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Abstract
For about 20 years, nanotechnological applications are intensively investigated in all fields of medicine. In ophthalmology, 
nanoparticles are of special interest as carrier systems for the targeted delivery of drugs, genes or siRNA to the anterior as well 
as to the posterior segment of the eye. Above that, sustained drug release plays a major role for the treatment of many ophthalmic 
diseases and nanoparticles have the potential to perform this task without inducing local adverse reactions. 

Nanoparticles are primarily defined by their size that has to range below 100 nm. All other characteristics are variable. The large 
variety of nanoparticle types and the fact, that they are easily modifiable allows their adaption to the task set for them. 

In this review, we summarize the application of nanoparticles in ophthalmology and describe the current challenges.
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Introduction
The targeted delivery of therapeutic drugs in sufficient quanti-
ty to their desired site of action has been a challenge ever since, 
especially to organs and/or parts of the body with drug delivery 
barriers. For example, while the skin is easily accessible from the 
outside, other organs/tissues, due to their location, are only acces-
sible via systemic drugs through the vascular system. The brain is 
further restricted by the blood brain barrier. 

The eye is actually quite accessible for therapeutic interventions 
regarding its localization in the body. However, it is equally pro-
tected by numerous physical and physiological barriers. Among 
these barriers are the tear film barrier, the corneal barrier, the con-

junctival barrier, the scleral barrier as well as the blood aqueous 
barrier (BAB) and the blood retina barrier (BRB). On the one 
hand, these barriers protect the eye from being harmed by micro-
organisms, toxins or other substances. On the other hand, these 
barriers complicate drug delivery to the eye [1,2]. 

The traditional ways used to deliver therapeutic drugs to the eye 
are shown in Figure 1. The two main ways are local and systemic 
administration. Local administration can either be performed by 
topical administration or via periocular (subconjunctival, subten-
on, posterior juxtascleral, retrobulbar, peribulbar) or intravitreal 
injections [1]. 
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Figure 1: Structure of the eye and conventional routes of drug administration. The eye can be divided into anterior and posterior seg-
ment. The anterior segment consists of the cornea, the conjunctiva, the anterior chamber, the iris, the pupil, the ciliary body and the lens. 
The cornea (including the tear film) and the blood aqueous barrier pose limits for drug delivery to the anterior segment. The majority 
of drugs is delivered by topical administration via eye drops or ointments. The posterior segment consists of the vitreous, the retina, 
the choroid and the optic disc. Drugs can be delivered by intravitreal, periocular or suprachoroidal injection. Systemically administered 
drugs can reach the eye by the vascular system if they can pass the blood retina barrier and/or blood aqueous barrier. (modified from 
Zhang, et al.) [1].

Systemic medication is administered either orally or intravenously 
with its known limitation that only 1-2% reach the target tissue due 
to BAB and BRB [3].

Using nanoparticles as carriers for therapeutic drugs is a promising 
approach that could revolutionize unmet medical needs in terms 
of targeted drug delivery, not only for ophthalmic purposes. It is 
therefore not surprising that a wide variety of nanoparticles are be-
ing investigated as candidates for medical tasks, of which targeted 
drug delivery is only one example.

First of all, a nanoparticle is defined solely by its size that ranges 
from 1 to 100 nm. All other chemical, physical, biological and/or 
physiological characteristics are variable as long as the size crite-
rion is met. Nanoparticles offer several advantages for the deliv-
ery of drugs to ocular (and non-ocular) tissues. They are able to 
overcome physiological barriers and to release the loaded drug in 
a timed and sustained manner in their specific target tissue only 
[1]. To do so, substantially smaller dosages are necessary which 
minimizes side effects when compared to conventional delivery of 
the same drug [1]. 

Method
This review aims at giving an overview of current developments 
of nano-based drug delivery to the different parts of the eye. Lit-
erature was searched and obtained from the PubMed database 
using the following keywords and useful combinations of those: 
‘nanoparticles for drug delivery’, ‘drug delivery to the eye’, ‘na-
no-based drug delivery to the eye’, nanoparticles ophthalmolo-
gy’, ‘nanoparticles for ophthalmic drug delivery’, nanoparticles 
corneal drug delivery’, ‘nanoparticles glaucoma’, ‘nanoparticles 
retinal drug delivery’, nanoparticles AMD’, ‘types of nanoparti-
cles’, ‘nanoparticle-based gene delivery’, ‘pharmacokinetics of 
drug delivery to the eye’, ‘drug delivery to the anterior eye’, ‘drug 
delivery to the posterior eye’, ‘challenges of drug delivery to the 
eye’, ‘polymeric nanoparticles’, ‘dendrimer nanoparticles’, ‘quan-
tum dots’, ‘nanoemulsion’, ‘nanosuspension’, ‘nanomicelles’, ‘li-
posome nanoparticles’, ‘solid lipid nanoparticles’, ‘nano-drainage 
glaucoma’, and ‘nanodiamonds’. We selected literature based on 
relevance of abstract and/or title. Original as well as review arti-
cles have been included. Additionally, backward citation search 
was performed.
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Nanotechnology
A nanoparticle is primarily only defined by its size. All other fea-
tures are variable. This includes physical, chemical, biological and/
or physiological characteristics. A single nanoparticle can consist 
of a single unit or be a cluster/group of several units as long as the 
total size remains below 100 nm. There are several ways to cate-
gorize nanoparticles based on some of their main characteristics: 

a) organic vs. inorganic, b) polymer vs. non-polymer, c) spheric 
vs. tube vs. rod vs. star-shaped, d) charge of surface. It is almost 
impossible to mention every single type of nanoparticle that is or 
has been under investigation for ocular drug delivery. Therefore, 
we would like to introduce and briefly explain only some basic and 
fundamental principles of nanoparticle design (Figure 2). 
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Figure 2: Types of nanoparticles. Basic design of the most commonly used nanoparticles for 
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Figure 2: Types of nanoparticles. Basic design of the most commonly used nanoparticles for therapeutic or other medical purposes. First 
of all, a nanoparticle is defined by its size that has to be below 100nm. All other characteristics are variable. Generally, nanoparticles can 
be distinguished into organic and inorganic. Further characteristics are shape, surface structure, charge, polymer vs. non-polymer etc. 
Please note that the above shown sizes are not true to scale.

Polymeric Nanoparticles
Polymeric nanoparticles (PNP) are spherical particles that range 
within the size of 1 to 1000 nm. PNPs can be designed as nano-
spheres or nanocapsules. PNPs can be loaded with active com-
pounds either on their surface or trapped within the PNP [4]. PNPs 
offer the possibility of sustained drug release, protect the loaded 
drug from degradation and they have shown excellent safety pro-
files in human use [4,5]. Both natural and synthetic polymers are 
used. Examples for natural polymers are chitosan, gelatin, sodium 
alginate, albumin, heparin, dextran and hyaluronan [4,6]. Natural 

polymers are biodegradable, biocompatible and have mucoad-
hesive properties. The most commonly used synthetic polymers 
that have been approved by the US Food and Drug Administration 
and the European Medicine Agency are poly(lactic acid) (PLA), 
poly(glycolic acid) (PGA), and poly(lactic-co-glycolide) (PGLA). 
Approval was based on their good safety profile, confirmed bio-
compatibility, low levels of immunogenicity and toxicity, and bio-
degradation [4].
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Liposomes
Liposomes are vesicles formed by a phospholipid double-lay-
er. The hydrophilic inside of the vesicle can carry water-soluble 
drugs while hydrophobic drugs are incorporated into the lipophilic 
double-layer [1,2,5]. Liposomes are highly biocompatible and de-
gradable and offer several useful modifications: 1) variability of 
lipid composition, size and electric charge, 2) facilitated targeting 
due to easily modifiable surface polymers, and 3) almost no an-
tigenicity and no toxicity [2,5]. For example, positively charged 
liposomes are superior compared to neutral or negatively charged 
liposomes, as they bind better to the negatively charged corneal 
epithelium mucinous membrane [7,8]. Similarly, coating of lipo-
somes with bioadhesive polymers, e.g. chitosan, enhances the cor-
neal residence as well [9].

Solid Lipid Nanoparticles
Solid lipid nanoparticles (SLNs) are synthesized from various lip-
ids such as lipid acid, mono-, di- or triglycerides, glyceride mix-
tures or waxes. In contrast to liposomes, SLNs have a solid lipid 
core and a hydrophilic surface. Their size usually ranges between 
50-1000 nm and they remain in the solid state at body tempera-
ture [10]. When prepared from physiological lipids, SLNs do not 
show any biotoxicity [11]. Above that, SLNs are able to control 
drug release, offer drug targeting, long-term stability, good drug 
loading, easy large scale production, and they can be sterilized via 
autoclaving [11]. 

Nanosuspension
Nanosuspensions contain pure drug nanoparticles in nano-scale 
range. A nanosuspension is generally stabilized by surfactants or 
polymers. Nanosuspensions provide increased contact area and 
residence time between drug and tissue (e. g. cornea) and they are 
especially suited to increase the bioavailability of poorly soluble 
drugs [1].

Nanoemulsion
A nanoemulsion is a dispersion of two different liquid types con-
sisting of micelles that are 100 nm in diameter or less. Some 
emulsions need surfactants and/or other additives to induce ther-
mostability and to enhance membrane permeability [1,5,12]. Na-
noemulsions can either be produced through oil-in-water or water-
in-oil emulsification (Figure 2) [12]. 

Nanomicelles
Nanomicelles are spontaneously formed nanostructures with am-
phiphilic properties: the lipophilic core portion of the nanomicelle 
encapsulates the hydrophobic drug, and the hydrophilic portion 
forms the outer surface. This formation increases drug solubility 
[1].

Hydrogels
Hydrogels are three-dimensional networks of crosslinked poly-
mers that are able to absorb large amounts of water. By adapting 
the properties of the crosslinked polymer network, the diffusion 

and permeability of hydrogels can be varied. As hydrogels can be 
formed at ambient temperatures, making them ideal candidates to 
carry fragile entities, such as antibodies, peptides, cells, proteins 
or oligonucleotides [2]. Hydrogels can be used periocularly or in-
travitreally.

Dendrimers
Dendrimers are spherical nanoparticles with a core molecule to 
which branched units are added in a regular and repeated man-
ner. With each additional branched unit, the diameter increases 
linearly while the number of terminal groups and the molecular 
weight increase exponentially [13]. The unique structure of den-
drimers offers some useful properties that other nano structures do 
not share to the same extent. Modification of the terminal groups 
allows higher prediction and higher control of the bio-distribution 
and drugs can be loaded via different kinds of connections as di-
rect conjugation, ionic interactions, or even trapped in the core of 
the dendrimer [13]. The most commonly investigated dendrimer is 
synthesized out of the polymer polyamidoamine (PAMAM), but 
other materials such as phosphorous, carbosilane, and peptides are 
under investigation as well [13].

Quantum Dots
Quantum Dots (QDs) are semiconductor nanoparticles that emit 
light of a single wavelength when their electrons are excited 
by light of a specific wavelength. The color of the emitted light 
depends on the size of the QD. Larger QDs emit shorter wave-
lengths and smaller QDs emit longer wavelengths [14]. The most 
commonly studied QDs are those with zinc sulfide core (CdSe/
ZnS-QDs) protected by a zinc sulfide shell. Their aforementioned 
physical ability to emit light upon excitation and their ability to 
cross biological barriers have made QDs promising candidates for 
in-vivo imaging. However, since their surface is also modifiable, 
i.e. conjugation with functional groups (genes, stem cells, receptor 
agonists, drugs), QDs are as well under investigation as nanocarri-
ers for targeted delivery [14].

Inorganic Particles
Inorganic nanoparticles that are used for medical purposes include 
gold, silver, cerium dioxide, silica and inorganic salts. Gold, silver 
and cerium already have physiological properties on their own, 
such as antimicrobial or antioxidant effects. In addition, they are 
also used as nano-carriers [6]. Silica nanoparticles and inorganic 
salts qualify as nano-carriers due to their large surface area, bio-
compatibility and biodegradability. Commonly used inorganic 
salts are calcium carbonate and calcium phosphate [6].

Nanodiamonds
Nanodiamonds are carbon-based nanoparticles with a truncated 
octahedral structure. They are non-toxic and their large surface 
area is highly tailorable [15].

In summary, nanoparticle-based delivery of therapeutic drugs has 
several advantages. Firstly, the bioavailability of the carried drug 
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is increased in the target tissue as nanoparticles can overcome 
physiological barriers of the body. Furthermore, by modification 
of the nano-carrier, delivery to only the target tissue is achieved, 
making it possible to reduce drug dosage and side effects. Second-
ly, solubility of the drug is increased, thereby reducing side effects 
of conventional solvents that become obsolete. Thirdly, nanopar-
ticle-based drug delivery increases the elimination half-life of the 
drug, thereby increasing blood concentration time and efficiency 
of the drug. As a consequence, frequency of use as well as toxic 
and side effects are reduced [1].

Nanoparticle-Based Drug Delivery to the Anterior Segment of 
the Eye
Challenges of Topical Drug Delivery to the Anterior Segment 
of the Eye
There are various diseases and/or conditions of the anterior eye 
that require treatment with therapeutic drugs including dry eye, 
inflammatory diseases, infectious diseases, glaucoma, hereditary 

and degenerative diseases, injury, trauma, ocular manifestations of 
systemic diseases, cataract, congenital and developmental abnor-
malities as well as tumors [10]. In general, there are four possible 
routes of drug delivery to the anterior segment of the eye: topical, 
intracameral, subconjunctival, or systemic [10,16]. Depending on 
the route, one or more ocular barrier must be overcome to reach 
the site of action. By far the most commonly chosen route is the 
topical application of eye drops and/or ointments. However, this 
route of drug administration has its limitations, namely limited 
penetration to the tissue of interest, need for repeated dosing to 
reach effective therapeutic levels, and rapid washout by the tear-
film and lacrimal drainage. As a consequence, bioavailability is 
limited to less than 5% of the initially applied dose via this route of 
administration [2,6,16]. Figure 3 shows the elimination pathway 
of topically administered drugs.
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tissues, and 2) precorneal area – conjunctiva – sclera. Finally, the drug is eliminated via entry in the systemic circulation. (modified from 
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There are two routes by which drugs can reach internal anterior 
structures of the eye after topical administration. The first is via dif-
fusion through tear-film and cornea into the anterior chamber, the 
second is penetration through the conjunctiva and sclera [6,10,16]. 
Although the conjunctiva is more permeable than the cornea and 
its surface area is about 17 times larger, the main absorption route 

is through tear-film and cornea [6]. The reason for this is the high 
loss of drug into the systemic circulation via penetration through 
conjunctiva and sclera. 

Figure 4 shows the layers of tear-film and cornea that have to be 
penetrated by drugs.
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Figure 4: Layers of tear-film (top) and cornea (bottom) that have to be penetrated by topically instilled drugs. The tear film forms the 
first barrier. It consists of an outer, lipophilic layer, followed by a hydrophilic middle layer, that finally merges into the mucous layer. 
The latter lies directly on the corneal epithelium, a multilayered lipophilic cell layer. Bowman’s membrane forms an interface between 
corneal epithelium and corneal stroma. The hydrophobic stroma forms the thickest layer of the cornea, which is bounded toward the 
interior of the eye by Descemet’s membrane and finally by the lipophilic corneal endothelium. (modified from Vaneev, et al.) [6].

Nanoparticles have the ability to overcome the above-described 
barriers in the eye based on their size and design. In addition, they 
can prolong the contact time between drug and target tissue, as 
well as they can provide protection against rapid degradation of 
the drug. In addition, if designed accordingly, they allow continu-
ous drug release over longer periods of time. The latter is especial-
ly important when patient compliance is poor.

Conjunctiva
The conjunctiva is anatomically the most accessible structure of 
the anterior segment with regard to drug application. However, the 

above-described difficulties in terms of reduced bioavailability of 
conventional topical drugs also apply here.

Liu, et al. recently summarized nanotechnology-based approaches 
for the treatment of the group of allergic conjunctival diseases [12]. 
They report that immunomodulators, NSAIDs and corticosteroids 
have been incorporated into nano-based carriers [8,17-32]. The 
predominantly used types of nanoparticles were liposomes, sol-
id lipid nanoparticles, polymeric nanoparticles, nanomicelles and 
nanoemulsions. In summary, the nano-formulations showed high 
encapsulation efficiency, provided controlled and sustained release 
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of the encapsulated drug, had better permeability characteristics, 
achieved high therapeutic drug levels, showed enhanced muco-
adhesion and increased corneal retention time, and had favorable 
safety profiles when compared with conventional eye drops of the 
investigated drug [12].

Cornea
Another interesting research field for nanoparticle use is the treat-
ment of diseases of the corneal endothelium via transplantation of 
whole and/or parts of the cornea. Three different approaches are 
followed [33]. The first is the treatment of donor cornea (either for 
lamellar keratoplasty or for DSAEK or DMEK) before it is trans-
planted into the recipient’s eye. The goal is to improve the quality 
of endothelial cells by modification in the corneal bank. For this 
purpose, nanoparticles are ideal carrier candidates, to transport 
health promoting molecules or genes into the endothelial cells. An-
other approach is the injection of cultured endothelial cells into the 
anterior chamber that have been infected with magnetic nanoparti-
cles. To avoid the loss of injected cells by the aqueous humor cycle 
and to target the cells to the posterior side of the cornea a magnetic 
contact lens is used after injection to direct the cells to their desired 
location [33]. The third approach aims at preventing or at least de-
laying transplantation. For this purpose, the corneal endothelium 
of the patient is treated with therapeutically active nanoparticles 
that are directed to the endothelial cells via the aforementioned 
magnetic technique [33]. 

Of course, not only diseases of the corneal endothelium are of in-
terest for nanotechnology-based therapy. Several formulations are 
under investigation to treat infectious or non-infectious keratitis. 
A nano-chitosan formulation, for example, showed anti-amoebic 
activity in an in-vitro study against Acanthamoeba spp. [34]. The 
authors postulate that nano-chitosan is an excellent candidate for 
future in-vivo treatment approaches of Acanthamoeba keratitis. 
The group of Huang et al. developed a hybrid-hydrogel-based con-
tact lens with chitosan, silver particles and graphene oxide. The 
latter can be loaded with voriconazole. The contact lenses signifi-
cantly enhanced the therapeutic effects in vitro and in an animal 
model of fungal keratitis [35]. The broad-spectrum antifungal ke-
toconazole has been incorporated into a lipid-polyethylene glycol 
formulation, that showed increased bioavailability of ketoconazole 
in aqueous and vitreous humor, plus a good safety profile in a rab-
bit model [36].

Uzunalli, et al. designed a bioactive peptide nanofiber to treat 
defects of the corneal stroma caused by trauma or disease. The 
laminin and fibronectin containing nanofibers increased keratocyte 
migration and supported stroma regeneration in vitro and in vivo 
(rabbit cornea) [37]. Another, very promising system was devel-
oped by Baran-Rachwalska, et al. [38]. The group has designed 
a unique silicon-lipid nanoparticle that allows siRNA to be intro-
duced into the eye for siRNA-based gene silencing. The nanopar-
ticle penetrated all corneal layers and it resulted in significant re-
duction of the targeted protein expression [38]. The system is very 

versatile as it can be loaded with every desired siRNA.

Another major field that nano-based drug delivery is dedicated to is 
dry eye disease (DED). DED is a common multifactorial disease of 
global relevance [39]. DED leads to eye discomfort, ocular surface 
damage and visual disturbance with negative impacts on the qual-
ity of life of the patients [39,40]. Nanocarriers have the potential 
to revolutionize treatment of DED as they can provide site specific 
and sustained delivery of therapeutic agents [40]. Not surprisingly, 
countless nano-based formulations have been or are currently be-
ing investigated. Most formulations aim to improve ocular surface 
moisturization, but some anti-inflammatory or immunomodulato-
ry formulations have also been developed [1,39,40]. Examples for 
marketed nano-based eye-drops are the propylene glycol-based 
nanoemulsions by Alcon (SYSTANE® portfolio) or liposomal eye 
drops by Bausch&Lomb (Artelac Rebalance®).

Glaucoma
Glaucoma is primarily treated via topically applied intraocular 
pressure (IOP)-lowering eye drops. Since patients usually have to 
administer the drops several times a day for the rest of their lives, 
compliance is often poor, especially when ocular surface side ef-
fects occur. 

Several classes of IOP-lowering drugs are available, including 
ß-blockers, prostaglandin analogs, carbonic anhydrase inhibitors, 
a-2 agonists and cholinergic agents [7]. The choice of the appropri-
ate nano-carrier depends on the characteristics of the drug regard-
ing hydrophobicity, size and stability and on the target tissue [7]. 
So far, anti-glaucomatous drugs have been incorporated into sev-
eral types of nano-carrier such as liposomes, niosomes, PNPs, den-
drimers, nanosuspensions, nanocrystals, nanodiamonds and cy-
clodextrin complexes [7]. In summary, all nanotechnology-based 
formulations showed larger and/or prolonged IOP reduction than 
conventional formulations [7,41]. Most of the experiments were, 
however, performed in vitro or in animal models, either in vivo 
or ex vivo. Evaluations of the safety and efficacy in human use is 
pending for most of them. In 2014, Wong, et al. assessed the safe-
ty and efficacy of a subconjunctival injection of a nanoliposome 
formulation of latanoprost in a small pilot study with six human 
subjects [42]. The injection was well tolerated by all subjects and 
the mean baseline IOP of 27.55 ± 3.25 mmHg was lowered by 
37-63% within 1h after injection. A significant IOP reduction of 
≥ 20% was confirmed for 3 months after the injection. To the best 
of our knowledge, there have been no further reports on the use of 
these latanoprost liposomes by Wong et al. since 2014.

In addition to their direct use as drug carriers, nanoparticles are 
also investigated in combination with larger devices to treat glau-
coma. For example, contact lenses are loaded with nanoparti-
cle-based formulations to provide sustained release of antiglauco-
matous drugs [7]. Similarly, ocular inserts that are placed into the 
conjunctival sac can provide prolonged release of drugs [43-45]. 
An alternative are implantable nano-drainage systems, that pro-
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vide a bypass route for aqueous humor outflow [46,47].

The underlying cause of the glaucoma-induced vision loss is 
apoptosis of retinal ganglion cells (RGCs). An alternative use for 
nanoparticle technology is transporting a neuroprotective substance 
to the RGCs to inhibit cell death. Sánchez-López et al. developed 
a topical formulation of memantine-loaded PLGA-PEG nanopar-
ticles. Memantine is an approved neuroprotective NMDA-antago-
nist. The memantine nanoparticles showed a significant protective 
effect on the RGCs in a rodent glaucoma model. It was also safe 
and well tolerated [48].

Lens and Posterior Capsule
The lens is the most internal structure of the anterior eye. In the 
following, two possible applications for nanotechnology regarding 
the lens are presented. The group of Huang et al. coated an intra-
ocular lens (IOL) with 5-fluorouracil chitosan nanoparticles (5-Fu-
CSNP) to prevent posterior capsular opacification (PCO) after cat-
aract surgery. They report superior results in vitro and in an animal 
model when compared with a 5-Fu solution without chitosan [49]. 
Another modification of IOLs has been performed by Lin, et al. 
[50]. They coated the rim of commercially available IOLs with 
silica coated gold nanorods that block the formation of PCO. In 
rabbit models, PCO was reduced by 60-70% when compared to 
the control group with 100% PCO occurrence [50].

The formation of cataract is accelerated in diabetic patients caused 
by hyperglycemia-induced oxidative stress [1]. Intraperitoneal 
treatment of diabetic rats with a mesoporous silica nanoparticle 
loaded with Cerium (III) chloride efficiently ameliorated the pro-
gression of diabetic cataract. The same result could be reached by 
subconjunctival injection of autoregenerative redox nanoparticles 
(CeO2 coated with PEG-PLGA) in the same diabetic rat model 
[51]. Future experiments should try to adapt these treatments into 
a non-invasive approach.

Nanoparticle-Based Drug Delivery to the Posterior Segment 
of the Eye
Diseases of the posterior segment are a major cause of blindness 
worldwide each year. Especially diabetic retinopathy (DR) and 
age-related macular degeneration (AMD) have to be mentioned in 
this context. In addition, there are many other diseases of the retina 
and the choroid that require treatment. Current treatment options 
for diseases of the posterior segment include photocoagulation, 
cryocoagulation, intravitreal injections of therapeutic drugs and 
vitrectomy. Intravitreal injections have become the gold-standard 
for the treatment of AMD, for example. However, frequent injec-
tions are necessary, on the one hand because of the relatively fast 
clearance of the drug from the vitreous space, and, on the other 
hand, because of the progression, persistence or recurrence of the 
underlying disease. 

The various nanoparticle systems and their variable and adjust-
able characteristics offer the possibility to design NPs for intra-

vitreal use with targeted, controlled and sustained release of e. g. 
anti-VEGF inhibitors or corticosteroids. Additionally, researchers 
are also investigating topical formulations for drug delivery to the 
retina or other posterior structures of the eye, because frequent 
intravitreal injections increase the risk of endophthalmitis, retinal 
detachment, vitreous hemorrhage or cataract formation [52,53]. 

Regardless of whether drugs or drug delivery systems for the pos-
terior segment of the eye are administered topically or intravit-
really, various anatomical and physiological barriers have to be 
overcome [54,55]. These barriers represent the first major chal-
lenge for the design of efficacious nanoparticles. Once the site of 
action is reached, a long therapeutic effect without eliciting local 
side effects is desired [52,54]. In a review by Huang and Chau, 
four major characteristics of nanoparticles are discussed that influ-
ence the efficiency of their intraocular distribution and elimination 
[52]. These four characteristics are size, surface charge, stability 
and ligands. Additionally, the authors proposed a simplified phar-
macokinetic model of the intraocular distribution, retinal penetra-
tion and elimination of intravitreally injected nanoparticles. The 
authors conclude, that optimal nanocarriers for targeted and sus-
tained retinal delivery are a product of the combined effects of 
their size, surface charge, stability, ligand design as well as of the 
changes that are expected to occur in vivo [52].

Topically applied nano-formulations targeting the posterior eye, 
have to overcome the barriers of the anterior eye, which we al-
ready discussed above, in addition to the intraocular structures as 
vitreous and the vitreoretinal interface [53,54]. Recently, Löscher, 
et al. specifically reviewed topical drug delivery to the posterior 
segment [53]. The authors identified four major types of drug de-
livery systems (DDS) that are especially suited to accomplish pos-
terior drug delivery via topical administration. The four DDS are 
amino acid/peptide-based, lipid-based, DNA-based and carbohy-
drate-based. Except of the amino-acid/peptide-based DDS all sys-
tems represent nanotechnology-based approaches [53]. It is further 
summarized that a wide variety of drugs has been incorporated 
into these DDS and that several different diseases are addressed 
including AMD, glaucoma, retinal ischemia, diabetic retinopathy, 
and central macular edema.

Gene or siRNA Delivery to the Eye via Nanotechnology
The permanent introduction of genes into cells of the retina or oth-
er specific tissues of the eye is a promising technology to treat 
inherited diseases. Based on their large variety and variability, 
nanoparticles are ideal candidates to perform this task. The success 
of nanoparticle-based gene delivery depends on three key steps: 
the internalization of the loaded nanoparticles into the target cells, 
the escape from endosomal vesicles, and the transfer of the plas-
mid DNA into the nucleus [56]. So far, several types of nanopar-
ticles have been used for gene delivery: metal, lipid and polymer 
nanoparticles [56-61]. 

In comparison to the alternative gene delivery method mediated 
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by adeno-associated virus (AAV)-vectors, nanoparticles can carry 
plasmids up to the size of 20 kbp, while AAV-vectors are limited to 
5 kbp [56]. On the contrary, transfection of cells is currently more 
efficacious via AAV-vectors than via nanoparticles, but research-
ers are confident that the easy and diverse modification options of 
nanoparticles can remedy this deficit in the near future. Instead of 
carrying plasmid DNA, nanoparticles can likewise carry siRNA to 
silence specific genes by RNA interference [62]. This method is 
well suited for the treatment of acute diseases.  

Challenges and Disadvantages of Nanoparticles
Although nanoparticles seem to be promising candidates for the 
safe, targeted and sustained delivery to all parts of the eye, there 
are also some challenges that influence the development of potent 
formulations. The challenges vary between different nanoparticle 
types. With liposome-based formulations, for example, several 
problems such as leakage of the enclosed drugs, poor long-term 
stability, high cost of large scale production, difficulties with ster-
ilization and sometimes low drug loading can occur [1]. Nano-
suspensions and nanoemulsions can cause irritations or even toxic 
side effects when surfactants are needed [1]. Polymeric and lipid 
nanoparticles have only insufficient capability to carry watersolu-
ble drugs and for effective topical use, introduction of increased 
mucoadhesion is necessary [1].

On the one hand, nanoparticles have excellent characteristics 
that could overcome unmet needs of conventional drug delivery. 
However, nanoparticles themselves, depending on some of their 
properties, may induce toxic effects to the body. Nanotoxicity 
studies investigate this potential risk. Possible negative effects of 
nanoparticles are cell toxicity, immunotoxicity and genotoxicity 
[63]. Iron-based nanoparticles, for example, can induce oxidative 
stress which leads to cell damage via several ways [64]. Therefore, 
toxicological assessments should always accompany the develop-
ment of nanoformulations that are intended for human use.

Conclusion
As a result of their small size and modifiable surface nanoparti-
cles are able to overcome ocular barriers that would otherwise be 
impassable. Furthermore, their large surface to size ratio is favor-
able for carrying and releasing drugs in a controlled fashion at a 
desired target location. Due to these properties, nanoparticles have 
the potential to overcome limitations of conventional therapeutic 
systems, such as low bioavailability of the drug, need for frequent 
application, and reduced permeation of ocular structures [1]. Many 
in vitro and in vivo studies in animal models have confirmed this 
potential and some formulations are already marketed for human 
use. 
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