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Abstract
Existence of a pure imaginary mobility of charge carriers in organic polymers materials, precisely the poly 
p-phenylene vinylene is explored in this work. Indeed, we propose a new model of dynamic equation of particles 
able to carry electric charges, we introduce a control parameter of the adiabatic evolution combined with a 
phase difference between the external perturbation of the material and the position of carrier, leading from 
then on to the non-use of the complex mobility. This model after transformation allowed us to demonstrate the 
existence of negative capacitance at low and high frequencies in the poly p-phenylene vinylene. Also thanks to 
this new model, we were able to obtain results in line with the experimental ones, thus confirming the validity 
of our model.
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1. Introduction
Polymer light-emitting diodes and polymer light-emitting 
electro-chemical cells, are components that have become 
practically essential in the new miniaturized technologies that are 
experiencing a meteoric rise [1-8]. This is how organic polymers 
materials, specifically poly p-phenylene vinylene, are the subject 
of particular attention regarding studies by an impressive number 
of researchers following the discovery of the ability of these 
materials to emit intermittent light after an external disturbance 
[9]. To better understand the behaviour of these organic polymers, 
it is necessary to study their characteristics, including the electrical 
mobility of the charge carriers, which can be electrons, holes, and 
even both simultaneously although trap-free transport of holes 
provides a good description of many high-efficiency devices [10-
17]. for many of these materials, most of which are disordered, the 
charge carriers are trapped during their movement in the potential 
wells found in them, thus constituting a great hindrance to the 
mobility of the said charge carriers, thus giving them a complex 
character [18]. Generating more interest, several experimental 
works have been carried out on the poly p-phenylene vinylene 
and its derivatives, using as measurement techniques, the current 
voltage J(V) time of flight (TOF) space charged limited (SCL) and 
spectroscopic impedance[19-30]. In March 2001, MARTENS et 
al. in their experimental research on LED polymers, demonstrated 
the existence of a negative contribution of capacitance at low 
voltage in these materials [31.32,33]. However, it was only in 

2003 that a first theoretical study was carried out by KWOK on 
LED polymers, confirming the experimental results obtained in 
2001 by MARTENS on the capacitance; KWOK thus proposed a 
first theoretical equation model the development of which led to 
the experimental results [34]. In this model, it should be noted that 
one of the constituent parameters of the material, that is mobility, 
is considered to be a complex quantity, making it difficult to 
understand. Still based on this model, KWOK carried out several 
other works [35,36]. Although this model is a pioneer, the fact that 
the electrical mobility of charge carriers is complex and therefore 
somewhat nuanced, has opened up research into the existence of a 
more adequate model. Thus YOU-LIN WU et al in 2019 propose 
a modified KWOK model, they show that by introducing a phase 
difference between the electric field and the average position of 
the charge carrier and by considering the electric mobility this 
time real, one obtains better results compared to those of KWOK 
and compared to the experimental results obtained in 2001 by 
MARTENS et al [37].

Given the increasing importance of imaginary components and 
their applications, such as the imaginary resistor used by TABUE 
et al. to manufacture a parity time symmetry dimer, it is therefore 
appropriate to consider imaginary mobility, since the resistance 
and electrical mobility of a material are inversely proportional 
[38]. It is with this in mind that we propose a new model of 
the dynamics equation that allows us to rigorously obtain the 
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experimental results with a very low percentage of error.

2. Model and Calculations
Our model consists of an organic polymer of area A and thickness L, containing as carriers of charges holes and electrons.
By considering only, the holes as carriers of charges, and by creating a disturbance in the polymer by means of an external electric field 
E, the equation of the dynamics reflecting the displacement of the holes and which corresponds to the theory of Drude is given by [34]:

Where m is the mass of the charge carrier, q the coulomb charge, Ko the Hooke constant, x the average position of the particle and 	
           the imaginary electric mobility of the hole.

Since P = Nqx [37] with P the polarization vector and N the charge density, Eq. (1) becomes:
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the adiabatic evolution of the system τ increases the energy storage capacity of the given material. 
Between 0 and 50 rad/s, the capacitance remains constant and very close to 0 F, subsequently it varies in a 
positive and negative way before one again beginning its constant character.   
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storage capacity of the given material. Between 0 and 50 rad/s, the capacitance remains constant and very close to 0 F, subsequently 
it varies in a positive and negative way before one again beginning its constant character.

(rad/s) ω (rad/s) ω0 (m-3) N (rad) Φ (rad/s) τ (m2.V-1.S-1) μN
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We find that the capacitor made from polymer saturates at low 
frequencies, except for τ=0.65 rad/s where it saturates at high 
frequencies. values use to set the figures are contained in the 
previous tables to better highlight the negative character of the 
capacitance. higher the frequency of the external electric field is, 
greater the collisions between the charge carriers in the polymer 
and greater the effect of the potential wells that constitute traps 
for the movement of the particles, causing the movement of the 
charge carriers to be rather slow, so that the material will have a 
lower capacitance. τ is a function of the pulsation of the external 
disturbance which is the electric field here, indeed we can see 
that its value increases slowly with the pulsation of the field w. 
τ acts as a control parameter which can amplify or attenuate the 
frequency of charge carrier oscillation. There is an attenuation 
in our work.

The results we have obtained highlight the purely imaginary 
character of the electrical mobility of charge carriers in organic 
polymers, specifically poly p-phenylene vinylene. Indeed, 
starting from a new modified Paul Drude equation model 
proposed by us, translating the dynamics of holes in organic 
materials. Considering Eq. (2) and the values of the characteristic 
parameters of the organic polymer namely the charge density 
N=1021m-3, the mass m= 9.1×10-31kg, the thickness of the material 
L= 2×10-7m, the surface area A= 10-5 m2, the charge q= 1.6×10-

19c [34].

4. Conclusions
In this paper, we have proposed a new equation model of the 
dynamics of electric charge carriers, more precisely that of holes. 
This new model is different from the two previous ones proposed 
by Kwok and You-Lin Wu in terms of electric mobility. Indeed, 
we introduce for the very first time the concept of pure imaginary 
mobility, associated to a control parameter of the adiabatic 
evolution of the system and to the phase difference between the 
mean position of the particle and the external perturbation. We 
are strongly convinced of the added value of this model, because 
thanks to it we have obtained experimental results on the 
existence of negative capacitance in poly p-phenylene vinylene.
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