥ 8 and E/2 
is any integer  ≥ 4 being  . P → E/2 ← P'.  E/2 – P = t and P' – E/2 
= t. Table 7 shows the values of t before and after two numbers 
chosen as examples 100 and 200. Note that both 100 and 200 are 
≠ 3n. Table 7 shows that t has values of 3n with both numbers. In 
Table 8 only the t-values are represented of two numbers that are 
not 3n (E = 200 and E/2 =100; E = 400 and E/2 = 200) and of a 
number that is 3n (E = 1200 and E/2 = 600). It is clear that the 
values of t are not identical. When the number is 3n such the case 
of 1200, t values are either prime or composite but not 3n. These 
data show that the gap between E/2 and equidistant primes has 
different values depending on the number E if it is 3n or not. At the 
bottom of each column of Table 8, the gaps between equidistants 
prime numbers and E/ 2 are represented depending on their order 
of appearance and we see that there is a good linear correlation 
(R2 = 0.97-0.99).  

Table 9 shows data consistent with those in Table 8. The t-values 
between equidistant primes and E/2 are almost all the time 3n 
for a number that is not itself a multiple of 3 (E = 2000, E/2 = 
1000). Although the gaps between equidistant primes and E/2 = 
1000 in the case of E = 2000 show a good correlation of 0.970.98, 
randomly chosen primes between 1009 and 1213 show a similar 
correlation (see graphics below table 9). But the larger the number 
(600, 2000) we notice a shift and a curve which winds (snake-like) 
but the correlation coefficient remains almost the same.

The gaps between equidistant prime numbers of an even E and its 
half E/2 obey a same linear distribution compared to that of natural 
prime numbers in an increasing order.  These data were confirmed 
with larger numbers including two numbers that are not multiples 
of 3, 100000 and 10000 (see the supplementary data on pages 
51-54 below at the end of this article). The number 100000 has 
more than 500 equidistant primes and the t-values separating them 
from E/2=50000 are all 3n (additional data, Table S1). The number 
10000 has 145 equidistant primes and the t-values separating them 
from E/2=5000 are all 3n (Table S2). The number 3n 9000, on the 
other hand, has 242 equidistant primes and the t-values separating 
them from E/2=4500 are either primes or composites , but in 
no case 3n (additional data, Table S3). However the associated 
equations cannot be used for integers because the linearity is not 
absolute.

∀x, x∈N and x≥8, t t N and t < x such that x – t and x + t are 
primes → x, x  N and x ∃ ∈ ∀ ∈ ≥8,   2x = (x – t) + ( x + t) = p 
+ p' (p and p' are primes). Goldbach's conjecture holds true.

∀ ∈x, x N and x≥8, t t N and t < x such that x – ∃ ∈ t and x + 
t are equidistant primes at x/2 → t is prime or composite. If 
x/2 is even, t is odd. If x /2 is odd t is even 
First case: x/2 is even
1) - If x = 3n; t is either prime or composite the prime factors 
of which are in an ascending order but not 3n.
2) - If x ≠ 3n; t is odd 3n, prime or composite but 3n values 
are the most frequent. Second case: x/2 is odd
3) - If x = 3n; t is even composite the prime factors of which 
are in an ascending order but not 3n.
 4) - If x ≠ 3n; t is even 3n.
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Supplementary data including Table S1 ; Table S2 and Table S3 (see page 25 of the article above)
Table S1 : Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 100000 and E/2

= 50000 (non-3n). The t values are all 3n (see the table).The graphic shows a high correlation coefficient of 1 of the t-

values.

52

19941 33117 39501 45549

20079 33177 39513 45603

20121 33339 39567 45651

20163 33471 39657 45717

20181 33579 39669 45747

20241 33639 39753 45783

20571 33777 39819 45789

20589 33813 39849 45873

20667 33873 39867 45987

20769 33903 39897 46053

20793 33933 39909 46137

20853 33939 39939 46149

20877 34191 39963 46167

20937 34239 40059 46179

20979 34263 40071 46221

20991 34317 40149 46233

21039 34431 40179 46281

21129 34449 40281 46323

21249 34503 40371 46329

21339 34533 40527 46377

21429 34701 40533 46419

21453 34713 40659 46443

21483 34731 40677 46461

21537 34737 40863 46587

21597 34827 40971 46671

21693 34869 40989 46749

21711 34947 41139 46779

21789 35049 41151 46797

21837 35061 41163 46911

21849 35103 41193 46959

21999 35109 41253 46989

22047 35121 41331 47001

22053 35133 41373 47073

22173 35229 41457 47103

22221 35247 41463 47157

22227 35259 41499 47259

22251 35331 41571 47301

22353 35361 41577 47367

22383 35439 41631 47379

22461 35451 41703 47523

22551 35577 41757 47553

22671 35751 41781 47577

22701 35793 41961 47583

22719 35847 42051 47607

22893 35991 42177 47649

22923 36069 42243 47787

23013 36117 42297 47847

23019 36171 42357 47859

23079 36201 42459 47871

23121 36243 42567 47919

23277 36249 42669 47931

23331 36291 42693 47961

23583 36351 42717 47973

23607 36381 42753 48123

23613 36423 42789 48129

23643 36477 42849 48213

23679 36501 42921 48387

23751 36531 42957 48429

23823 36579 42987 48507

23847 36771 43053 48519

23859 36783 43083 48561

24159 36813 43089 48573

24201 36837 43131 48627

24297 36951 43239 48639

24357 36993 43263 48711

24411 37041 43281 48717

24531 37083 43419 48807

24561 37107 43479 48837

24609 37179 43683 48849

24699 37257 43701 48897

24747 37359 43827 48909

24771 37473 43887 48939

24831 37509 43911 48981

24873 37587 43971 49017

24903 37623 44121 49023

25011 37671 44151 49053

25029 37719 44307 49089

25083 37797 44331 49119

25149 37803 44343 49137

25323 37881 44349 49173

25329 37887 44427 49191

25377 37959 44449 49257

25389 38019 44529 49317

25407 38169 44559 49347

25527 38211 44583 49401

25557 38223 44613 49431

25629 38301 44727 49497

25641 38379 44811 49551

25683 38589 44847 49581

25797 38607 44949 49611

25821 38721 44961 49671

26091 38883 45027 49689

26253 38997 45063 49707

26259 39021 45111 49719

26367 39051 45213 49767

26463 39153 45267 49809

26541 39261 45279 49833

26631 39387 45327 49929

26667 39393 45483 49971

39399 45507 49989
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Table S1 : Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 100000 and E/2 = 50000 
(non-3n). The t values are all 3n (see the table).The graphic shows a high correlation coefficient of 1 of the tvalues.
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Table S2:  Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 10000 and E/2

= 5000 (non-3n). The t values are all 3n (see the table).The graphic shows a high correlation coefficient of 1 of the t-

values.

53

4941 2703

4929 2691

4887 2649

4851 2643

4833 2607

4803 2589

4767 2583

4749 2577

4743 2559

4719 2541

4689 2523

4551 2457

4539 2451

4533 2307

4521 2247

4497 2211

4491 2121

4479 2103

4437 2043

4431 2001

4413 1977

4341 1959

4323 1917

4281 1911

4257 1863

4239 1833

4227 1791

4203 1779

4173 1701

4161 1653

4137 1551

4059 1473

4029 1329

3969 1323
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3783 1053
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3699 987

3693 981

3681 927
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3429 717

3387 711

3363 651

3291 591

3123 519
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3087 477
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2757 81

2727

0 20 40 60 80 100 120 140

0

1000

2000

3000

4000

5000

6000

R² = 0,99

E/2 = 5000 and E = 10000

Order of appearance

t-
va

lu
e
s
 E

/2
 -

 p
 =

 p
' 

- 
E

/2

Table S2: Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 10000 and E/2 = 5000 
(non-3n). The t values are all 3n (see the table).The graphic shows a high correlation coefficient of 1 of the tvalues.
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Table S3: Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 9000 and E/2 = 

4500 (3n). The t values are either prime or composite but not 3n (see the table). The graphic shows a high correlation 

coefficient of 1 of the t-values..

54
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163 1769 3203

173 1771 3217

203 1787 3223

229 1801 3241

259 1811 3329

283 1817 3377

289 1823 3383

299 1829 3409

361 1837 3437

371 1843 3449

389 1853 3451

409 1867 3509

443 1879 3517

451 1921 3553

473 1949 3559

487 1951 3581

493 1969 3589

499 2053 3593

511 2063 3617

577 2077 3623

581 2107 3647

619 2119 3661

647 2153 3671

653 2159 3679

667 2161 3691

679 2189 3731

697 2191 3743

731 2203 3773

733 2219 3791

761 2233 3817

773 2261 3853

781 2263 3869

803 2279 3887

809 2293 3923

823 2357 3929

887 2363 3931

893 2369 3943

907 2371 4001

917 2411 4013

919 2417 4021

941 2447 4037

943 2461 4039

971 2471 4043

983 2483 4081

1001 2497 4099

1031 2501 4127

1139 2513 4141

1149 2527 4147

1153 2569 4163

1157 2621 4169

1169 2627 4189

1193 2677 4193

1201 2679 4207

1241 2711 4219

1243 2713 4231

1249 2747 4237

1279 2753 4261

1283 2803 4303

1291 2831 4307

1313 2833 4319

1379 2893 4321

1381 2917 4337

1439 2933 4349

1481 2951 4361

1529 2957 4363

1537 2977 4387

1543 2989 4393

1547 3007 4429

1573 3017 4433

1591 3029 4441

3041 4463

3047 4469

4471

Table S3: Be an even E = p + p' such that p = E/2 – t and p' = E/2 + t. The values of t = p' – E/2 for E = 9000 and E/2 =  4500 (3n). 
The t values are either prime or composite but not 3n (see the table). The graphic shows a high correlation coefficient of 1 of the 
t-values..
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Table 7 : The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 

equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. Arrow on the left and right  indicates t values of corresponding 

equidistant primes (for example in case of 100; t = 3 corresponds to 103 + 97 = 200; t = 27 for 127 + 73 = 200 and so on). Two 

examples are shown : E = 200 with E/2 = 100 ; and E = 400 with E/2 = 200. The arrow → alone means from one prime number to 

another.

100  → 200 ← 100 →  0  → 100 200  → 400 ← 200 → 0  → 200

101 1 97 3 211 11 197 3

103 3 95 5 223 23 195 5

107 7 93 7 227 27 193 7

109 9 89 11 229 29 189 11

113 13 87 13 233 33 187 13

127 27 83 17 239 39 183 17

131 31 81 19 241 41 181 19

137 37 77 23 251 51 177 23

139 39 71 29 257 57 171 29

149 49 69 31 263 63 169 31

151 51 63 37 269 69 163 37

157 57 59 41 271 71 159 41

163 63 57 43 277 77 157 43

167 67 53 47 281 81 153 47

173 73 47 53 283 83 147 53

179 79 41 59 293 93 141 59

181 81 39 61 307 107 139 61

191 91 33 67 311 111 133 67

193 93 29 71 313 113 129 71

197 97 27 73 317 117 127 73

199 99 21 79 331 131 121 79

17 83 337 137 117 83

11 89 347 147 111 89

3 97 349 149 103 97

353 153 99 101

359 159 97 103

367 167 93 107

373 173 91 109

379 179 87 113

383 183 73 127

389 189 69 131

397 197 63 137

61 139

51 149

49 151

43 157

37 163

33 167

27 173

21 179

19 181

9 191

7 193

3 197

1 199

26

Strong linear correlation coefficients means that equidistant primes 
appear after relatively close or fairly regular intervals, whereas 
if this were not the case, the correlation would have been very 
weak. This indicates that equidistant primes of an integer value 
are very likely to occur and argues in favor of the authenticity of 
the strong Goldbach conjecture. This also indicates that primes do 
not appear randomly but follow pre-established rules depending 

on whether the number is a multiple of 3 or not. The larger the 
number, the greater the number of equidistant primes so that 
the linear correlation increases to = 1 (this is due to the very 
large number of t values, as opposed to a smaller number). This 
shows that GSC touches on a fundamental rule that governs the 
appearance of primes after precise gaps. 
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Table 7 : The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 

equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. Arrow on the left and right  indicates t values of corresponding 

equidistant primes (for example in case of 100; t = 3 corresponds to 103 + 97 = 200; t = 27 for 127 + 73 = 200 and so on). Two 

examples are shown : E = 200 with E/2 = 100 ; and E = 400 with E/2 = 200. The arrow → alone means from one prime number to 

another.

100  → 200 ← 100 →  0  → 100 200  → 400 ← 200 → 0  → 200

101 1 97 3 211 11 197 3

103 3 95 5 223 23 195 5

107 7 93 7 227 27 193 7

109 9 89 11 229 29 189 11

113 13 87 13 233 33 187 13

127 27 83 17 239 39 183 17

131 31 81 19 241 41 181 19

137 37 77 23 251 51 177 23

139 39 71 29 257 57 171 29

149 49 69 31 263 63 169 31

151 51 63 37 269 69 163 37

157 57 59 41 271 71 159 41

163 63 57 43 277 77 157 43

167 67 53 47 281 81 153 47

173 73 47 53 283 83 147 53

179 79 41 59 293 93 141 59

181 81 39 61 307 107 139 61

191 91 33 67 311 111 133 67

193 93 29 71 313 113 129 71

197 97 27 73 317 117 127 73

199 99 21 79 331 131 121 79

17 83 337 137 117 83

11 89 347 147 111 89

3 97 349 149 103 97

353 153 99 101

359 159 97 103

367 167 93 107

373 173 91 109

379 179 87 113

383 183 73 127

389 189 69 131

397 197 63 137

61 139

51 149

49 151

43 157

37 163

33 167

27 173

21 179

19 181

9 191

7 193

3 197

1 199

26Table 7: The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 
equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. Arrow on the left and right  indicates t values of corresponding 
equidistant primes (for example in case of 100; t = 3 corresponds to 103 + 97 = 200; t = 27 for 127 + 73 = 200 and so on). Two 
examples are shown : E = 200 with E/2 = 100 ; and E = 400 with E/2 = 200. The arrow → alone means from one prime number 
to another.

Table 8: The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 

equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. t-values for numbers that are not 3n (200 and 400) and a 3n 

number (600). t-values that are multiples of 3 are marked with an asterisk. Unmarked numbers are either prime or composite (bold) 

with prime factors > 3 in increasing order. Below each column the graphic showing correlation between t values and their order of 

appearance.

100±t → 200 200±t → 400 300±t → 600

97 197 293

93* 189* 287

81* 183* 277

63* 159* 271

57* 153* 269

39* 147* 263

27* 117* 257
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Table 8: The gap t has values of 3n when E/2≠3n. Note that t is the gap between p and p' of E/2 if E = P1 + P2 →  P1 and P2 are 
equidistant primes and p' > p such that E/2 – t = p and E/2 + t = p'. t-values for numbers that are not 3n (200 and 400) and a 3n 
number (600). t-values that are multiples of 3 are marked with an asterisk. Unmarked numbers are either prime or composite 
(bold) with prime factors > 3 in increasing order. Below each column the graphic showing correlation between t values and their 
order of appearance.
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← 1000 →
9* 33* 63* 93* 117* 123* 171* 291* 381* 399*
429* 453* 459* 543* 567* 601 621* 627* 637 663*
669* 693* 723* 759* 777* 861* 933* 987* 993* 997

Table 9: t-values for a number that is not 3n (E = 2000, E/2 = 1000).  The t-values are mostly multiple of 3 (3n marked with *) 
except in three cases (bold underlined). Below is the correlation between the t-values and their order of appearance. As a control, 
correlation between a same number of  Prime numbers from 1009 to 1213 is shown for comparison. The t values or gaps between 
equidistant primes and E/2 show similar linear corelation than natural prime numbers in their increasing order.

Underlined numbers 601 and 997 are primes while 637 = 72 x 13.
↓

E = 2000 and E/2 = 1000.

*Table 9: t-values for a number that is not 3n (E = 2000, E/2 = 1000).  The t-values are mostly multiple of 3 (3n marked with *) 

except in three cases (bold underlined). Below is the correlation between the t-values and their order of appearance. As a control, 

correlation between a same number of  Prime numbers from 1009 to 1213 is shown for comparison. The t values or gaps between 

equidistant primes and E/2 show similar linear corelation than natural prime numbers in their increasing order.
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Underlined numbers 601 and 997 are primes while 637 = 72 x 13.
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*Table 9: t-values for a number that is not 3n (E = 2000, E/2 = 1000).  The t-values are mostly multiple of 3 (3n marked with *) 

except in three cases (bold underlined). Below is the correlation between the t-values and their order of appearance. As a control, 

correlation between a same number of  Prime numbers from 1009 to 1213 is shown for comparison. The t values or gaps between 

equidistant primes and E/2 show similar linear corelation than natural prime numbers in their increasing order.
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2D3. Linear correlation between the gaps separating equidistant 
primes and E/2 in all cases of even numbers 

Below in Figure 1, four graphics which represent the four cases 
of E/2 numbers to take into account for the conversions of evens 
E in sum of two primes. E/2 is either 3n even (Figure 1A) or non-
3n even (1B). On the other hand, E/2 is either 3n odd or non-3n 
odd. In all these graphics, E = p + p' (p' > p and both primes) 
and t = E/2 – p = p' – E/2. The graphics show distribution of 
t-values relatively to their order of appearance. In all graphics, the 
t-values are strongly correlated for any of the four cases. Each dot 
represents a pair of equidistant primes. Equidistant primes appear 
regularly as any other prime number in the four cases of evens (Fig 
1A-D) which shows that any even can split into sum of two primes.  

The evens differ by the density of equidistant primes and the more 
larger the number is, the higher their densities. In all cases, density 
of equidistant primes is always < π(E) ~ E/log(E), where π(E) is 
the prime-counting function (the number of primes less than or 
equal to E) and log(E) is the natural logarithm of E (the prime 
number theorem). Another point is that equidistant primes are 
found between 0 and E/2 on one hand, and E/2 and E on the other 
hand while total count of primes might differ between 0-E/2 and 
E/2-E. For the strong conjecture of Goldbach to hold true, there 
must be at least one couple of equidistant primes p and p'  among 
π(E) such that t= E/2 – p = p' – E/2.  If one prime results from E/2 
– t, then it is very likely tat E + t is prime and this probability is 
never zero therefore proving GSC. 
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Figure1. The four cases of evens to take into account for the conversion of evens in sums of two primes (p and p' such 

that p' > p). Each graphic shows the distribution of t-values with t = E/2 – p = p' – E/2. Linear correlation coefficients 

are shown. Each type of E/2 number is indicated on the top of each graphic.
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Figure1. The four cases of evens to take into account for the conversion of evens in sums of two primes (p and p' such 

that p' > p). Each graphic shows the distribution of t-values with t = E/2 – p = p' – E/2. Linear correlation coefficients 

are shown. Each type of E/2 number is indicated on the top of each graphic.
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Figure1: The four cases of evens to take into account for the conversion of evens in sums of two primes (p and p' such that p' > p). Each 
graphic shows the distribution of t-values with t = E/2 – p = p' – E/2. Linear correlation coefficients are shown. Each type of E/2 number 
is indicated on the top of each graphic.

If E = P1 + P2 with P2 > P1 let pose u = P2 – P1. In table 10, u 
obtained with a 3n number (E = 84, E/2 = 42) is  compared to that 
obtained with a non 3n number (E = 140, E/2 = 70).

The gap u = P2 – P1 is 3n or 6n when the even E is not 3n. By 
contrast, u is 2n when the number E is 3n. The GSC is linked to 

the formation of prime numbers from the integers which precede 
them. The data show that for the goldbach's conjecture to be true, 
there must be a value t such that for any integer n, n – t and n + t are 
primes and equidistant to n. The value of t will depend on whether 
the integer n is 3n or not.

 u (E/2 = 42)  Factors ≠ 3n  u (E/2 = 70) Factors = 3n  
22 2 x 11 6  6 x 1  
38 2 x 19 18 6 x 3
58 2 x 29 54 6 x 9
62 2 x 31 66 6 x 11
74 2 x 37 78 6 x 13

114 6 x 19
126 6 x 21
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If E = P1 + P2 with P2 > P1 let pose u = P2 – P1. In table 10, u obtained with a 3n number (E = 84, E/2 = 42) is  

compared to that obtained with a non 3n number (E = 140, E/2 = 70).

The gap u = P2 – P1 is 3n or 6n when the even E is not 3n. By contrast, u is 2n when the number E is 3n. The GSC is 

linked to the formation of prime numbers from the integers which precede them. The data show that for the goldbach's 

conjecture to be true, there must be a value t such that for any integer n, n – t and n + t are primes and equidistant to n. 

The value of t will depend on whether the integer n is 3n or not.

Table 10. The gap between two equidistant primes noted u is not the same depending on E/2 of the even number E. If 

E/2 is 3n (42), u values are 2n in increasing order. If E/2 is non-3n (70), u values are 3n or 6n in increasing order. The u 

values obtained in both cases show a good linear correlation of 0.98; shown by graphics below (left, u values of E/2 = 

42; right, u values of E/2 = 70).

 u (E/2 = 42)  Factors ≠ 3n  u (E/2 = 70) Factors = 3n  

22 2 x 11 6  6 x 1  

38 2 x 19 18 6 x 3

58 2 x 29 54 6 x 9

62 2 x 31 66 6 x 11

74 2 x 37 78 6 x 13

114 6 x 19

126 6 x 21

                                                ↓                                                                                              ↓

The strong correlation observed with u values also indicates that equidistant primes appear after a regular interval of the

same order. And even if the number tends to infinity, there will always be a strong correlation between equidistant 

primes close to each other.
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Table 10: The gap between two equidistant primes noted u is not the same depending on E/2 of the even number E. If E/2 is 3n 
(42), u values are 2n in increasing order. If E/2 is non-3n (70), u values are 3n or 6n in increasing order. The u values obtained in 
both cases show a good linear correlation of 0.98; shown by graphics below (left, u values of E/2 = 42; right, u values of E/2 = 70).

The strong correlation observed with u values also indicates that 
equidistant primes appear after a regular interval of the same order. 
And even if the number tends to infinity, there will always be a 
strong correlation between equidistant primes close to each other.

2E. Two rules that explain the equidistance of prime numbers and 
which are at the origin of the strong conjecture of Goldbach

The main question is to determine how an integer gives a prime 
number by increasing or decreasing in a symmetrical way. For GSC 
to be proven, we have to demonstrate that there are two equidistant 
primes around E/2 with E being an even. In this section,  two rules 
are given that explain how an integer produces a prime number. 
Let E be any even number and let us calculate E ± T such that T 
is an integer < E. We will apply the same rules as seen previously, 
if E is an even which is not 3n, then T is odd 3n values. There is 
a rule for E – T and another for E + T and both of them are going 
to give equidistant primes around E/2. This is different from what 
described above since we start now with the even E and then fall 
back on the equidistant primes around E/2. Another method of 
obtaining equidistant primes is also included here which consists 
of euclidean divisions of E by prime factors q out of π(E) of which 
are > E/2. Let us pose E = aq + r with a the quotient, q any prime 
factor out of π(E) < E and r the remainder and this is the classic 
equation of the Euclidean division.

Be E any even ≥ 8 and T any integer < E. For E – T if T = r + nq 
then E – T is not prime (n is any integer ≥ 0). For E + T if T = 
nq – r then E + T is not prime. Only if T ≠ r + nq in the first case 
and   T ≠ nq – r in the second case can we have equidistant primes. 
Both T values are symmetrical.  These two rules are required to 
understand the GSC.
Demonstration:
•	 E – T and T = r + nq. Knowing that E = aq + r →  E – T = aq 

+ r – (r + nq) = (a + n) q → E – T not prime. For each T value, 
this must be true for all q out of π(E) < E.

•	 E + T and T = nq – r. Knowing that E = aq + r → E + T =  aq + 
r + (nq – r) = (a + n) q →    E + T not prime. For one T value, 
this must be true for all q out of π(E) < E.

2E.1 First rule: In order to have prime numbers by subtracting T 
from an even number E : if E = aq + r then E – T is prime if T ≠ r; 
or T ≠ r + q; or T ≠ r + nq (n is any integer and q all primes < E).

Example number E = 112 and E/2 = 56 which is not 3n and then 
T is mostly 3n (Table 11A). On the first column of Table 11A, 
we have prime factors q of  π(E) < E and the second column the 
remainders r of euclidean division of E with each q. T values (odd 
3n) are shown in the first line which have to be substracted from E 
= 112 (only T values are shown).

The colored columns indicate prime numbers while non-colored 
columns correspond to non-primes and have a color spot that 
indicate which remainder is concerned. Note equidistant primes 
are E – T (Table 11A) and E + T (Table 11B) that are both primes. 
All equidistant primes are underlined and highlighted in bold in 
the first line. 

E is any even ≥ 8. E = P1 + P2 with P2 > P1 and P1 and P2 are 
equidistant primes. The method is as follows. 
1) - Take T-values as odd 3n (for an even number that is not 
3n). Calculate E – T.
2) - Determine π(E) the primes of which are named q and 
divide E –T by prime factors q < E/2 to apply the rule T ≠ r 
and T ≠ r + q or T ≠ r + nq (n is any integer > 0). Primes are 
numbers E – T with T satisfying the rule for each euclidean 
division of E by  q  out of  π(E) < E/2. This leads to equidistant 
primes to E/2  that sum up to form E. Therefore, this rule 
allows us to find out equidistant primes around E/2.
3) Meanwhile, when we divide E by q out of  π(E) > E/2, 
the remainder = P1 and the divisor = q = P2. This time we 
have at once two equidistant primes if the remainder is prime. 
This is another method to find out equidistant primes around 
E/2. The data obtained with q < E/2 and q > E/2 are shown 
in tables 11A+B and 13A+B. In table 12, the specific case of 
q > E/2 is further discussed separately by puttig emphasis on 
other rules.
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On the other hand, equidistant primes directly obtained by 
Euclidean divisions of E by q > E/2 are shown on the first two 
columns and they are also underlined and highlighted in bold.  
•	 Here are some examples for q < E/2 (Table 11A).
112 – 21 is not prime because 112 : 13 (13 is q) has a remainder 
(r) of 8 and at the same time 21 – 8 = 13 → 21 = 8 + 13 (r + q). If 
we substract 21 of 112, we take off the remainder 8 and one factor 
13 and what remains is therefore multiple of 13 → 112 – 21 = 91 
= 7 x 13.
112 – 27 is not prime because 112 : 5 (q) has a r = 2 and thus 27 – 2 
= 25 → 27 = 2 + 25 =   2 + 5 x 5 ( r + nq).
112 – 57 is not prime because 112 : 5 has a r = 2 and 57 = 2 + 55 = 
2 + 11 x 5 (r + nq). Furthermore, 112 : 11 (q) has a r = 2 and 57 = 
2 + 55 = 2 + 5 x 11 (r + nq).
112 – 63 is not prime because 63 is a multiple of 7 and 112 : 7 has 
r = 0.
 112 – 87 is not prime because 112 : 5 has r = 2 and 87 = 2 + 85 = 
2 + 17 x 5. (r + nq)

•	 But when q > E/2 or 112/2 = 56 the remainder r is either prime 
or not. For q > E/2 the strong conjecture (E = p + p') itself 
becomes Euclidean division in the form E = aq + r with q = 
P2 and  r = P1 and the quotient a = 1 → E = P2 + P1 = P1 + 
P2 such that P2 > E/2 > P1. And in this case T = q = P2 and 
E – T = E –  q = P1 = r. Note that r = P1 may be prime or not. 
This brings new equidistant primes (See Table 12 with the 
comments that follow) . In this case, we also have the rule 
stated above. For instance 100 = 53 + 47. Here we have for 
example 100 : 11 has a r' = 1 while   53 : 11 has a r = 9 and 47 
: 11 has a r = 3 and we see that r'≠r in both cases. However if 
we have 100 = 67 + 33 we have 67 : 11 has r = 1 and we see 
that 33 is a composite relatively to q = 11 = 3 x 11 which has a  
r = 0 → r' = r and 33 = n'q = 3 x 11. Here is another example. 
100 = 61 + 39. We have 100 : 13 has a r' = 9 while 61 : 13 has 
a r = 9 and r' = r → 39 is composite relatively to q = 13 ad 39 
= 3 x 13. If for one q, r'=r then P + X → X is composite = n'q 
except if n' = 1 (see Table 12 and what follows).

Table 11A. Primality test of (E – T) numbers by looking at the remainders of euclidean divisions E:q and (E – T):q.  Be

E any even E  ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and

E = p + p'. In the table, E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown).

The divisor q or prime divisors < E are shown in the first column and remainders r on the second one. E – T (E = 112)

numbers are calculated with T values shown in the first line (odd 3n).  Columns colored are those corresponding to

E – T being prime numbers and columns with an isolated colored spot indicate non-prime numbers and the remainders

they are related to. If T = r  + nq (n any integer including 0) then E – T is not prime. Underlined numbers in bold on the

first line correspond to equidistant primes in Tables 11A+B. The highlighted and underlined numbers in the two first

columns are equidistant primes obtained with E : q such that q > E/2. The prime factor q > E/2 is indicated by a colored

line.

π(E) E:q T values to substract from E = 112 and divide by q (E – T : q) to determine remainders (r)

q r 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105

3 1

5 2

7 0

11 2

13 8

17 10

19 17

23 20

29 25

31 19

37 1

41 30

43 26

47 18

53 6

59 

>E/2

53

61 51

67 45

71 41

73 39

79 33

83 29

89 23

97 15

101 11

103 9

107 5

109 3

34
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Table 11A. Primality test of (E – T) numbers by looking at the remainders of euclidean divisions E:q and (E – T):q.  Be

E any even E  ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and

E = p + p'. In the table, E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown).

The divisor q or prime divisors < E are shown in the first column and remainders r on the second one. E – T (E = 112)

numbers are calculated with T values shown in the first line (odd 3n).  Columns colored are those corresponding to

E – T being prime numbers and columns with an isolated colored spot indicate non-prime numbers and the remainders

they are related to. If T = r  + nq (n any integer including 0) then E – T is not prime. Underlined numbers in bold on the

first line correspond to equidistant primes in Tables 11A+B. The highlighted and underlined numbers in the two first

columns are equidistant primes obtained with E : q such that q > E/2. The prime factor q > E/2 is indicated by a colored

line.

π(E) E:q T values to substract from E = 112 and divide by q (E – T : q) to determine remainders (r)

q r 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105

3 1

5 2

7 0

11 2

13 8

17 10

19 17

23 20

29 25

31 19

37 1

41 30

43 26

47 18

53 6

59 

>E/2

53

61 51

67 45

71 41

73 39

79 33

83 29

89 23

97 15

101 11

103 9

107 5

109 3

34

Table 11A: Primality test of (E – T) numbers by looking at the remainders  euclidean divisions E:q and (E – T):q. Be E any even 
E ≥ 8  such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and E = p + p'. In the table, E = 
aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown). The divisor q or prime divisors < E are 
shown in the first column and remainders r on the second one. E – T (E = 112) numbers are calculated with T values shown in the 
first line (odd 3n). Columns colored are those corresponding to E – T being prime numbers and columns with an isolated colored 
spot indicate non-prime numbers and the remainders they are related to. If T = r  + nq (n any integer including 0) then E – T is 
not prime. Underlined numbers in bold on the first line correspond to equidistant primes in Tables 11A+B. The highlighted and 
underlined numbers in the two first columns are equidistant primes obtained with E : q such that q > E/2. The prime factor q 
> E/2 is indicated by a colored line.

2E.2 Second rule: In order to have prime numbers by adding T to 
E or E + T : T ≠ q – r or T≠ nq – r.

Only some of E + T that are not prime are going to be explained 
(Table 11B).
1.	 112 + 9 is not prime because 112 : 11 has a remainder r = 2 

and 9 = 11 – 2 (q – r).
2.	 112 + 33 is not prime because 112 : 5 has r = 2 and 33 = 35 – 2 

= 7 x 5 – 2 (nq – r). Furthermore, 112 : 29 has r = 25 and 33 = 
58 – 25 = 2 x 29 – 25 (nq – r).

3.	 A last example. 112 – 75 is prime because 112 : 11 has a r = 
2 and 75 = 77 – 2 = 7 x 11 –  2 (nq – r). In addition, 112 : 17 
has r = 10 and 75 = 85 – 10 = 5 x 17 – 10 (nq – r). therefore t 
≠ nq+r which explains why 112 – 75 = 37 is prime. In tables 
11A and 11B corresponding equidistant primes are underlined 
in the first line, and two first coloumns (q > E/2).

2E.2 Second rule: In order to have prime numbers by adding T to E or E + T : T  ≠ q – r or

T≠ nq – r.

Only some of E + T that are not prime are going to be explained (Table 11B).

1. 112 + 9 is not prime because 112 : 11 has a remainder r = 2 and 9 = 11 – 2 (q – r).

2. 112 + 33 is not prime because 112 : 5 has r = 2 and 33 = 35 – 2 = 7 x 5 – 2 (nq – r). Furthermore, 112 : 29 has

r = 25 and 33 = 58 – 25 = 2 x 29 – 25 (nq – r).

3. A last example. 112 – 75 is not prime because 112 : 11 has a r = 2 and 75 = 77 – 2 = 7 x 11 –  2 (nq – r). In

addition, 112 : 17 has r = 10 and 75 = 85 – 10 = 5 x 17 – 10 (nq – r). In tables 11A and 11B corresponding

equidistant primes are underlined in the first line, and two first coloumns (q > E/2).

Table 11B. Primality test of (E + T) numbers by looking at the remainders of euclidean divisions E:q and (E + T):q. Be

E any even ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and E = p + p'.

In the table, E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown). The divisor q

or prime factors < E are shown in the first column from left and remainders r on the second one. E + T (E = 112)

numbers are calculated with T values shown in the first line. Columns colored are those corresponding to  E + T being

prime numbers and columns with an isolated colored spot indicate non-prime numbers and the remainders they are

related to. If T = nq – r (n any integer including 0) then E + T is not prime. Underlined numbers in bold on the first line

correspond to equidistant primes in Tables 11A+B. The highlighted and underlined numbers in the two first columns are

equidistant primes obtained with E : q such that q > E/2. The prime number q > E/2 is indicated by a colored line. 

π(E) E:q T values to add to E = 112 and divide by q to determine remainders (E + T : q)

q r 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105

3 1

5 2

7 0

11 2

13 8

17 10

19 17

23 20

29 25

31 19

37 1

41 30

43 26

47 18

53 6

59 

(>E/2

) 

53

61 51

67 45

71 41

73 39

79 33

83 29

89 23

97 15

101 11

103 9

107 5

109 3

35
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2E.2 Second rule: In order to have prime numbers by adding T to E or E + T : T  ≠ q – r or

T≠ nq – r.

Only some of E + T that are not prime are going to be explained (Table 11B).

1. 112 + 9 is not prime because 112 : 11 has a remainder r = 2 and 9 = 11 – 2 (q – r).

2. 112 + 33 is not prime because 112 : 5 has r = 2 and 33 = 35 – 2 = 7 x 5 – 2 (nq – r). Furthermore, 112 : 29 has

r = 25 and 33 = 58 – 25 = 2 x 29 – 25 (nq – r).

3. A last example. 112 – 75 is not prime because 112 : 11 has a r = 2 and 75 = 77 – 2 = 7 x 11 –  2 (nq – r). In

addition, 112 : 17 has r = 10 and 75 = 85 – 10 = 5 x 17 – 10 (nq – r). In tables 11A and 11B corresponding

equidistant primes are underlined in the first line, and two first coloumns (q > E/2).

Table 11B. Primality test of (E + T) numbers by looking at the remainders of euclidean divisions E:q and (E + T):q. Be

E any even ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and E = p + p'.

In the table, E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown). The divisor q

or prime factors < E are shown in the first column from left and remainders r on the second one. E + T (E = 112)

numbers are calculated with T values shown in the first line. Columns colored are those corresponding to  E + T being

prime numbers and columns with an isolated colored spot indicate non-prime numbers and the remainders they are

related to. If T = nq – r (n any integer including 0) then E + T is not prime. Underlined numbers in bold on the first line

correspond to equidistant primes in Tables 11A+B. The highlighted and underlined numbers in the two first columns are

equidistant primes obtained with E : q such that q > E/2. The prime number q > E/2 is indicated by a colored line. 

π(E) E:q T values to add to E = 112 and divide by q to determine remainders (E + T : q)

q r 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105

3 1

5 2

7 0

11 2

13 8

17 10

19 17

23 20

29 25

31 19

37 1

41 30

43 26

47 18

53 6

59 

(>E/2

) 

53

61 51

67 45

71 41

73 39

79 33

83 29

89 23

97 15

101 11

103 9

107 5

109 3

35
Table 11B: Primality test of (E + T) numbers by looking at the remainders of euclidean divisions E:q and (E + T):q. Be E any 
even ≥ 8 such that p and p' are equidistant primes (p' > p) to E/2 and so p = E/2 – t and p' = E/2 + t and E = p + p'. In the table, 
E = aq + r (euclidean division) with a the quotient (not shown) and r the remainder (shown). The divisor q or prime factors < 
E are shown in the first column from left and remainders r on the second one. E + T (E = 112) numbers are calculated with T 
values shown in the first line. Columns colored are those corresponding to  E + T being prime numbers and columns with an 
isolated colored spot indicate non-prime numbers and the remainders they are related to. If T = nq – r (n any integer including 
0) then E + T is not prime. Underlined numbers in bold on the first line correspond to equidistant primes in Tables 11A+B. The 
highlighted and underlined numbers in the two first columns are equidistant primes obtained with E : q such that q > E/2. The 
prime number q > E/2 is indicated by a colored line.

2E3. The specific case of q > E/2 where we have E : P2 = 1 with the remainder r = P1. The congruence rules for this case.

q < E P2 > E/2 and  P1 or C < E/2 
E : P2 = P1 or E : P2 = C → E = P2 + P1 or E = P2 + C

Prime factor (q) of π(E)  Remainder E : q P2 : q
P1 Composite (C) Except if C = q

P2 : q P1 Prime 

P1 Composite (C) Except 
if C = q

r1 ≢ ≢

q1 r2 ≢ ≢
q2 r3 ≡  P1 = C not prime except if C = q.
q3 r4 ≢ ≢
q4 r5 ≢ ≢
q5 r6 ≢ ≢
q6 r7 ≢ ≢
q7 ... ≢ ≢
... rn ≢ ≢
qn rn ≢

Table 12: Congruence rules that determine whether the strong Goldbach conjecture holds in the case of q = P2 > E/2. Let E be 
an even number ≥ 8, q any prime number < E in π(E), and P2 a prime > E/2. To convert E to the sum of two primes P2 and P1 
(E = P2 + P1) such that P1 < E/2 we perform the Euclidean divisor E : P2 which has a quotient = 1 and a remainder = P1 or C 
(C is any composite number). If P2 ≡ E modulo (q) (for example in the table q3) then E = P2 + C unless C = q . If E P2 on all the 
remainders of E: q (r1 to rn) then P1 is prime and E = P2 + P1. We see that ≡ a prime number is a solution to a problem: that of 
finding a number which has no congruence with the number of which it is an addition term. In the  table  means no congruence. 
If there is a congruence (for example modulo q3) P1 is ≢ composite (C) except if  C = q.

Demonstrations in the case of q > E/2 (also the case of the equidistant primes of the two first colums in Tables 11A+B above and 
12A+B below).
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1)- Be E = aq + r and P2 a prime number > E/2. 
Be P2 = a'q+ r then E – P2 = X = (a – a')q → X is not prime except 
if a – a' = 1. Only if a' - a = 1 is the GSC verified E = P2 + P1 
with P1 < E/2.

2)- Be E = aq + r Be P2 = a'q+ r' then E – P2 = X = (a – a')q + (r – r') 
→ X is prime if r ≠ r' for any q < E. Only under this condition is 
the GSC verified E = P2 + P1 with P1 < E/2.

3)- If the GSC is verified E = P2 + P1 with P2 > E/2 and P1 < E/2  
→ E ≡ P2 moduloP1. E = aP1 + r → P2 = aP1 + r – P1 → P2 = 
(a – 1)P1 + r  → E ≡ P2 moduloP1.

4)-  If E = aq + r and P2 = (a – 1)q + r then E – P2 = P1 is prime. E – 
P2 = (aq + r) - ((a – 1)q + r)) = (a – a + 1)q + (r – r) = q knowing 
that q is any prime < E.

5)- E : P2 = X (note P2 is prime > E/2). Let E = aq +r ; P2 = a'q + r' 
and X = a''q + r''. In all cases we have             

r' + r'' = r or r' + r'' = nq + r (n ≥ 0). If this is true for all q < E or any 
q of π(E) then E = P2 + P1 which are both primes and the GSC is 
verified. If for one q of π(E), r'' = 0 and r = r' then X is composite 
except if X = q.

Examples : 
100 = 67 + X knowing that 67≡100 modulo11 then X is composite 
(except if X = q = 11) but X = 33 = 3 x 11.
1000 = 571 + X  knowing that 571≡100 modulo11 X is composite 
X = 429 = 3 x 11 x 13.
100 = 89 + 11 Even if 89≡100 modulo11 X is prime because X = 
11 (the case in the table when X = q).
2000 = 1303 + X  knowing that 1303≡2000 modulo 41 X is 
compostite X = 697 = 17 x 41.
2000 = 1873 + X  Even if 1873≡2000 modulo127 X is prime 
because X = 127 (the case in the table whe X = q).
2000 = 15 x 127 + 95 and 1873 = 14 x 127 + 95 (according to 
demostration 3 above).
200 = 149 + 51. For all q of π(200) the remainders r' of  (149 : q) + 
r'' of (51 : q) = nq + (r of 200 : q) except for 3 and 17 for which r'' 
= r and 51 is composite = 3 x 17.
200 = 139 + 61 For all q of π(200) the remainders r' of  (139 : 
q) + r'' of (61 : q) = nq + (r of 200 : q) therefore 61 is prime and 
therefore Goldbach conjecture is verified.

What then do these demonstrations mean in the case where E : 
P2 = X knowing that E is any even number ≥ 8 and      P2 > 
E/2 and denoting any prime number < E or π(E) as q ? For any 
even number E, there are three possible numbers          P2 > E/2: 
composite (C), prime numbers P2≡E modulo at least one factor 
q, and prime numbers P2≢ E for any factor q. The congruent P2 
will always add to a composite number C to form E except if C is 
a unit prime factor. Whereas the noncongruent P2 will necessarily 
add to a prime number P1 to form E. Why? By using the same 
demonstrations cited above. In fact, if there is congruence between 

E and P2 and if we write E = P2 + X this means that the remainders 
of E : q and P2 : q are identical and that necessarily X is a multiple 
of q except in the case where X is itself the prime factor q, which 
could happen sometimes but not always. On the contrary, if there 
is never any congruence between E and P2 ; and if we write E 
= P2 + X and we note E = aq + r ; P2 = a'q + r' ; and X = a''q + 
r'' we therefore have r' + r" = r or r' + r'' = nq + r. In this case, r'' 
cannot be zero because we contradict ourselves since there will be 
congruence between E and P2. Therefore, r'' is always non-zero in 
this case for any factor q. In other words, the non-congruence of 
E and P2 entails that of E and P1 whatever the factor q of π(E). 
Consequently in this case X = P1 which is prime and E = P1 + P2. 
This is a demonstration of Goldbach strong conjecture because there 
will always be at least one probability chance that a noncogruent 
prime number will appear after E/2, this probability is never zero. 
All prime numbers after E/2 cannot all be congruent because this 
is incompatible with the progression of natural numbers unit by 
unit. This is why Goldbach's conjecture is always true if we admit 
that there always exist enough prime numbers between E/2 and 
E whatever the value of E. For instance  100 = 73 + 27 means 
100≡73 modulo(3) while 100 = 59 + 41 means 100 59 and 100 
41 for any factor q < E.≢ ≢ We can conclude that the progression 
of natural numbers always produces two types of prime numbers. 
Among the latter we have those which are never congruent with 
an even number E ; E/2 is located at an equal distance between a 
non-congruent prime number P2 > E/2 and another prime number 
P1 < E2.  

The strong Goldbach's conjecture E = P1 + P2 ↔ E≢P1 for any 
prime q < P1 and  E≢P2 for any prime q < P2  with q any prime 
of π(E) and such that P2 > E/2 et P1 < E/2 . Howevere, E≡P2 if 
P1 = q.
 
•	 2E4. Another example : a 3n number E = 240 and E/2 = 120.
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 2E4. Another example : a 3n number E = 240 and E/2 = 120.

Table 13A. Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, T takes values of primes (or

composites but primes are used here).  The same legends as in tables 11. Here E/2 – T. Empty  Columns are those

corresponding  to  E  – T being  prime  numbers and  an  isolated  colored  spot  indicate  non-prime  numbers  and  the

remainders they are re lated to. If T = r  + nq (n any integer) then E – T is not prime . Underlined numbers in bold on the

first line correspond to equidistant primes in Tables 12A+B. Both equidistant primes are shown on the two left-columns

if q > E/2 or q > 60 for 120 number. Note equidistant primes are E –  T and E + T that are both primes.  

π(E) E:

q
T values to substract from E = 120 and divide by q to determine remainders (E – T : q)

q r 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 57 61 67 71 73 79 83 89 97 101 103 107 109 113

3 0

5 0

7 1

11 10

13 3

17 1

19 6

23 5

29 4

31 27

37 9

41 38

43 34

47 26

53 14

59 2

61 

>E/2

59

67 53

71 49

73 47

79 41

83 37

89 31

97 23

101 19

103 17

107 13

109 11

113 7

38

Table 13A: Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, T takes values of primes (or composites 
but primes are used here). The same legends as in tables 11. Here E/2 – T. Empty Columns are those corresponding to E – T being 
prime numbers and an isolated colored spot indicate non-prime numbers and the remainders they are re lated to. If T = r  + nq 
(n any integer) then E – T is not prime. Underlined numbers in bold on the first line correspond to equidistant primes in Tables 
12A+B. Both equidistant primes are shown on the two left-columns if q > E/2 or q > 60 for 120 number. Note equidistant primes 
are E –  T and E + T that are both primes. 

Table 13B. Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, t takes values of primes (or

composites  but  primes are used  here).  The same legends  as  in  tables  11.  Here  E + T.  Empty  Columns are those

corresponding to  E/2  + T being prime numbers and an isolated colored spot  indicate non-prime numbers  and the

remainders they are related to. If T = nq –  r (n any integer) then E + T is not prime. Underlined numbers in bold on the

first line correspond to equidistant primes in Tables 12A+B. Both equidistant primes are shown on the two left-columns

if q > E/2 or q > 60 for 120 number. Note equidistant primes are E –  T and E + T that are both primes.  

π(E) E:q T values to add to E = 120 and divide by q to determine remainders (E + T) : q

q r 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 57 61 67 71 73 79 83 89 97 101 103 107 109 113

3 0

5 0

7 1

11 10

13 3

17 1

19 6

23 5

29 4

31 27

37 9

41 38

43 34

47 26

53 14

59 2

61 59

67 53

71 49

73 47

79 41

83 37

89 31

97 23

101 19

103 17

107 13

109 11

113 7

39
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Table 13B. Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, t takes values of primes (or

composites  but  primes are used  here).  The same legends  as  in  tables  11.  Here  E + T.  Empty  Columns are those

corresponding to  E/2  + T being prime numbers and an isolated colored spot  indicate non-prime numbers  and the

remainders they are related to. If T = nq –  r (n any integer) then E + T is not prime. Underlined numbers in bold on the

first line correspond to equidistant primes in Tables 12A+B. Both equidistant primes are shown on the two left-columns

if q > E/2 or q > 60 for 120 number. Note equidistant primes are E –  T and E + T that are both primes.  

π(E) E:q T values to add to E = 120 and divide by q to determine remainders (E + T) : q

q r 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 57 61 67 71 73 79 83 89 97 101 103 107 109 113

3 0

5 0

7 1

11 10

13 3

17 1

19 6

23 5

29 4

31 27

37 9

41 38

43 34

47 26

53 14

59 2

61 59

67 53

71 49

73 47

79 41

83 37

89 31

97 23

101 19

103 17

107 13

109 11

113 7

39

Table 13B: Equidistant primes around 120 the sum of which make 240. Because 240 is 3n, t takes values of primes (or composites 
but primes are used here). The same legends as in tables 11. Here E + T. Empty Columns are those corresponding to E/2 + T being 
prime numbers and an isolated colored spot indicate non-prime numbers and the remainders they are related to. If T = nq –  r 
(n any integer) then E + T is not prime. Underlined numbers in bold on the first line correspond to equidistant primes in Tables 
12A+B. Both equidistant primes are shown on the two left-columns if q > E/2 or q > 60 for 120 number. Note equidistant primes 
are E –  T and E + T that are both primes. 

2F. The GSC explains how a prime number gives the prime number 
that follows it and this progression obeys the two rules decribed 
above in relation to the remainders of the Euclidean divisions 

Be any two prime numbers  p and p' such that p' > p → p' – p 
= 2n. Let us suppose a number noted X – p = 2n and let us see 
if X is prime nor not. X will be prime if 2n ≠ mq – r with q any 
prime factor < X and m any integer ≥ 1. When n = 1 and this rule 
verified then we have twin prime numbers. But if we have n = 1 
and the rule not verified (meaning  2n = mq – r) then we do not 
have twin prime numbers. For instance, let us take 17 and 17 : 3 
has a remainder r = 2 ; 17 : 5 has r = 2 ; 17 : 7 has r = 3, 17 : 11 has 
r = 6, and 17 : 13 has r = 4. Therefore if we add 2 to 17 we have 2 ≠ 
mq – r in all those euclidean divisions and so 17 + 2 = 19 is prime. 
By contrast if we take a number like 31 we have 31 : 11 = 2 and r 
= 9 and so 2 = 11 – 9 = mq – r → 31 + 2 = 33 is not prime because 
it is a multiple of 11. In a similar way 31 : 3 = 10 and r = 1 and 2 
= 3 – 1 = mq – r and so if we add 2n to 31, it is not prime because 
it is a multiple of 3.

This rule determines if p + 2n is prime or not and can therefore 
explain how equidistant primes are produced. Let us take some 
examples. 11 + 12 knowing that 11 : 12 = 0 and r = 11.

In this case 12 ≠ mq – r = m11 – 11 for instance 12 ≠ 22 – 11 or 12 
≠ 33 – 11 and so on. Therefore 11 + 12 = 23 is prime. We have two 
primes 11 and 23 and 11 + 23 = 34 : 2 = 17 and therefore 11 and 
23 are equidistant to 17. In this specific case 2 x 17 = 34 = 11 + 23.

If we take 11 + 10 = 21 not prime because 11 : 3 = 3 and r = 2 and 
10 = 12 – 2 = 4 x 3 – 2 = mq – r. Or 11 : 7 = 1 and r = 4 and we 
have 10 = 14 – 4 = 2 x 7 – 4 = mq – r. Therefore 21 is a multiple 
of 3 and 7.

Let take another number like 31 + 12 and whatever prime factor 
< 31; 12 ≠ mq – r. For instance if q = 7, then 31 : 7 = 4 and r = 3. 
Hence 12 ≠ m x 7 – 3 whatever m value; if m = 1, 12 ≠ 4; if m = 
2, 12 ≠ 11; and m = 3,  12 ≠ 18 and so on. Hence 31 + 12 = 43 is 
prime → 31 + 43 = 74 : 2 = 37 →  31 and 43  are equidistant to 37 
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and 37 x 2 = 74 = 31 + 43. We can argue differently 31 + 12 = 43 
the mean value is either 31 + 6 or 43 – 6 which also means that 2 
x 6 is the distance between 31 and 43 and therefore 37 x 2 = 31 + 
43. Because an even value has to be added to a prime number p to 
get the next one p' (p' = p + 2n) therefore there is always a mean 
value M located at the same distance from the two such that M = 
p + n = p' - n and therefore 2M = p + p'. However if q is any prime 
factor < p', the rule 2n ≠ mq– r has to be verified to get the next 
prime number p'.

The most important element is that the rule  2n ≠ mq– r is always 
verified because there is an infinity of n values of 2n to get the next 
prime number. For example, if we take any prime number like 73 
we can get 79 (73 + 2 x 3); 89 ( 73 + 2 x 8); 97 ( 73 + 2 x 12) and 
so on. In other words, we will never find a prime number that will 
not give another prime number by adding to it 2n with n being any 
integer > 0. When we say prime numbers are infinite this means 
that any prime p increased by 2n would give another prime p' and 
therefore p + n = p – n = N → 2N = p + p'. This proves that GSC 
is always true as long as  a prime number p increased by 2n gives 
another one noted p'. 

Reciprocally, if we have one prime number p' and want to go down 
to p such that p < p' then p' – 2n = p. This time we divide p' by all 
prime factors noted q < p' and 2n ≠ r or  2n ≠ mq + r (m any integer 
including 0). For instace 97 – 6 = 91 is not prime because 97 : 7 = 
13 and r = 6 so 6 is the remainder (2n = r). Therefore 6 = r → 6 = 
mq + r with m = 0. 

Let us take another example 443 – 234 = 209. We have 443 : 11 has 
a remainder r = 3. However 234 = 231 + 3 = 11 x 21 + 3 = mq + r.  
Therefore 209 not prime because multiple of 11. Or           443 : 19 
has a remainder r = 6. And 234 = 228 + 6 = 122 x 19 + 6 = mq + r.
40

•	 Demonstration: 
•	 p + 2n = p'. If p = aq + r and 2n = mq – r then p + 2n = aq + r 

+ mq – r = (a + m)q thus not prime. 
•	 p ' – 2n = p.  If p' = a'q + r and 2n = mq + r then p' - 2n = a'q + 

r – (mq + r) = (a' + m)q thus not prime. The same if 2n = r then  
p' - 2n = a'q + r – r = a'q thus not prime.

•	 If p is prime and if p + 2n = p' then p' is prime only if 2n ≠ 
mq – r with q being any prime factor < p and r the rremainder 
of the Euclidean division of p by q. Let determine π(p) and 
then divide p by all prime factors of π(p) and calculate the 
remainder r for each euclidean division then apply this rule.

For p + 2n = p' or p' – 2n = p and knowing that n → + ∞, there must 
exist at least one value of n such that p' and p are primes. GSC 
means that one or more values of n always exist such that p and
p' are primes. Given that there exists a limitless possibilities that 
one value of n exists such that p and p' are primes then p + 2n = p' 
→ p + n = p' – n → be N any integer such that N = p + n = p' – n
→ 2N = (p + n) + (p' – n)= p + p'. Goldbach conjecture is therefore 
verified to be true. In other words, this conjecture means that 
whatever values of any prime numbers p and p' such that p' > p and 

whatever π(p) or π(p'), there always exist a value n such that p + n 
= p' – n. Because prime numbers are limitless, then their additions 
would produce all possible even numbers ↔ any even is a sum of 
at least two primes. If the strong conjecture is true ↔ the weak one 
is also true. Even if prime numbers might be less frequent beyond 
E/2, this is compensated by their much higher frequence below E/2 
leading to at least one verification of Goldbach's conjectures. and 
whatever π(p) or π(p'),  there always exist a value n such that p + n 
= p' – n. Because prime numbers are limitless, then their additions 
would produce all possible even numbers ↔ any even is a sum of 
at least two primes. If the strong conjecture is true ↔ the weak one 
is also true. Even if prime numbers might be less frequent beyond 
E/2, this is compensated by their much higher frequence below 
E/2 leading to at least one verification of Goldbach's conjectures.

•	 The rules stated above indicate that GSC is linked to the 
progression of prime numbers one after another. If we take 
any prime number and divide it by all prime factors lesser 
than it, we will get remainders. These latters will determine 
the next prime number and so on.  For instance, if we take 
a prime number like 31, we have 3, 5, 7, 11, 13, 17, 19, 23, 
and 29 prime numbers that are < 31 and therefore we have 
9 remainders of 9 euclidean divisions between 31 and each 
of them. On the other hand, we have too many possibilities 
not to complete these remainders and not to get non-prime 
numbers. For instance, if we add 8 to 31, that is no prime, 
but if we add 6 to it, that is prime. Whatever the size of a 
prime number, there will always be too many possibilities to 
bypass all the remainders and get a new prime number, which 
is in accordance with the fact that prime numbers are limitless. 
Any time a prime number p gives another one p' that follows 
it, Goldbach conjecture is verified because p + 2n = p' ↔ 
Even = p + p' as demonstrated above. In addition, any prime 
number combines with a limitless prime numbers to form 
an even number so that each even number is a sum of two 
prime numbers. The other property of prime numbers is that 
if we take any two prime numbers and whatever the distance 
between them, we will find the same rules that explain how 
a prime numbers gives a new one. This is where the truth of 
Goldbach's conjecture lies.

2G. Calculation examples

2G1. Direct calculation with small numbers using the rules 
described

Let E/2 being any integer ≥ 4 and E any even ≥ 8 be the sum of two 
prime numbers P1 and P2 such that P2 > P1. If E = P1 + P2 then 
P1 = E/2 - t and P2 = E/2 + t with t being any non-zero integer. We 
say that P1 and P2 are two equidistant prime numbers. In this case 
E/2 mod t = P1 mod t = P2 mod t. This rule allows us to find the 
equidistant prime numbers around E/2 and thus convert the even 
number E into the sum of two prime numbers P1 and P2 according 
to Goldbach's conjecture. Given that E/2 can be any integer ≥ 4 we 
can deduce that all natural integers ≥ 4 are in the middle of two 
equidistant prime numbers whether they are evens or odds, primes 
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or composite. The only parameter to take into consideration as 
demonstrated above is to see if the number is a multiple of 3 or 
not. Other rules are described above which are based on 6x ±1 
equations.

Here are detailed calculation examples to prove the authenticity of 
these rules to verify GSC.
Let's take for example the number E = 84 (E/2 = 42). Because 42 is 
3n then equidistant primes are located after gaps = prime numbers 
or multiple of prime numbers. Let focus on gaps = prime numbers 
only.   
•	 42 – 5 = 37  → 42 + 5 = 47  → 37 and 47 are equidistant 

primes and 37 + 47 = 84.
•	  42 – 7 = 35 	→ 42 + 7 = 49 	   
•	  42 – 11 = 31  → 42 + 11 = 53 → 31 and 53 are equidistant 

primes and 31 + 53 = 84.
•	  42 – 13 = 29  → 42 + 13 = 55  
•	  42 – 17 = 25  → 42 + 17 = 59  
•	  42 – 19 = 23  → 42 + 19 = 61 →  23 and 61 are equidistant 

primes and 23 + 61 = 84.
•	  42 – 23 = 19  → 42 + 23 = 65  
•	  42 – 29 = 13  → 42 + 29 = 71 → 13 and 71 are equidistant 

primes and 13 + 71 = 84.
•	  42 – 31 = 11  → 42 + 31 = 73 →  11 and 73 are equidistant 

primes and 11 + 73 = 84.  42 – 37 = 5 	 → 42 + 37= 79 →  5 
and 79 are equidistant primes and 5 + 79 = 84.

•	  42 – 41 = 1 	→ 42 + 41 = 83  

The mod rule applies as follows:
•	 37 and 47 are equidistant to 42 and the gap = 5. Then the 

remainders of the euclidean divisions  37 : 5 ; 47 : 5 ; and 42 
: 5 are the same = 2.

•	 31 and 53 are equidistant to 42 and the gap = 11. Then the 
remainders of the euclidean divisions 31 : 11 ; 53 : 11 ; and 42 
: 11 are the same = 9.

•	 23 and 61 are equidistant  to 42 and the gap = 19. Then the 
remainders of the euclidean divisions 31 : 19 ; 53 : 19 ; and 42 
: 19 are the same = 4.

•	 13 and 71 are equidistant  to 42 and the gap = 29. Then the 
remainders of the euclidean divisions 13 : 29 ; 71 : 29 ; and 42 
: 29 are the same = 13.

•	 11 and 73 are equidistant  to 42 and the gap = 31. Then the 
remainders of the euclidean divisions 11 : 31 ; 73 : 31 ; and 42 
: 31 are the same = 11.

•	 5 and 79 are equidistant  to 42 and the gap = 37. Then the 
remainders of the euclidean divisions 5 : 37 ; 79 : 37 ; and 42 
: 37 are the same = 5.

If the number is not 3n such like 140, we then substract or add 3n 
values to 140/2 = 70.

•	 70 - 3 = 67  → 70 + 3 = 73	 → 67 + 73 = 140
•	 70 - 9 = 61  → 70 + 9 = 79	 → 61 + 79 = 140
•	 70 – 21= 49  → 70 + 21 = 91	
•	 70 – 27= 43 	→ 70 + 27 = 97 	 → 43 + 97 = 140
•	 70 – 33 = 37 → 70 + 33 = 103  → 37 + 103 = 140
•	 70 – 39 = 31 	→ 70 + 39 = 109  → 31 + 109 = 140

•	 70 – 51 = 19 	→    70 + 51 = 121 	   
•	 70 – 57 = 13 → 70 + 57 = 127 	→ 13 + 127 = 140
•	 70 – 63 = 7 → 70 + 63 = 133  → 7 + 133 = 140

Be E = P1 + P2 such that P2 > P1 and P1 = E/2 – t and P2 = E/2 
+ t. Hence t is the gap between E/2 and the equidistant primes P1 
and P2.

Be E/2 = at + r  with a the quotient and r the remainder of the 
euclidean equation or division of E : t.
E/2 = at + r  → P1 + t =  at + r → P1 = (a – 1)t + r.
E/2 = at + r  → P2 –  t =  at + r → P2 = (a + 1)t + r.

These equations can be useful to convert an even number into a 
sum of two prime numbers. Examples of these are given below.
E/2 = 42. 42 : 5 = 8 and r = 2. Then P 1 = (8 – 1) x 5 + 2 = 7 x 5 + 
2 = 37. P2 = (8 + 1) x 5 + 2 =  9 x 5 + 2 = 47.
E/2 = 42. 42 : 7 = 6 and r = 0. Then P 1 = (6 – 1) x 7 + 0 = 5 x 7 + 
0 = 35. P2 = (6 + 1) x 7 + 0 =  7 x 7 + 0 = 49. 

However neither P1 nor P2 is prime.
E/2 = 42. 42 : 11 = 3 and r = 9. Then P 1 = (3 – 1) x 11 + 9 = 2 x 11 
+ 9 = 31. P2 = (3 + 1) x 11 + 9 = 4 x 11 + 9 = 53.

E/2 = 42. 42 : 19 = 2 and r = 4. Then P 1 = (2 – 1) x 19 + 4 = 1 x 19 
+ 4 = 23. P2 = (2 + 1) x 19 + 4 = 3 x 19 + 4 = 61. E/2 = 42. 42 : 23 
= 1 and r = 19. Then P 1 = (1 – 1) x 23 + 19 = 0 x 23 + 19 = 19. P2 = 
(1 + 1) x 23 + 19 = 2 x 23 + 19 = 65. However P2 = 65 is not prime.
E/2 = 42. 42 : 29 = 1 and r = 13. Then P 1 = (1 – 1) x 29 + 13 = 0 x 
29 + 13 = 13. P2 = (1 + 1) x 29 + 13 = 3 x 19 + 4 = 71.

E/2 = 42. 42 : 37 = 1 and r = 5. Then P 1 = (1 – 1) x 37 + 5 = 0 x 
37 + 5 = 5. P2 = (1 + 1) x 37 + 5 = 3 x 19 + 4 = 79.

Let E = P1 + P2 such that P2 > P1 → P1 < E/2 and P2 > E/2. 
Therefore, E/2 : P2 = 1 and r = P1. In fact Goldbach's conjecture E 
= P1 + P2 can be posed as an euclidean equation E = a x P2 + P1 
with a (quotient) = 1 and the remainder r = P1 and P2 > E/2. Then 
there is a third prime number P3 = 2P2 + P1  such that P3 + P1 = 
2P2 + 2P1 = 2E. Here is the demonstration.

The equation results from the Mod rule. If we divide E/2 by P2 
which is >E/2 the quotient is = 1 and the remainder is necessarily 
P1 because E = P1 + P2. And since P1 = (a – 1)t + r and P2 = (a 
+ 1)t + r ; P1 remains unchanged while a new prime number P3 
will appear and which is equal to 2P2 + P1. In fact P1 = (1 – 1)t + 
r  knowing that r = P1 thus P1 = P1. While P2 = (a + 1)t + r = (1 + 
1) x P2 + P1 (note t = P2 the divisor) and because it is impossible 
that P2 = 2P2 + P1 we rather set a new prime number P3 = 2P2 + 
P1 → P3 + P1 = 2P2 + 2P1 = 2E. To convert an even 2E (E is also 
even) in sum of two primes, we start with its half E. Note that this 
equation cannot give a prime any time but rather gives equidistant 
primes after one or more operations. This equation can be used to 
convert an even in sum of two primes as follows.
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Let's take the number 180 as an example. Then we start with 90 
= 180/2 and 90/2 = 45. Let us take a prime P2 > 45 and < 90 such 
that the remainder r = 1. 

P2 = 47. Then 90 : 47 = 1 and r = 43 → P1 = 43 and P2 = 47. 
Therefore, P3 = 2 x 47 + 43 = 137. Therefore, P3 + P1 = 137 + 43 
= 180.
P2 = 59. Then 90 : 59 = 1 and r = 31. P3 = 2 x 59 + 31 = 149 and 
149 + 31 = 180.
P2 = 83. Then 90 : 83 = 1 and r = 7. P3 = 2 x 83 + 7 = 173 and 173 
+ 7 = 180. Therefore 173 and 7 are equidistant to 90.

The equation  2P2 + P1 gives the gap separating the two equidistant 
primes which the P2 value. In the case above of  P2 = 83. P1 = 7. 
P3 = 173. We have 83 separating 7 and 173 from 90. And in the 
latter P1 = 13 and  P3 = 2 x 77 + 13 = 167, we have 77 separating 
167 and 13 from 90. Another example 90 : 59 = 1 and r = 31. 
Therefore, P3 = 2 x 59 + 31 = 149 and thus 149 + 31 = 180. The 
primes 31 and 149 are both 59 away from 90, the P2 value.

These calculations will apply to any even number ≥ 8 to convert it 
to the sum of two prime numbers.

2G2. Calculation with 6x ± 1 equations using tables with numbers 
relatively larger in value 

Note that the rules explained here apply to any number. However, 
the direct calculation shown above is easier with relatively small 
numbers but with larger numbers, a table is essential to be able to 
proceed. Here are two examples of conversion of evens into the 
sum of two prime numbers.
As aforementioned, there are two types of even numbers 2n with 
even or odd n. We have seen examples of 2n with even n, here is 
one example of even with odd n and another 2n with even n is 
added.

1. Even 2n with odd n
Let's first take a small number to explain the rules of calculation.
The number 66 : 2 = 33 and thus E = 66 and E/2 = 33. This times 
E/2 is divided by evens and not by odds to get prime numbers. For 
instance 33 : 10 = 3 and r = 3. P1 = 10 x 2 + 3 = 23. P2 = 10 x 4 + 
3 = 43. P1 + P2 = 23 + 43 = 66. Or  33 : 20 = 1 and r = 13. Hence 
P1 = 13. P2 = 2 x 20 + 13 = 53. P1 + P2 = 13 + 53 = 66. 

Here is another example E = 206. E/2 = 103 → 103 : 16 = 6 and r 
= 7.  But P1 = 5 x 16 + 7 = 87 which is not prime. 

We see that we have to set the calculation so that we have one 
prime at first. 103 : 20 = 5 and r = 3. P1 = 4 x 20 + 3 = 83. P2 = 6 
x 20 + 3 = 123 which is not prime. 103 : 24 = 4 and r = 7. P1 = 3 x 
24 + 7 = 79. P2 = 5 x 24 + 7 = 127 →   P1 + P2 = 79 + 127 = 206.
Let's take now a larger number E = 2380106 = 2 x 1190053. We are 
going to apply the mod rule by dividing the number by any even 
number < E/2 such as 895020. We are going to convert E in sum 
of two primes P1 and P3 such that P1 < P3 using mod rules stated 
above with P3 = 2P1 + P2.  

Note that P3 + P1 = E if we divide E by a divisor < E/2; but P3 
+ P1 = 2E if we divide it by a divisor > E/2. This is always the 
case whether the divisor is even or odd. But the result is the same: 
either we start with 2E, find equidistant primes around E and then 
convert 2E. Otherwise, start with E, find out equidistant primes 
around E/2 and convert E. All depends on which divisor we choose 
in comparison to E/2. The two cases are detailed here with this 
example with a divisor < E/2 and the next one involving a divisor 
> E/2.

We have E = 2380106 and E/2 =  1190053. Let us take any even 
divisor such  895020.
Therefore, 1190053 : 895020 = 1 + r and r =  295033.  Hence P1 = 
(1 – 1) + r = 0 + 295033 = 295033.
 P3 = (1 + 1) x 895020 + 295033 = 2085073 + 295033 = 2085073. 
However P3 is not prime. We will have to apply the rule of 6x ± 1 
equations to find out two équidistant primes. A table is thus needed 
(table 14).
However there are two major rules already discussed above. 
1.	 Prime numbers or odd multiples of prime numbers that are not 

multiples of 3 are all written as 6x ± 1. So the first step is to 
determine whether an odd number is 6x + 1 or 6x – 1.

2.	 It should be noted that prime numbers or their multiples which 
have the same writing in equation 6x ± 1 follow each other by 
gaps of 6n. But the numbers 6x + 1 and 6x – 1 are separated by 
variable gaps having any possible value of 2n. It is therefore 
necessary to separate the numbers 6x – 1 from the 6x + 1 to 
facilitate the calculation. In table 14 only prime numbers that 
follow or precede the investigated numbers by 6n gaps are 
shown.

P1 = 295033; P3 = 2085073.
295033 + 2085073 = 2380106 : 2 = 1190053 but P3 = 2085073 is 
not prime.
The number 295033 = 6 x 49172 + 1 → 6x + 1.
The number 2085073 = 6 x 347512 + 1→ 6x + 1.

295033 + 6n 2085073  - 6n
295039 6 2085049 24
295081 48 2085037 36
295111 78 2085007 66
295123 90 2084989 84
295129 96 2084983 90

Table 14: Conversion of a larger even number = 2n with odd n into the sum of two prime numbers using the 6x ± 1 equation 
method. The calculated equidistant primes are highlighted.
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According to table 14 we have two equidistant primes relatively 
to E/2 = 1190053. Therefore, (295033 + 90) + (2085073 – 90) 
= 295123 + 2084983 = 2380106 : 2 = 1190053. Note that both 
295123 and 2084983 are both primes and therefore 2380106 = 2 x 
1190053 was converted in sum of two primes.

2. Even 2n with even n
Let convert 238 in sum of two primes.
E = 237 = 137438953472
E/2 = 137438953472 : 2 = 68719476736
Let choose any prime number > E/2, such 68719479749.
137438953472 : 68719479749 = 1 and the remainder r = 

68719473723 = P1.

Then we calculate P3 = 2 x 68719479749 + 68719473723  = 
206158433221 = 6 x 34359738870 + 1.

While 68719473723 is 3n = 3 x 22906491241. Because we cannot 
get 6x ± 1 equation with the latter we have to make a change: 
remove two units from P3 = 206158433221 (- 2) = 206158433219 
= 6 x 4359738869 + 5 (6x – 1).  Add them to P1 → P1 + (2) 
= 68719473723 + (2) = 68719473725 = 6 x 11453245620 + 5 
(6x – 1). Neither  206158433219 nor  68719473725 is prime. We 
therefore have to set a table (table 15).

68719473725 + 6n   206158433219  - 6n
68719473839 114 206158433213 6
68719473917 192 206158433189 30
 206158433177 42

206158433111 108
  206158433099  120

206158433083 138
206158433051 168
206158433027 192

Table 15: Conversion of a larger even number = 238 with even n into the sum of two prime numbers using the 6x ± 1 equation 
method.

Therefore (68719473725 + 192) + (206158433219 – 192) 
= 68719473917 + 206158433027 = 274877906944 = 238 

274877906944 : 2 = 137438953472 = 237.  

Note as said above if the initial divisor is > E/2 then we get 2E 
because the two additive primes are equidistant to E.

Both 68719473917 and 206158433027 are both equidistant primes 
and therefore 274877906944 = 2 x 237 was converted in sum of two 
primes.

3. Discussion
This article discusses the major rules that Goldbach's conjecture 
must obey because in mathematics everything obeys rules or 
theorems. However, with this conjecture one is forced to reason 
in terms of probabilities since the prime numbers are almost 
impossible to put into an equation. One sees that Goldbach's 
conjecture is very closely linked to the distribution of prime 
numbers but also to their progression, that is to say how a prime 
number produces the other one that follows it or the one that 
precedes it. First, this article shows that the conversion of an even 
number into the sum of two prime numbers obeys the equation 6x 
± 1. Then, it shows that two equidistant prime numbers obey a new 
modulo rule with respect to the gap that separates them from half 
of the even number. On the other hand, the article gives methods 
for identifying equidistant prime numbers or additive equidistant 
prime numbers that reconstitute an even number. Finally, the article 
also draws its originality by stating two major rules relating to the 
remainders of Euclidean divisions which allow us to understand 

the progression of prime numbers and thus know how one prime 
number leads to another.

Overall, the article clarifies some aspects of prime numbers such 
as the gaps between them and their progression. This article argues 
for the truth of the strong Goldbach conjecture as well as the weak 
one. Examples of calculations based on the stated rules are given, 
but despite all possible efforts, no counterexample could be found 
to reject these conjectures. They derive their truth from the very 
progression of natural numbers which produces an infinity of 
equidistant prime numbers producing in turn all the even numbers 
(two primes) and all the odd numbers (three primes). Biprimes 
are all products of two equidistant prime factors (excluding 2) 
which proves that all primes are equidistant and therefore their 
average will produce an even number. Suppose we take all the 
even numbers at infinity, and see all their partitions of sums, the 
article says that there would be at least one sum of two primes. 
If we follow the prime numbers, we realize that there is a perfect 
summetry from 0 to infinity and vice versa from infinity to 0.

A prime number is a solution to an equation or a problem that 
results from the progression of numbers; it represents the number 
that will bypass all the remainders of the Euclidean divisions of 
the numbers that follow or precede it. This is shown in the article 
with two major rules relating the primality of a number and the 
remainders of Euclidean divisions of the number from which it 
comes divided by all the prime factors that are less than it or those 
enumerated by the prime counting function of a number. Suppose 
a prime number p (or any other number), however giant it may be, 
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and consider all the prime numbers preceding it, which we call q, 
the Euclidean division of p by each q will produce a remainder. 
Since p will produce another larger prime number only by adding 
to 2n, this article suggests that there is always a value of n that will 
circumvent all the remainders of p : q according to the two major 
rules stated in this article, and gives a larger prime number called 
p'. This is also true in the opposite direction, i.e. starting from p' - 
2n = p. This is also true for any integer n ≥ 4 to which we subtract or 
add a certain quantity. Since the process is symmetric, it generates 
equidistant prime numbers at key positions, which explains 
Goldbach's conjecture. Therefore, the prime number is the one 
that makes the natural numbers progress to infinity because if the 
equation N + T or N - T (T < N, N and T two integers ≥ 4) does no 
longer produce prime numbers, this means that the numbers more 
graduated to infinity are only multiples of the preceding prime 
numbers, but this is not the case. Goldbach's conjecture means 
a continuous progression of integers and therefore a continuous 
production of natural numbers with newer prime factors.  It is true 
that for any integer n = a + b (a < n/2 and b > n/2) there exists a 
value x < n such that n = (a + x) + (b – x). This value x can be 
calculated by the mean (M) of n → M = (a + b)/2 and b – M = x. 
However, when n is any even noted E sum of two primes p and p', 
this means that p and p' are equidistant to E/2 such that p + p' = 2 x 
E/2 = E. And reciprocally E = p + p' only if p and p' are equidistant 
with respect to E/2 such that E/2 – p = p' – E/2.  This is also true 
for any even E = 2pq (p and q are any prime factors except 2) so 
that E/2 = p x q such that q > p. Because E/2 can be in the form of  
x2 – y2  and therefore E/2 = (M – z)(M + z) → E = 2 (M – z) (M + z). 

By resorting to deductive reasoning, one can argue that since all 
prime numbers are in advance equidistant with respect to any 
integer value, then it is logical to admit that their addition will give 
any possible even and therefore any even ≥ 4 is the sum of two 
primes because if p and p' are equidistant relatively to E/2 then 2 
x E/2 = p + p'. The results of this paper confirm that GSC is true. 
And because the weak one depends on the strong one, then both 
of them are true. 

With all the prime numbers known to date, the largest of which can 
have millions of digits, the results of this paper can be verified by 
calculation: take any even number, divide it by 2 and look for prime 
numbers equidistant to this fraction, you will see the conjectures 
are verified. However, a theorem that directly gives us the values 
of the two equidistant prime numbers is still missing. Hence the 
fact that these conjectures are always considered unproven. We 
can therefore say that for any integer there exists at least one pair 
of equidistant prime numbers that obey Mod's rule such that E/2 
mod t = P mod t = P' mod t (E is any even ≥ 8 and E/2 is any integer 
≥ 4).

The article published in 2019 by Guiasu contains the proof that 
every positive composite integer n strictly larger than 3, is located 
at the middle of the distance between two primes, which implicitly 
proves Goldbach’s Conjecture for 2n as well. However, the present 
article shows that every integer ≥ 4 (prime or compostite) is 
surrounded by equidistant primes indicating that the rule is true 

all the time. Furthermore, the present paper is designed differently 
by targeting the basic rules of calculation and from there deriving 
prerequisites for these conjectures to be true or verified. It also 
provides easy and reliable method to verify them by calculation. 

The best known equidistant primes are the twins but their density 
would seem not to be sufficient to reproduce all the even integers 
of the set N (not to mention odd ones). They only form the even 
which is the double of the even which is between them, for example 
17 + 19 = 36 = 2 x 18. Therefore, Goldbach's conjecture makes 
a prediction on prime numbers and imposes a certain equidistant 
distribution with respect to integers. If an even number E does not 
have at least one prime number > E/2 then the strong conjecture 
can no longer remain true in its initial version (2n = p1 + p2). 
However, it is indeed known that any interval [x-2x] x ≥ 2 contains 
at least one prime number but there must be two equidistant primes 
so that E can form by their addition. Till now,  the amount of 
prime numbers < n is π(n) ≈ n/ln(n) with n an integer and that 
means the prime numbers become very rare when n → +∞. This 
also means that evens  E → +∞ might not have that primer > E/2 
for the strong conjecture of Goldbach to be true. Nevertheless, 
the gap between E and E/2 is several times greater than ln(E) 
which represents the average gap with the nearby prime number 
(gap ≈ ln(n) with n being an integer). This means that between 
E and E/2 it is very likely that one or many prime numbers p > 
E/2 satisfies GSC. Mathematics seeks absolute theorems which 
are true at infinity and this is undoubtedly the real problem with 
Goldbach's conjectures: to what extent are they true? But what is 
paradoxical is what we call infinity is a relative notion because its 
limits recede as computers become more powerful. We can reason 
differently and say that these conjectures are true as long as we 
cannot demonstrate that they are false by finding an even number 
which does not have a prime number equidistant between E/2 and 
E. Each integer ≥ 4 has its own pattern of equidistant primes. and 
the larger is the number the more complex it is. 

On the other hand, this article proposes a method to convert an 
even or odd numbers in sums of primes numbers which is based on 
the equations M + 1 and M + 5 with M being a multiple of prime 
numbers except 2 and 3 or M is prime. This method shows that 
there are two types of prime numbers 6x - 1 and 6x + 1 and that 
there are three types of even numbers 6x, 6x + 2 and 6x + 4 (also 
previously reported by [6]. The method described here based upon 
M + 1 and M + 5 equations could be programmed in a computer 
and generate a new algorithm by converting even numbers into 
the sum of two or three prime numbers. Goldbach's conjectures 
touch on the foundations of arithmetic, namely the distribution 
of prime numbers with respect to integers. The truth of these 
conjectures depends on the presence of prime numbers equidistant 
from integers. An even number may have many equidistant prime 
numbers but their number may decrease to infinity or the gaps may 
increase but the result of the paper show that for any prime number 
there exist a equidistant one and therefore Goldbach's conjecture 
holds true to infinity. A counterexample cannot be found to 
contradict this rule.  
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The data of the present paper show a strong correlation between 
equidistant primes (by measuring their distance from E/2 or the 
gap between them) even though this seems to decrease as the 
number is larger, the linear correlation coefficient will be always 
stronger between close equidisant primes which proves that they 
are occurring in a regular fashion. This leans in favor of the 
truthfulness of Goldbach's strong conjetcure because if equidistant 
primes were not correlated and occur randomly then even numbers 
not satisfying this conjeture would be easier to find. Furthermore, 
this article gives for the first time new two rules to determine why 
a number N – T or N + T  (N ≥ 4) is not prime. These rules relate 
to the rest of the Euclidean divisions of the even E to be converted 
into sums of prime numbers with all the prime factors < E. These 
two rules apply especially for the prime factors < E/2 but beyond 
the Goldbach conjecture E = P1 + P2 itself becomes an Euclidean 
division with the remainder = P1, the divisor is P2 and the quotient 
denoted a = 1 → E = aP2 + P1. To express it more simply beyond 
E/2, the subtraction E - P2 (P2 > E/2) will give P1 which is prime 
or not. It is likely that other hidden rules also related to remainders 
would dictate if P1 resulting from such Euclidean divisions are 
prime or not. 

If we take an integer n and all prime numbers < n. Since [0-n/2] 
and [n/2-n] have the same length and the prime numbers 6x - 1 
and 6x + 1 swap after the same intervals of 6n, we can assume 
that a given position is either occupied by a prime number (P) or 
multiple of prime numbers (M). Calculating the probability will 
tell us that P or M have an equal chance of occupying this position 
either before or after n. For example a P < n/2 and another P' > 
n/2 may well occupy two equidistant positions, the probability is 
never zero neither negilgeable and therefore Goldbach's conjecture 
cannot be refuted, and therefore it can be that admitted as true. 
Even if we tend to infinity and we take at random an integer n, 
the largest that we can imagine, this rule of probability would not 
change and would not be zero. If this is not the case then formal 
mathematics are not unitary because this means that its rules are 
not the same when we tend to 0 and when we tend to infinity.

Undoubtedly the major factor in GSC is the fact that the same 
integer n ≥ 4 gives two prime numbers in a symmetrical way: n 
- t and n + t with t < n. The prime number equation, if there is 
one, must take this fact into consideration and generates the two 
equidistant prime numbers in a reciprocal way like an equation that 
has two or more solutions. For instance, if we have all the prime 
numbers present in [0-n] then at least two of them noted p and p' 
such that  p' > n/2 > p must be equidistant (n/2 – p = p' – n/2) so that 
the GSC be true. Therefore if one equation gives us these prime 
numbers of one integer n or π(n) and if none of them are equidistant 
then the conjecture is false in the strict sense of mathematics (one 

exception causes rejection of the rule). Nevertheless, when we 
perform calculations with the rules described here in this paper, we 
always find those equidistant primes in a same way and showing a 
strong linear correlation.

How to set the equation of prime numbers? This article shows 
that we must start with an integer, any integer, and then extract all 
possible prime numbers of it. For example, we can define intervals 
whose largest is [0-2n]. This equation must give symmetric solutions 
and equidistant prime numbers, otherwise it is inconsistent or 
Goldbach's conjectures are false. Goldbach's conjecture will weigh 
heavily in this equation of prime numbers. This would probably 
be the true indisputable formal mathematical demonstration of the 
strong Goldbach conjecture that has been awaited for centuries. 
Without it, and whatever the size of the number and the limit which 
verifies this conjecture, a shadow of doubt will always hover, and 
this conjecture will remain mathematically unproven and can only 
be verified by applying rules of calculation such as those stated in 
this article.
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