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Abstract
This research paper explores the application of advanced Natural Language Processing (NLP) techniques to enhance the 
realism and immersion of player-NPC interactions in Augmented Reality (AR) and Virtual Reality (VR) games. We propose novel 
approaches to improve existing NLP models, focusing on context-awareness, emotional intelligence, and real- time adaptation. 
Our findings suggest that these enhancements significantly improve the naturalness and depth of conversations with AI-driven 
NPCs, leading to more engaging and immersive gaming experiences in AR/VR environments.
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1. Introduction
The rapid advancement of Augmented Reality (AR) and Virtual 
Reality (VR) technologies has opened new frontiers in gaming, 
offering unprecedented levels of immersion and interactivity. 
However, one area that often breaks this immersion is the 
interaction with Non-Player Characters (NPCs). Traditional 
dialogue systems often feel rigid and unnatural, detracting from 
the overall experience. This research aims to bridge this gap by 
leveraging state-of-the-art Natural Language Processing (NLP) 
techniques to create more natural, context- aware, and emotionally 
intelligent conversations with AI- driven NPCs in AR/VR games.
Our approach introduces several key innovations in NPC 
interactions, as illustrated in Figure 1. By combining context- 
aware dialogue processing, emotional intelligence, and real- time 
adaptation, we create a comprehensive framework for natural 
language interaction in AR/VR environments. These capabilities 
enable NPCs to maintain coherent conversations while adapting 
to the player’s emotional state, communication style, and 
environmental context

2. Background
2.1 Current State of NPC Interactions in AR/VR Games
Current AR/VR games often rely on pre-scripted dialogues or 
simple rule-based systems for NPC interactions. While these 
methods can provide basic functionality, they often fail to capture 
the nuances of natural conversation, leading to a disconnect 
between the immersive visual experience and the interaction 
experience.

2.2 Advancements in NLP
Recent years have seen significant advancements in NLP, 
particularly with the development of large language models like 
Llama 3 and BERT. These models have demonstrated remarkable 
capabilities in understanding context, generating human-like text, 
and even exhibiting some degree of common- sense reasoning.

2.3 Challenges in Applying NLP to AR/VR Games
Despite these advancements, applying NLP to AR/VR games 
presents unique challenges:
• Real-time processing requirements
• Integration with game state and player actions
• Maintaining consistency across multiple interactions
• Adapting to individual player communication styles

3. Methodology
Our methodology for improving NPC interactions in AR/VR 
games focuses on three key areas: context-aware dialogue systems, 
emotional intelligence integration, and real- time adaptation. We 
propose a novel architecture that combines these elements to create 
more natural and engaging conversations with AI-driven NPCs.

3.1 Context-Aware Dialogue Systems
Our context-aware dialogue system leverages state-of-the- art 
natural language processing techniques to create more immersive 
and responsive NPC interactions. The system ar- chitecture 
consists of three primary components: the Game State Encoder, 
the Player History Encoder, and the Language Model Integration 
module.
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Figure 1: Demonstration of our advanced NLP framework for AR/VR game interactions. The system exhibits: (a) (first row left) 
Context-aware dialogue processing, leveraging real-time game state analysis (e.g., inventory tracking and quest status) to generate 
situationally relevant responses, demonstrated by the NPC’s contextual query: “I see you’re carrying a magic sword. Are you here about 
the dragon quest?”; (b) (first row right) Multi-agent conversation management, exemplified through a dynamic marketplace interaction 
where NPC1 observes “The market is busy today!”, followed by player inquiry “What’s the best price for healing potions?”, and NPC2’s 
responsive interjection “I have the best prices in town! Only 5 gold each.”; (c) (second row left) Emotional intelligence integration, 
utilizing our multimodal emotion recognition system to detect player affect and generate empathetic responses, as shown in “I understand 
you’re frustrated about failing the quest. Don’t worry, we can try a different approach.”; (d) (second row middle) Environmental context 
integration, incorporating temporal, spatial, and event-based information, demonstrated by the contextually aware response “The sunset 
is beautiful from this tower. And with the market festival below, the city feels so alive tonight. Would you like to hear about its history?”; 
and (e) (second row right) Real-time linguistic adaptation, exemplified by the system’s sociolinguistic adjustment “Based on your formal 
speaking style, I shall maintain appropriate decorum.” These capabilities collectively enhance player engagement through naturalistic, 
context-sensitive interactions.

1) Game State Encoder: The Game State Encoder is re- sponsible 
for processing and encoding the current game state into a compact, 
meaningful representation. This component utilizes a hybrid 
neural network architecture:
• Convolutional Neural Network (CNN): A ResNet- 50 
architecture, pre-trained on a large dataset of game screenshots 
and fine-tuned on our specific game environ- ments, processes 
visual information. This CNN extracts relevant features such as 
player location, nearby objects, and environmental conditions.
• Recurrent Neural Network (RNN): A bidirectional LSTM 
network processes sequential game data, including recent player 
actions, quest progress, and inventory changes. This RNN captures 
temporal dependencies and game progression.
• Fusion Layer: A self-attention mechanism combines the outputs 
of the CNN and RNN, creating a unified game state representation. 
This fusion allows the system to weigh the importance of visual 
and sequential information dynamically.
The Game State Encoder outputs a fixed-size vector (512 
dimensions in our implementation) that encapsulates the relevant 
game context.

2) Player History Encoder: The Player History Encoder maintains 
a comprehensive record of past player interactions and behaviors. 
This component employs a transformer-based architecture to 
capture long-term dependencies and patterns:
• Input Embedding: Player actions, dialogue choices, and game 

events are tokenized and embedded into a continuous vector space 
using a learned embedding layer.
• Transformer Encoder: A stack of 6 transformer encoder 
layers processes the embedded sequence. Each layer consists of 
multi-head self-attention mechanisms and feed- forward neural 
networks, as described in the original ”Attention Is All You Need” 
paper by Vaswani et al.
• Temporal Attention: A novel temporal attention mechanism is 
introduced to weigh the importance of historical events based on 
their recency and relevance to the current context.
The Player History Encoder produces a 768-dimensional vector 
representing the player’s historical context.

3) Language Model Integration: We integrate these context 
encodings with a large language model to generate contextually 
appropriate NPC responses:
• Base Model: We utilize a Llama-3B model as our foundation, 
fine-tuned on a curated dataset of game dialogues and narratives to 
align with the game’s tone and style.
• Context Injection: Game state and player history in- formation 
are incorporated through structured prompt engineering, using a 
learned prompt template that effectively conditions the model’s 
outputs. We implement a sliding context window of 2048 tokens 
to manage memory constraints while maintaining coherence.
• Response Generation: We use speculative sampling with a 
temperature of 0.7 and top-p of 0.9 to balance response diversity 
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and coherence.
• Consistency Checking: A separate BERT-based classifier, 
trained on a dataset of coherent and incoherent dialogue pairs, 
validates the generated response for consistency with the game’s 
lore and the NPC’s established personality.
To optimize performance, we implement a caching mechanism 
for frequent queries and context representations, significantly 
reducing response latency in common interaction scenarios.
This context-aware dialogue system enables NPCs to generate 
responses that are not only coherent and engaging but also deeply 
rooted in the current game state and the player’s individual history. 
The system’s ability to understand and incorporate complex 
contextual information results in more natural, immersive, and 
personalized NPC interactions, sub stantially enhancing the overall 
gaming experience in AR/VR environments.

3.2 Emotional Intelligence Integration
Our emotional intelligence integration system enhances NPC 
interactions by recognizing and responding to the player’s 
emotional state. This system comprises three main components: 
Multimodal Emotion Recognition, Emotion- Aware Response 
Generation, and Empathy Modeling.
1) Multimodal Emotion Recognition: The Multimodal Emotion 
Recognition module analyzes various input modal- ities to 
accurately assess the player’s emotional state:
• Text Sentiment Analysis: We employ a BERT-based classifier 
fine-tuned on the GoEmotions dataset, which categorizes text into 
27 emotion categories. The model achieves an F1 score of 0.78 on 
our game-specific test set.
• Voice Tone Analysis: A 1D Convolutional Neural Net- work 
(CNN) processes mel-spectrograms of the player’s voice input. 
The CNN architecture consists of 4 convolutional layers followed 
by 2 fully connected layers, trained on the RAVDESS dataset and 
fine-tuned on game-specific voice recordings.
• Facial Expression Analysis: For VR implementations, we use 
a 3D CNN based on the I3D architecture to analyze sequences of 
facial expressions captured by the VR headset’s internal cameras. 
This model is pre-trained on the FER-2013 dataset and fine-tuned 
on a custom dataset of VR users’ expressions.
• Physiological Data: When available, we incorporate data from 
wearable devices (e.g., heart rate variability, skin conductance) 
using a Long Short-Term Memory (LSTM) network to capture 
temporal patterns in physiological responses.
The outputs of these individual classifiers are combined using a 
weighted ensemble approach. We implement a lightweight fusion 
mechanism consisting of:
• Adaptive Weighting: A simple yet effective exponential 
moving average (EMA) updates modality weights based on their 
historical reliability scores. Text sentiment receives a higher base 
weight (0.4) due to its consistency, while physiological and facial 
expression signals are weighted dynamically (0.1-0.3) based on 
signal quality.
• Confidence Scoring: Each modality produces a confidence score 
alongside its prediction. Low-confidence predictions (below 0.3) 
are automatically down-weighted to prevent noise propagation.
• Temporal Smoothing: A sliding window of 500ms aggregates 

predictions to reduce jitter while maintaining responsiveness. This 
balances stability and latency requirements.

This fusion approach produces a compact 64-dimensional emotion 
embedding, sufficient for capturing key affective states while 
maintaining real-time performance (average pro- cessing time: 
42ms).

2) Emotion-Aware Response Generation: The Emotion- Aware 
Response Generation module incorporates the recognized 
emotional state into the NPC’s dialogue generation process:
• Emotion Embedding: The 64-dimensional emotion embedding 
is incorporated into the dialogue generation through structured 
prompt engineering, similar to the context injection process in the 
Context-Aware Dialogue System.
• Emotional Priming: We introduce emotion-specific to- kens at 
the beginning of the input sequence to guide the language model’s 
generation process. These tokens are learned embeddings that 
correspond to eight primary emotions: joy, sadness, anger, fear, 
surprise, disgust, trust, and anticipation.
• Adaptive Sampling: We implement an adaptive nucleus 
sampling technique where the sampling temperature is adjusted 
based on the detected emotional intensity. This allows for more 
varied responses in high-intensity emotional situations while 
maintaining consistency in neutral contexts.
• Emotion Trajectory Modeling: A Temporal Convolutional 
Network (TCN) models the emotional trajectory of the 
conversation, allowing the system to generate responses that guide 
the emotional arc of the interaction towards desired states (e.g., 
resolving conflicts, building trust).

3) Empathy Modeling: The Empathy Modeling component 
enables NPCs to generate emotionally appropriate and sup- portive 
responses:
• Empathy Dataset: We used the Empathetic Dialogues dataset, 
which comprises 24,850 human-human conversations annotated 
for empathetic responses, covering a wide range of emotional 
scenarios relevant to our game contexts.
• Empathy Classifier: A RoBERTa-based classifier is trained 
on this dataset to identify and categorize empathetic responses 
into five types: emotional reaction, interpretation, exploration, 
validation, and suggestion.
• Empathy Generation: We fine-tune a separate Llama-3B model 
on our empathy dataset, specializing in generating empathetic 
responses. This model is used in conjunction with the main 
dialogue model to enhance emotional support in critical scenarios.
• Context-Dependent Empathy: A reinforcement learning 
approach is employed to learn when and how to apply empathetic 
responses based on the game context, player history, and current 
emotional state.

4) Integration and Optimization: To ensure real-time performance 
in AR/VR environments, we implement several optimization 
strategies:
• Emotion Caching: We cache recent emotion embeddings and 
use exponential moving averages to smooth out rapid fluctuations, 
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reducing computational load.
• Hierarchical Processing: Emotion recognition operates on a 
faster tick rate (100ms) compared to the full dialogue generation 
system (500ms), allowing for real-time emotional adaptations 
without overburdening the system.
• Adaptive Computation: In high-load scenarios, the system can 
dynamically adjust the complexity of its emotional processing, 
ensuring consistent performance across various hardware 
configurations.

This emotional intelligence integration system enables NPCs 
to recognize and respond to players’ emotional states with 
unprecedented nuance and accuracy. By incorporating multimodal 
emotion recognition, emotion-aware response generation, and 
sophisticated empathy modeling, we create deeply engaging and 
emotionally resonant character interactions. This technology 
significantly enhances the player’s sense of connection with virtual 
characters, contributing to a more immersive and emotionally 
satisfying gaming experience in AR/VR environments.

3.3 Real-Time Adaptation
Our Real-Time Adaptation system enables NPCs to dynamically 
adjust their behavior and dialogue patterns to individual player 
communication styles and preferences. This system employs 
advanced machine learning techniques to create a responsive and 
personalized gaming experience. The core components of this 
system include the Action Space Definition, State Representation, 
Reward Function Design, and Learning Algorithm Implementation.

1) Action Space Definition: The action space for our Real- Time 
Adaptation system is defined as a combination of high level 
dialogue acts and low-level language generation parameters:
• Dialogue Acts: We define a set of 12 high-level dialogue acts 
based on the Dialogue Act Markup in Several Layers (DAMSL) 
framework, including Inform, Query, Suggest, Agree, Disagree, 
Acknowledge, Clarify, Express Opinion, Offer, Promise, Request, 
and Social Obligation.
• Language Generation Parameters: These include:
– Response length (short, medium, long)
– Formality level (casual, neutral, formal)
– Complexity (simple, moderate, complex)
– Sentiment (positive, neutral, negative)
  – Use of figurative language (literal, moderate, highly figurative)
• Continuous Action Space: To handle the large com- binatorial 
space of actions, we employ a continuous action space 
representation. Each action is encoded as a 64-dimensional vector 
using a Variational Autoencoder (VAE) trained on a large corpus 
of annotated dialogues.

2) State Representation: The state space is designed to capture 
relevant information about the current interaction context and 
player behavior:
• Context Embedding: A 1028-dimensional vector repre- senting 
the current game state and conversation history, generated by the 
Context-Aware Dialogue System.
• Player Emotion: The 64-dimensional emotion embed- ding 

from the Emotional Intelligence Integration system.
• Player Style Embedding: A 128-dimensional vector representing 
the player’s communication style, updated using exponential 
moving averages of linguistic features extracted from player 
inputs.
• NPC Goal: A 32-dimensional embedding representing the 
NPC’s current conversational goal (e.g., provide in- formation, 
build rapport, advance plot).
The complete state is represented as a 1252-dimensional vector, 
concatenating all the above components.

3) Reward Function Design: Our approach implements a 
comprehensive multi-objective reward function that evaluates 
various aspects of interaction quality. The reward function 
combines six key components, each capturing different dimen- 
sions of the NPC-player interaction: 

where wi are learned weights and Ri represents individual reward 
components defined as follows:

1) Conversation Length:

where target turns is dynamically adjusted based on conversation 
context.

2) Player Engagement:

with lresponse as player response length, lavg as average
response length, and α as a tunable parameter.

3) Semantic Coherence:

measuring cosine similarity between response and con- text 
embeddings.

4) Emotional Alignment:

where DKL represents Kullback-Leibler divergence be- tween 
target and achieved emotional states.

5) Goal Progress:
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model on our empathy dataset, specializing in generating
empathetic responses. This model is used in conjunction
with the main dialogue model to enhance emotional
support in critical scenarios.

• Context-Dependent Empathy: A reinforcement learning
approach is employed to learn when and how to apply
empathetic responses based on the game context, player
history, and current emotional state.

4) Integration and Optimization: To ensure real-time per-
formance in AR/VR environments, we implement several
optimization strategies:

• Emotion Caching: We cache recent emotion embeddings
and use exponential moving averages to smooth out rapid
fluctuations, reducing computational load.

• Hierarchical Processing: Emotion recognition operates
on a faster tick rate (100ms) compared to the full dia-
logue generation system (500ms), allowing for real-time
emotional adaptations without overburdening the system.

• Adaptive Computation: In high-load scenarios, the sys-
tem can dynamically adjust the complexity of its emo-
tional processing, ensuring consistent performance across
various hardware configurations.

This emotional intelligence integration system enables
NPCs to recognize and respond to players’ emotional states
with unprecedented nuance and accuracy. By incorporating
multimodal emotion recognition, emotion-aware response gen-
eration, and sophisticated empathy modeling, we create deeply
engaging and emotionally resonant character interactions.
This technology significantly enhances the player’s sense of
connection with virtual characters, contributing to a more
immersive and emotionally satisfying gaming experience in
AR/VR environments.

C. Real-Time Adaptation

Our Real-Time Adaptation system enables NPCs to dy-
namically adjust their behavior and dialogue patterns to in-
dividual player communication styles and preferences. This
system employs advanced machine learning techniques to
create a responsive and personalized gaming experience. The
core components of this system include the Action Space
Definition, State Representation, Reward Function Design, and
Learning Algorithm Implementation.

1) Action Space Definition: The action space for our Real-
Time Adaptation system is defined as a combination of high-
level dialogue acts and low-level language generation param-
eters:

• Dialogue Acts: We define a set of 12 high-level dialogue
acts based on the Dialogue Act Markup in Several Layers
(DAMSL) framework, including Inform, Query, Suggest,
Agree, Disagree, Acknowledge, Clarify, Express Opinion,
Offer, Promise, Request, and Social Obligation.

• Language Generation Parameters: These include:
– Response length (short, medium, long)
– Formality level (casual, neutral, formal)
– Complexity (simple, moderate, complex)
– Sentiment (positive, neutral, negative)

– Use of figurative language (literal, moderate, highly
figurative)

• Continuous Action Space: To handle the large com-
binatorial space of actions, we employ a continuous
action space representation. Each action is encoded as
a 64-dimensional vector using a Variational Autoencoder
(VAE) trained on a large corpus of annotated dialogues.

2) State Representation: The state space is designed to
capture relevant information about the current interaction
context and player behavior:

• Context Embedding: A 1028-dimensional vector repre-
senting the current game state and conversation history,
generated by the Context-Aware Dialogue System.

• Player Emotion: The 64-dimensional emotion embed-
ding from the Emotional Intelligence Integration system.

• Player Style Embedding: A 128-dimensional vector
representing the player’s communication style, updated
using exponential moving averages of linguistic features
extracted from player inputs.

• NPC Goal: A 32-dimensional embedding representing
the NPC’s current conversational goal (e.g., provide in-
formation, build rapport, advance plot).

The complete state is represented as a 1252-dimensional
vector, concatenating all the above components.

3) Reward Function Design: Our approach implements a
comprehensive multi-objective reward function that evaluates
various aspects of interaction quality. The reward function
combines six key components, each capturing different dimen-
sions of the NPC-player interaction:

R =
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5) Goal Progress:

Rgoal = fclassifier(dialogue state) (6)

evaluated using a pre-trained classifier on annotated
dialogues.

6) Player Feedback:

Rfeedback = g(player actions) (7)

derived from implicit signals in player game actions.
The weights wi in Equation 1 are optimized during training

to balance the relative importance of each component. This
multi-objective approach ensures that the NPC behavior is
optimized for both immediate interaction quality and long-
term conversation goals.

4) Learning Algorithm Implementation: We implement a
simplified reinforcement learning approach using a combina-
tion of supervised learning and lightweight policy adaptation:

• Base Policy: Instead of training a separate policy net-
work, we utilize our fine-tuned Llama 3B model as the
base policy, with response generation guided by reward-
weighted prompt engineering.

• Reward Estimation: A lightweight MLP classifier (3
layers, 256-128-64 neurons) estimates immediate rewards
based on:

– Player engagement signals (response time, message
length)

– Dialogue coherence scores
– Task completion metrics

• Adaptation Strategy: We employ a simple yet effective
approach:

– Maintain a buffer of successful dialogue patterns
– Update prompt templates based on high-reward in-

teractions
– Use exponential moving average (α = 0.1) for stable

adaptation
• Progressive Learning: Training follows a structured

curriculum:
– Stage 1: Basic dialogue patterns
– Stage 2: Context-aware responses
– Stage 3: Multi-turn conversations

This simplified approach achieves comparable performance
while maintaining an average response time less than 300ms
on consumer hardware.

5) Real-Time Optimization and Deployment: To meet the
real-time requirements of AR/VR games, we implement sev-
eral optimization techniques:

• Asynchronous Learning: The policy is updated asyn-
chronously in a separate thread, allowing for continuous
learning without impacting gameplay.

• Hierarchical Decision Making: High-level decisions
(dialogue acts) are made at a lower frequency (every 5
seconds) than low-level decisions (language generation
parameters), reducing computational load.

• Caching and Precomputation: Frequently used state-
action pairs are cached, and potential responses are pre-
computed during idle CPU cycles.

• Dynamic Computation Graphs: We use PyTorch’s dy-
namic computation graphs to optimize memory usage and
computation based on the current interaction complexity.

• Distributed Inference: For complex scenes with multiple
NPCs, inference is distributed across available GPU cores
to maintain real-time performance.

This Real-Time Adaptation system enables NPCs to contin-
uously learn and adapt their communication strategies based
on individual player interactions. By leveraging advanced
reinforcement learning techniques and efficient optimization
strategies, we create highly responsive and personalized NPC
behaviors. This technology significantly enhances the depth
and realism of character interactions, contributing to a more
engaging and immersive gaming experience in AR/VR envi-
ronments.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of our proposed NLP system
for AR/VR game interactions, we designed a comprehensive
experimental setup. This setup aims to assess the system’s
performance in terms of naturalness, engagement, and overall
player experience.

A. Test Environment

We developed a prototype AR/VR game environment called
”EchoRealm” using the Unity game engine. EchoRealm is
a fantasy role-playing game that supports both AR and VR
modes, allowing us to test our NLP system in both contexts.

1) Hardware: For VR testing, we used the Oculus Quest 2
headset, which provides high-resolution displays and accurate
hand tracking. For AR testing, we employed the Microsoft
HoloLens 2, which offers a wide field of view and advanced
spatial mapping capabilities.

2) Game Scenarios: We designed three distinct game sce-
narios to test different aspects of NPC interactions:

• Village Market: A bustling marketplace with multiple
NPCs, testing the system’s ability to handle multi-party
conversations and context switching.

• Quest Giver: A one-on-one interaction with a quest-
giving NPC, evaluating the system’s capacity for narrative
coherence and goal-oriented dialogue.

• Emotional Companion: An NPC designed to engage in
emotional conversations, testing the system’s emotional
intelligence and empathy modeling.

B. Baseline Systems

We implemented two baseline systems for comparison:

• Rule-based System: A traditional dialogue tree system
with pre-written responses.

• Basic Neural Network: A sequence-to-sequence model
trained on a dataset of game dialogues, without context
awareness or emotional intelligence.
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evaluated using a pre-trained classifier on annotated dialogues.

6) Player Feedback:

derived from implicit signals in player game actions.
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we utilize our fine-tuned Llama 3B model as the base policy, 
with response generation guided by reward- weighted prompt 
engineering.
• Reward Estimation: A lightweight MLP classifier (3 layers, 
256-128-64 neurons) estimates immediate rewards based on:
– Player engagement signals (response time, message length)
– Dialogue coherence scores
– Task completion metrics
• Adaptation Strategy: We employ a simple yet effective 
approach:
– Maintain a buffer of successful dialogue patterns
– Update prompt templates based on high-reward interactions
– Use exponential moving average (α = 0.1) for stable adaptation
• Progressive Learning: Training follows a structured curriculum:
– Stage 1: Basic dialogue patterns
– Stage 2: Context-aware responses
– Stage 3: Multi-turn conversations
This simplified approach achieves comparable performance 
while maintaining an average response time less than 300ms on 
consumer hardware.

5) Real-Time Optimization and Deployment: To meet the real-
time requirements of AR/VR games, we implement several 
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in a separate thread, allowing for continuous learning without 
impacting gameplay.
• Hierarchical Decision Making: High-level decisions (dialogue 
acts) are made at a lower frequency (every 5 seconds) than low-
level decisions (language generation parameters), reducing 
computational load.
• Caching and Precomputation: Frequently used state- action 
pairs are cached, and potential responses are pre- computed during 
idle CPU cycles.
• Dynamic Computation Graphs: We use PyTorch’s dynamic 
computation graphs to optimize memory usage and computation 
based on the current interaction complexity.
• Distributed Inference: For complex scenes with multiple NPCs, 

inference is distributed across available GPU cores to maintain 
real-time performance.

This Real-Time Adaptation system enables NPCs to continuously 
learn and adapt their communication strategies based on individual 
player interactions. By leveraging advanced reinforcement 
learning techniques and efficient optimization strategies, we 
create highly responsive and personalized NPC behaviors. 
This technology significantly enhances the depth and realism 
of character interactions, contributing to a more engaging and 
immersive gaming experience in AR/VR environments.
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To evaluate the effectiveness of our proposed NLP system for AR/
VR game interactions, we designed a comprehensive experimental 
setup. This setup aims to assess the system’s performance in terms 
of naturalness, engagement, and overall player experience.

A. Test Environment
We developed a prototype AR/VR game environment called 
”EchoRealm” using the Unity game engine. EchoRealm is a 
fantasy role-playing game that supports both AR and VR modes, 
allowing us to test our NLP system in both contexts.
1) Hardware: For VR testing, we used the Oculus Quest 2 headset, 
which provides high-resolution displays and accurate hand 
tracking. For AR testing, we employed the Microsoft HoloLens 
2, which offers a wide field of view and advanced spatial mapping 
capabilities.
2) Game Scenarios: We designed three distinct game scenarios to 
test different aspects of NPC interactions:
• Village Market: A bustling marketplace with multiple NPCs, 
testing the system’s ability to handle multi-party conversations and 
context switching.
• Quest Giver: A one-on-one interaction with a quest- giving 
NPC, evaluating the system’s capacity for narrative coherence and 
goal-oriented dialogue.
• Emotional Companion: An NPC designed to engage in emotional 
conversations, testing the system’s emotional intelligence and 
empathy modeling.

B. Baseline Systems
We implemented two baseline systems for comparison:
• Rule-based System: A traditional dialogue tree system with pre-
written responses.
• Basic Neural Network: A sequence-to-sequence model trained 
on a dataset of game dialogues, without context awareness or 
emotional intelligence.

C. Participants
We recruited 60 participants (30 for AR and 30 for VR) with 
varying levels of gaming experience. The participants were 
divided into three groups:
• Group A: Interacted with the rule-based system
• Group B: Interacted with the basic neural network system
• Group C: Interacted with our proposed NLP system
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D. Evaluation Metrics
We employed both quantitative and qualitative metrics to evaluate 
the performance of our system:
1) Quantitative Metrics:
• Response Relevance: Measured using cosine similarity between 
the player’s input and the NPC’s response em- beddings.
• Conversation Length: Average number of turns in a player-NPC 
interaction.
• Response Time: Time taken by the system to generate a response.
• Perplexity: A measure of how well the language model predicts 
the next word in a sequence.

2) Qualitative Metrics: We used a 7-point Likert scale for the 
following subjective measures:
• Naturalness: How natural and human-like the NPC re- sponses 
felt.
• Coherence: How well the NPC maintained context throughout 
the conversation.
• Emotional Intelligence: How well the NPC recognized and 
responded to the player’s emotional state.
• Engagement: How engaging and interesting the conver- sation 
was.

• Immersion: How much the NPC interaction contributed to the 
overall sense of presence in the AR/VR environment.

E. Experimental Procedure
1) Participants were given a brief tutorial on the AR/VR controls 
and game objectives.
2) Each participant played through all three game scenar- ios, 
interacting with NPCs for approximately 15 minutes per scenario.
3) After each scenario, participants completed a question- naire 
assessing the qualitative metrics.
4) Participants were then interviewed to gather more de- tailed 
feedback on their experience.
5) The entire play session was recorded for later analysis of player 
behavior and system performance.

F. Data Collection and Analysis
We collected the following data during the experiments:
• Logs of all player-NPC conversations
• System performance metrics (response times, memory usage, 
etc.)
• Questionnaire responses and interview transcripts
• Video recordings of play sessions
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Fig. 2. Distribution of cosine similarity scores between player inputs and
NPC responses for the proposed system, basic neural network, and rule-based
system.

TABLE I
SUMMARY OF QUANTITATIVE RESULTS AS MEAN (STANDARD

DEVIATION)

Metric Rule-based Basic NN Proposed
Cosine Similarity 0.58 (0.17) 0.65 (0.14) 0.82 (0.09)
Conversation Length 5.4 (1.9) 7.8 (2.5) 12.3 (3.2)
Response Time (ms) 95 (12) 203 (31) 287 (42)
Perplexity - 18.7 (3.4) 12.3 (2.1)

Data analysis was performed using a combination of statis-
tical methods and machine learning techniques:

• ANOVA tests to compare the performance of the three
systems across different metrics

• Natural Language Processing techniques to analyze con-
versation logs and interview transcripts

• Machine Learning models to identify patterns in player
behavior and system responses

V. RESULTS AND DISCUSSION

Our experimental results demonstrate significant improve-
ments in NPC interactions using our proposed NLP system
compared to the baseline systems. We present our findings
across multiple dimensions and discuss their implications for
immersive AR/VR gaming experiences.

A. Quantitative Results

1) Response Relevance: Our context-aware dialogue sys-
tem showed a marked improvement in response relevance
compared to the baselines. Figure 2 illustrates the distribution
of cosine similarity scores between player inputs and NPC
responses across the three systems.

The proposed system achieved a mean cosine similarity of
0.82 (SD = 0.09), compared to 0.65 (SD = 0.14) for the basic
neural network and 0.58 (SD = 0.17) for the rule-based system.
An ANOVA test confirmed these differences were statistically
significant (F(2, 297) = 89.32, p < 0.001).

2) Conversation Length: Players engaged in longer conver-
sations with NPCs using our proposed system. The average
conversation length was 12.3 turns (SD = 3.2) for our sys-
tem, compared to 7.8 turns (SD = 2.5) for the basic neural
network and 5.4 turns (SD = 1.9) for the rule-based system.

Figure 2: Distribution of cosine similarity scores between player inputs and NPC responses for the proposed system, basic neural 
network, and rule-based system
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Fig. 2. Distribution of cosine similarity scores between player inputs and
NPC responses for the proposed system, basic neural network, and rule-based
system.

TABLE I
SUMMARY OF QUANTITATIVE RESULTS AS MEAN (STANDARD

DEVIATION)

Metric Rule-based Basic NN Proposed
Cosine Similarity 0.58 (0.17) 0.65 (0.14) 0.82 (0.09)
Conversation Length 5.4 (1.9) 7.8 (2.5) 12.3 (3.2)
Response Time (ms) 95 (12) 203 (31) 287 (42)
Perplexity - 18.7 (3.4) 12.3 (2.1)

Data analysis was performed using a combination of statis-
tical methods and machine learning techniques:

• ANOVA tests to compare the performance of the three
systems across different metrics

• Natural Language Processing techniques to analyze con-
versation logs and interview transcripts

• Machine Learning models to identify patterns in player
behavior and system responses

V. RESULTS AND DISCUSSION

Our experimental results demonstrate significant improve-
ments in NPC interactions using our proposed NLP system
compared to the baseline systems. We present our findings
across multiple dimensions and discuss their implications for
immersive AR/VR gaming experiences.

A. Quantitative Results

1) Response Relevance: Our context-aware dialogue sys-
tem showed a marked improvement in response relevance
compared to the baselines. Figure 2 illustrates the distribution
of cosine similarity scores between player inputs and NPC
responses across the three systems.

The proposed system achieved a mean cosine similarity of
0.82 (SD = 0.09), compared to 0.65 (SD = 0.14) for the basic
neural network and 0.58 (SD = 0.17) for the rule-based system.
An ANOVA test confirmed these differences were statistically
significant (F(2, 297) = 89.32, p < 0.001).

2) Conversation Length: Players engaged in longer conver-
sations with NPCs using our proposed system. The average
conversation length was 12.3 turns (SD = 3.2) for our sys-
tem, compared to 7.8 turns (SD = 2.5) for the basic neural
network and 5.4 turns (SD = 1.9) for the rule-based system.

Table 1:  Summary of Quantitative Results as Mean (Standard Deviation)

Data analysis was performed using a combination of statistical 
methods and machine learning techniques:
• ANOVA tests to compare the performance of the three systems 
across different metrics
• Natural Language Processing techniques to analyze conversation 
logs and interview transcripts
• Machine Learning models to identify patterns in player behavior 
and system responses

5. Results and Discussion
Our experimental results demonstrate significant improvements 

in NPC interactions using our proposed NLP system compared 
to the baseline systems. We present our findings across multiple 
dimensions and discuss their implications for immersive AR/VR 
gaming experiences.

5.1 Quantitative Results
1) Response Relevance: Our context-aware dialogue system 
showed a marked improvement in response relevance compared 
to the baselines. Figure 2 illustrates the distribution of cosine 
similarity scores between player inputs and NPC responses across 
the three systems.
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The proposed system achieved a mean cosine similarity of 0.82 (SD 
= 0.09), compared to 0.65 (SD = 0.14) for the basic neural network 
and 0.58 (SD = 0.17) for the rule-based system. An ANOVA test 
confirmed these differences were statistically significant (F(2, 297) 
= 89.32, p < 0.001).

2) Conversation Length: Players engaged in longer conver- sations 
with NPCs using our proposed system. The average conversation 
length was 12.3 turns (SD = 3.2) for our sys- tem, compared to 7.8 
turns (SD = 2.5) for the basic neural network and 5.4 turns (SD = 
1.9) for the rule-based system.
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TABLE II
SUMMARY OF QUALITATIVE RESULTS AS MEAN (STANDARD DEVIATION)

Metric Rule-based Basic NN Proposed
Naturalness 3.1 (1.1) 4.2 (0.9) 5.8 (0.7)
Coherence 3.5 (1.0) 4.0 (0.8) 5.9 (0.6)
Emotional Intelligence 2.5 (0.9) 3.3 (1.1) 5.7 (0.8)
Engagement 3.7 (1.2) 4.5 (0.9) 6.1 (0.7)
Immersion 3.3 (1.1) 4.1 (1.0) 5.9 (0.8)

This increase in conversation length suggests higher player
engagement and more natural dialogue flow.

3) Response Time: Despite the increased complexity of
our system, we maintained acceptable response times. The
mean response time was 287ms (SD = 42ms) for our system,
compared to 203ms (SD = 31ms) for the basic neural network
and 95ms (SD = 12ms) for the rule-based system. While our
system was slower, it remained within the 300ms threshold
generally considered acceptable for real-time interactions.

4) Perplexity: Our system demonstrated lower perplexity
scores, indicating better predictive performance. The mean
perplexity was 12.3 (SD = 2.1) for our system, compared to
18.7 (SD = 3.4) for the basic neural network. This suggests
that our context-aware model is better at predicting appropriate
responses in the game environment.

B. Qualitative Results

Figure 3 presents a chart comparing the mean scores for
each qualitative metric across the three systems.
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Fig. 3. Comparison of qualitative metrics across different systems.

1) Naturalness (NAT): Participants rated our system sig-
nificantly higher in terms of naturalness (M = 5.8, SD = 0.7)
compared to the basic neural network (M = 4.2, SD = 0.9) and
rule-based system (M = 3.1, SD = 1.1). Participants frequently
commented on the human-like quality of the NPC responses,
with one noting, ”It felt like I was talking to a real person,
not a computer.”

2) Coherence (COH): Our context-aware system demon-
strated superior coherence (M = 5.9, SD = 0.6) compared to
the baselines (Basic NN: M = 4.0, SD = 0.8; Rule-based: M
= 3.5, SD = 1.0). Participants appreciated the NPCs’ ability
to maintain context across long conversations and refer back
to previously discussed topics.

TABLE III
PERFORMANCE ANALYSIS OF DIFFERENT NPC INTERACTION SCENARIOS

Scenario Key Results
Village Market • 43% higher coherence vs baseline

• Successful multi-NPC interactions
Quest Giver • 37% higher engagement vs baseline

• Improved quest information delivery
Emotional • 52% higher empathy perception
Companion • Strong emotional response matching

3) Emotional Intelligence (EI): The emotional intelligence
integration in our system received high praise from participants
(M = 5.7, SD = 0.8), significantly outperforming the basic
neural network (M = 3.3, SD = 1.1) and rule-based system
(M = 2.5, SD = 0.9). Participants reported feeling a stronger
emotional connection with the NPCs, enhancing their overall
immersion in the game world.

4) Engagement (ENG): Our system achieved higher en-
gagement scores (M = 6.1, SD = 0.7) compared to the
baselines (Basic NN: M = 4.5, SD = 0.9; Rule-based: M =
3.7, SD = 1.2). Participants reported being more invested in the
conversations and eager to explore different dialogue options.

5) Immersion (IMM): The proposed system significantly
enhanced the sense of immersion (M = 5.9, SD = 0.8)
compared to the basic neural network (M = 4.1, SD = 1.0)
and rule-based system (M = 3.3, SD = 1.1). Many participants
noted that the improved NPC interactions made the virtual
world feel more alive and believable.

C. Scenario-Specific Performance

Our system shows superior scenario-specific performance
compared to baselines, as shown in Table III:

1) Village Market Scenario: In the multi-party conversation
setting of the Village Market, our system excelled in managing
context switches between different NPCs. Participants reported
feeling like they were part of a living, breathing marketplace.
The system achieved a 43% improvement in coherence scores
compared to the basic neural network in this scenario.

2) Quest Giver Scenario: For the Quest Giver scenario,
our system demonstrated superior narrative coherence and
goal-oriented dialogue. Participants were able to obtain more
detailed quest information and negotiate quest parameters,
leading to a 37% increase in engagement scores compared
to the rule-based system.

3) Emotional Companion Scenario: The Emotional Com-
panion scenario showcased the strengths of our emotional
intelligence integration. Participants reported a 52% increase
in perceived empathy compared to the basic neural network.
One participant remarked, ”I was amazed at how well the NPC
picked up on my mood and responded appropriately.”

D. AR vs. VR Performance

While both AR and VR implementations of our system
showed significant improvements over the baselines, we ob-
served some differences between the two modalities, as shown
in Table IV:
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TABLE II
SUMMARY OF QUALITATIVE RESULTS AS MEAN (STANDARD DEVIATION)

Metric Rule-based Basic NN Proposed
Naturalness 3.1 (1.1) 4.2 (0.9) 5.8 (0.7)
Coherence 3.5 (1.0) 4.0 (0.8) 5.9 (0.6)
Emotional Intelligence 2.5 (0.9) 3.3 (1.1) 5.7 (0.8)
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This increase in conversation length suggests higher player
engagement and more natural dialogue flow.

3) Response Time: Despite the increased complexity of
our system, we maintained acceptable response times. The
mean response time was 287ms (SD = 42ms) for our system,
compared to 203ms (SD = 31ms) for the basic neural network
and 95ms (SD = 12ms) for the rule-based system. While our
system was slower, it remained within the 300ms threshold
generally considered acceptable for real-time interactions.

4) Perplexity: Our system demonstrated lower perplexity
scores, indicating better predictive performance. The mean
perplexity was 12.3 (SD = 2.1) for our system, compared to
18.7 (SD = 3.4) for the basic neural network. This suggests
that our context-aware model is better at predicting appropriate
responses in the game environment.

B. Qualitative Results

Figure 3 presents a chart comparing the mean scores for
each qualitative metric across the three systems.
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1) Naturalness (NAT): Participants rated our system sig-
nificantly higher in terms of naturalness (M = 5.8, SD = 0.7)
compared to the basic neural network (M = 4.2, SD = 0.9) and
rule-based system (M = 3.1, SD = 1.1). Participants frequently
commented on the human-like quality of the NPC responses,
with one noting, ”It felt like I was talking to a real person,
not a computer.”

2) Coherence (COH): Our context-aware system demon-
strated superior coherence (M = 5.9, SD = 0.6) compared to
the baselines (Basic NN: M = 4.0, SD = 0.8; Rule-based: M
= 3.5, SD = 1.0). Participants appreciated the NPCs’ ability
to maintain context across long conversations and refer back
to previously discussed topics.

TABLE III
PERFORMANCE ANALYSIS OF DIFFERENT NPC INTERACTION SCENARIOS

Scenario Key Results
Village Market • 43% higher coherence vs baseline

• Successful multi-NPC interactions
Quest Giver • 37% higher engagement vs baseline

• Improved quest information delivery
Emotional • 52% higher empathy perception
Companion • Strong emotional response matching

3) Emotional Intelligence (EI): The emotional intelligence
integration in our system received high praise from participants
(M = 5.7, SD = 0.8), significantly outperforming the basic
neural network (M = 3.3, SD = 1.1) and rule-based system
(M = 2.5, SD = 0.9). Participants reported feeling a stronger
emotional connection with the NPCs, enhancing their overall
immersion in the game world.

4) Engagement (ENG): Our system achieved higher en-
gagement scores (M = 6.1, SD = 0.7) compared to the
baselines (Basic NN: M = 4.5, SD = 0.9; Rule-based: M =
3.7, SD = 1.2). Participants reported being more invested in the
conversations and eager to explore different dialogue options.

5) Immersion (IMM): The proposed system significantly
enhanced the sense of immersion (M = 5.9, SD = 0.8)
compared to the basic neural network (M = 4.1, SD = 1.0)
and rule-based system (M = 3.3, SD = 1.1). Many participants
noted that the improved NPC interactions made the virtual
world feel more alive and believable.

C. Scenario-Specific Performance

Our system shows superior scenario-specific performance
compared to baselines, as shown in Table III:

1) Village Market Scenario: In the multi-party conversation
setting of the Village Market, our system excelled in managing
context switches between different NPCs. Participants reported
feeling like they were part of a living, breathing marketplace.
The system achieved a 43% improvement in coherence scores
compared to the basic neural network in this scenario.

2) Quest Giver Scenario: For the Quest Giver scenario,
our system demonstrated superior narrative coherence and
goal-oriented dialogue. Participants were able to obtain more
detailed quest information and negotiate quest parameters,
leading to a 37% increase in engagement scores compared
to the rule-based system.

3) Emotional Companion Scenario: The Emotional Com-
panion scenario showcased the strengths of our emotional
intelligence integration. Participants reported a 52% increase
in perceived empathy compared to the basic neural network.
One participant remarked, ”I was amazed at how well the NPC
picked up on my mood and responded appropriately.”

D. AR vs. VR Performance

While both AR and VR implementations of our system
showed significant improvements over the baselines, we ob-
served some differences between the two modalities, as shown
in Table IV:

Table 2: Summary Of Qualitative Results as Mean (Standard Deviation)

Figure 3: Comparison of Qualitative Metrics Across Different Systems

This increase in conversation length suggests higher player 
engagement and more natural dialogue flow.

3) Response Time: Despite the increased complexity of our system, 
we maintained acceptable response times. The mean response time 
was 287ms (SD = 42ms) for our system, compared to 203ms (SD 
= 31ms) for the basic neural network and 95ms (SD = 12ms) for 
the rule-based system. While our system was slower, it remained 
within the 300ms threshold generally considered acceptable for 
real-time interactions.

4) Perplexity: Our system demonstrated lower perplexity scores, 
indicating better predictive performance. The mean perplexity was 
12.3 (SD = 2.1) for our system, compared to 18.7 (SD = 3.4) for 
the basic neural network. This suggests that our context-aware 
model is better at predicting appropriate responses in the game 
environment.

5.2 Qualitative Results
Figure 3 presents a chart comparing the mean scores for each 
qualitative metric across the three systems.

1) Naturalness (NAT): Participants rated our system sig- nificantly 
higher in terms of naturalness (M = 5.8, SD = 0.7) compared to the 
basic neural network (M = 4.2, SD = 0.9) and rule-based system 
(M = 3.1, SD = 1.1). Participants frequently commented on the 
human-like quality of the NPC responses, with one noting, ”It felt 
like I was talking to a real person, not a computer.”

2) Coherence (COH): Our context-aware system demon- strated 
superior coherence (M = 5.9, SD = 0.6) compared to the baselines 
(Basic NN: M = 4.0, SD = 0.8; Rule-based: M= 3.5, SD = 1.0). 
Participants appreciated the NPCs’ ability to maintain context 
across long conversations and refer back to previously discussed 
topics.
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TABLE II
SUMMARY OF QUALITATIVE RESULTS AS MEAN (STANDARD DEVIATION)

Metric Rule-based Basic NN Proposed
Naturalness 3.1 (1.1) 4.2 (0.9) 5.8 (0.7)
Coherence 3.5 (1.0) 4.0 (0.8) 5.9 (0.6)
Emotional Intelligence 2.5 (0.9) 3.3 (1.1) 5.7 (0.8)
Engagement 3.7 (1.2) 4.5 (0.9) 6.1 (0.7)
Immersion 3.3 (1.1) 4.1 (1.0) 5.9 (0.8)

This increase in conversation length suggests higher player
engagement and more natural dialogue flow.

3) Response Time: Despite the increased complexity of
our system, we maintained acceptable response times. The
mean response time was 287ms (SD = 42ms) for our system,
compared to 203ms (SD = 31ms) for the basic neural network
and 95ms (SD = 12ms) for the rule-based system. While our
system was slower, it remained within the 300ms threshold
generally considered acceptable for real-time interactions.

4) Perplexity: Our system demonstrated lower perplexity
scores, indicating better predictive performance. The mean
perplexity was 12.3 (SD = 2.1) for our system, compared to
18.7 (SD = 3.4) for the basic neural network. This suggests
that our context-aware model is better at predicting appropriate
responses in the game environment.

B. Qualitative Results

Figure 3 presents a chart comparing the mean scores for
each qualitative metric across the three systems.
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1) Naturalness (NAT): Participants rated our system sig-
nificantly higher in terms of naturalness (M = 5.8, SD = 0.7)
compared to the basic neural network (M = 4.2, SD = 0.9) and
rule-based system (M = 3.1, SD = 1.1). Participants frequently
commented on the human-like quality of the NPC responses,
with one noting, ”It felt like I was talking to a real person,
not a computer.”

2) Coherence (COH): Our context-aware system demon-
strated superior coherence (M = 5.9, SD = 0.6) compared to
the baselines (Basic NN: M = 4.0, SD = 0.8; Rule-based: M
= 3.5, SD = 1.0). Participants appreciated the NPCs’ ability
to maintain context across long conversations and refer back
to previously discussed topics.

TABLE III
PERFORMANCE ANALYSIS OF DIFFERENT NPC INTERACTION SCENARIOS

Scenario Key Results
Village Market • 43% higher coherence vs baseline

• Successful multi-NPC interactions
Quest Giver • 37% higher engagement vs baseline

• Improved quest information delivery
Emotional • 52% higher empathy perception
Companion • Strong emotional response matching

3) Emotional Intelligence (EI): The emotional intelligence
integration in our system received high praise from participants
(M = 5.7, SD = 0.8), significantly outperforming the basic
neural network (M = 3.3, SD = 1.1) and rule-based system
(M = 2.5, SD = 0.9). Participants reported feeling a stronger
emotional connection with the NPCs, enhancing their overall
immersion in the game world.

4) Engagement (ENG): Our system achieved higher en-
gagement scores (M = 6.1, SD = 0.7) compared to the
baselines (Basic NN: M = 4.5, SD = 0.9; Rule-based: M =
3.7, SD = 1.2). Participants reported being more invested in the
conversations and eager to explore different dialogue options.

5) Immersion (IMM): The proposed system significantly
enhanced the sense of immersion (M = 5.9, SD = 0.8)
compared to the basic neural network (M = 4.1, SD = 1.0)
and rule-based system (M = 3.3, SD = 1.1). Many participants
noted that the improved NPC interactions made the virtual
world feel more alive and believable.

C. Scenario-Specific Performance

Our system shows superior scenario-specific performance
compared to baselines, as shown in Table III:

1) Village Market Scenario: In the multi-party conversation
setting of the Village Market, our system excelled in managing
context switches between different NPCs. Participants reported
feeling like they were part of a living, breathing marketplace.
The system achieved a 43% improvement in coherence scores
compared to the basic neural network in this scenario.

2) Quest Giver Scenario: For the Quest Giver scenario,
our system demonstrated superior narrative coherence and
goal-oriented dialogue. Participants were able to obtain more
detailed quest information and negotiate quest parameters,
leading to a 37% increase in engagement scores compared
to the rule-based system.

3) Emotional Companion Scenario: The Emotional Com-
panion scenario showcased the strengths of our emotional
intelligence integration. Participants reported a 52% increase
in perceived empathy compared to the basic neural network.
One participant remarked, ”I was amazed at how well the NPC
picked up on my mood and responded appropriately.”

D. AR vs. VR Performance

While both AR and VR implementations of our system
showed significant improvements over the baselines, we ob-
served some differences between the two modalities, as shown
in Table IV:

Table 3: Performance Analysis of Different Npc Interaction Scenarios

3) Emotional Intelligence (EI): The emotional intelligence 
integration in our system received high praise from participants 
(M = 5.7, SD = 0.8), significantly outperforming the basic neural 
network (M = 3.3, SD = 1.1) and rule-based system (M = 2.5, SD = 
0.9). Participants reported feeling a stronger emotional connection 
with the NPCs, enhancing their overall immersion in the game 
world.

4) Engagement (ENG): Our system achieved higher en- gagement 
scores (M = 6.1, SD = 0.7) compared to the baselines (Basic NN: 
M = 4.5, SD = 0.9; Rule-based: M = 3.7, SD = 1.2). Participants 
reported being more invested in the conversations and eager to 
explore different dialogue options.

5) Immersion (IMM): The proposed system significantly enhanced 
the sense of immersion (M = 5.9, SD = 0.8) compared to the basic 
neural network (M = 4.1, SD = 1.0) and rule-based system (M = 
3.3, SD = 1.1). Many participants noted that the improved NPC 
interactions made the virtual world feel more alive and believable.

5.3 Scenario-Specific Performance
Our system shows superior scenario-specific performance 
compared to baselines, as shown in Table III:

1) Village Market Scenario: In the multi-party conversation 
setting of the Village Market, our system excelled in managing 
context switches between different NPCs. Participants reported 
feeling like they were part of a living, breathing marketplace. 
The system achieved a 43% improvement in coherence scores 
compared to the basic neural network in this scenario.

2) Quest Giver Scenario: For the Quest Giver scenario, our 
system demonstrated superior narrative coherence and goal-
oriented dialogue. Participants were able to obtain more detailed 
quest information and negotiate quest parameters, leading to a 37% 
increase in engagement scores compared to the rule-based system.

3) Emotional Companion Scenario: The Emotional Companion 
scenario showcased the strengths of our emotional intelligence 
integration. Participants reported a 52% increase in perceived 
empathy compared to the basic neural network. One participant 
remarked, ”I was amazed at how well the NPC picked up on my 
mood and responded appropriately.”

5.4 AR vs. VR Performance
While both AR and VR implementations of our system showed 
significant improvements over the baselines, we ob- served some 
differences between the two modalities, as shown in Table IV:
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TABLE IV
AR VS VR PERFORMANCE COMPARISON AS MEAN (STANDARD

DEVIATION)

Metric AR VR
Immersion Score 5.7 (0.9) 6.1 (0.7)
Real-world Context Integration High Low
Emotional Connection Moderate Strong

• VR users reported slightly higher immersion scores (M
= 6.1, SD = 0.7) compared to AR users (M = 5.7, SD =
0.9).

• AR users appreciated the system’s ability to incorporate
real-world context into conversations, with one partic-
ipant noting, ”It was incredible how the NPC could
comment on real objects in my room.”

• VR users reported stronger emotional connections with
NPCs, possibly due to the more immersive nature of VR
environments.

E. Limitations and Challenges

Despite the overall positive results, we identified several
limitations and challenges:

• Computational Demands: Our system required more pow-
erful hardware to maintain real-time performance, partic-
ularly in AR settings with complex environments.

• Occasional Inconsistencies: In longer gameplay sessions,
some participants noticed occasional inconsistencies in
NPC personality or knowledge, highlighting the need for
improved long-term memory modeling.

• Learning Curve: Some participants, especially those less
experienced with AI systems, initially found the open-
ended nature of conversations challenging, suggesting a
need for better onboarding or tutorials.

• Ethical Considerations: The highly engaging nature of
our AI-driven NPCs raised questions about potential
overattachment or addiction, warranting further investi-
gation into the ethical implications of highly realistic AI
companions in games.

F. Implications for AR/VR Game Design

Our results have several important implications for the
future of AR/VR game design:

• Enhanced Storytelling: The improved NPC interactions
enable more dynamic and personalized storytelling, al-
lowing for branching narratives that truly adapt to player
choices and emotions.

• Reduced Development Costs: While our system requires
initial setup, it has the potential to significantly reduce the
cost and time required for scripting extensive dialogue
trees.

• New Gameplay Mechanics: The ability of NPCs to un-
derstand and respond to complex player inputs opens up
possibilities for new types of puzzles, quests, and social
gameplay mechanics.

• Improved Accessibility: The natural language interface
could make AR/VR games more accessible to players
who struggle with traditional game controls.

VI. CONCLUSION

This research demonstrates that by leveraging advanced
NLP techniques, it is possible to significantly improve the
quality of player-NPC interactions in AR/VR games. The inte-
gration of context-awareness, emotional intelligence, and real-
time adaptation creates more natural, engaging, and immersive
conversations, enhancing the overall gaming experience.

VII. FUTURE WORK

Future research directions include:
• Exploring multi-modal inputs (e.g., player gestures) for

even more nuanced interactions
• Investigating methods to maintain long-term consistency

in NPC personalities across multiple gaming sessions
• Addressing ethical considerations and potential biases in

AI-driven NPCs
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• VR users reported slightly higher immersion scores (M
= 6.1, SD = 0.7) compared to AR users (M = 5.7, SD = 0.9).
• AR users appreciated the system’s ability to incorporate real-
world context into conversations, with one partic- ipant noting, 
”It was incredible how the NPC could comment on real objects in 
my room.”
• VR users reported stronger emotional connections with NPCs, 
possibly due to the more immersive nature of VR environments.

4.5 Limitations and Challenges
Despite the overall positive results, we identified several limitations 
and challenges:
• Computational Demands: Our system required more pow- erful 
hardware to maintain real-time performance, partic- ularly in AR 
settings with complex environments.

• Occasional Inconsistencies: In longer gameplay sessions, some 
participants noticed occasional inconsistencies in NPC personality 
or knowledge, highlighting the need for improved long-term 
memory modeling.
• Learning Curve: Some participants, especially those less 
experienced with AI systems, initially found the open- ended 
nature of conversations challenging, suggesting a need for better 
onboarding or tutorials.
• Ethical Considerations: The highly engaging nature of our 
AI-driven NPCs raised questions about potential overattachment 
or addiction, warranting further investi- gation into the ethical 
implications of highly realistic AI companions in games.

4.6 Implications for AR/VR Game Design
Our results have several important implications for the future of 

Table 4: Ar Vs Vr Performance Comparison as Mean (Standard Deviation)
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AR/VR game design:
• Enhanced Storytelling: The improved NPC interactions 
enable more dynamic and personalized storytelling, al- lowing 
for branching narratives that truly adapt to player choices and 
emotions.
• Reduced Development Costs: While our system requires initial 
setup, it has the potential to significantly reduce the cost and time 
required for scripting extensive dialogue trees.
• New Gameplay Mechanics: The ability of NPCs to un- derstand 
and respond to complex player inputs opens up possibilities for 
new types of puzzles, quests, and social gameplay mechanics.
• Improved Accessibility: The natural language interface could 
make AR/VR games more accessible to players who struggle with 
traditional game controls.

6. Conclusion
This research demonstrates that by leveraging advanced NLP 
techniques, it is possible to significantly improve the quality of 
player-NPC interactions in AR/VR games. The inte- gration 
of context-awareness, emotional intelligence, and real- time 
adaptation creates more natural, engaging, and immersive 
conversations, enhancing the overall gaming experience [1-25].
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