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Multiple Datasets Revealed T Cell Pathway Related Genes Associated with 
Better Prognosis and Chemotherapy in Breast Cancer
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Abstract
Breast cancer (BC) is the most frequent cancer diagnosed in women, and the second foremost source of cancer-related death. 
Despite conventional treatment, patients experience metastasis and poor survival. This study aimed to systematically validate 
the data of previous studies on BC to fill the gaps in large-scale meta-analyses and evaluate pivotal genes. We conducted 
meta-analysis on target genes chosen from the Gene Expression Omnibus (GEO) database to classify the differently expressed 
genes (DEGs). Then pathway enrichment study of the Kyoto Encyclopedia of Genes and Genomics (KEGG) and protein-
proteins interaction (PPI) were performed to investigate the biological pathway leading to DEGs. Survival analysis and 
logistic regression of the receiver operating characteristics (ROC) were used to evaluate the ability of core gene expression 
to predict treatment efficacy. The KEGG pathway study revealed that 222 DEGs were enriched in the pathways associated 
with the cell cycle and T-cell. Kaplan-Meier analysis of total survival showed that hub genes (CD247, ZAP70, LCK, PRKCQ) 
were associated with better prognosis in BC patients. Pharmacodynamics data, ROC curve, and logistic regression analysis 
showed that PRKCQ is associated with T-cell pathways and its expression could predict treatment efficacy. It can therefore 
be used as a biomarker of BC prognosis.
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LCK proto-oncogene, Src family tyrosine kinase (LCK)
protein kinase C theta (PRKCQ).

Background
Over the past 50 years, cancer incidence has dramatically in-
creased worldwide. Breast cancer, a type of allogenic hor-
mone-dependent cancer, accounts for 22.9% of all cancers 
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in women and is the second utmost common form of cancer 
amongst women in developing countries [1]. Therefore, breast 
cancer is the leading malignancy which poses a significant risk 
to the health of women. The age-standardized incidence rate 
(ASIR) of breast cancer in 175 countries showed a growing pat-
tern from 1990 to 2017, with ASIRs rising by more than 50 % 
in 65 countries [2]. Despite improve- ments in screening, treat-
ment and care, almost 12% of individuals diagnosed with breast 
cancer ultimately develop metastatic disease, indicating breast 
cancer that has spread from the breast to other body parts [3]. 
In addition, despite substantial efforts in traditional therapies 
involving sur- gery, chemotherapy, radiation therapy, the breast 
cancer survival scenario, hormone therapy, and immunotherapy, 
particularly metastatic cancer, remains bleak [4]. From a patho-
physiological and molecular viewpoint, breast cancer metastasis 
entails dramatic changes in the levels of micro-envi- ronmental 
genes, cells and tumors, contributing to deterioration of the or-
gans and death [5]. There- fore, the identification of new treat-
ment targets and the search for effective chemotherapeutic drugs 
are of vital importance for conquering drug resistance in breast 
cancer. 

With continued development of high-throughput technolo-
gies, a number of genetic changes related to breast cancer have 
been gradually discovered, such as in high-penetrance genes 
(BRCA1, BRCA2, PTEN, and TP53), genes involved in DNA 
repair (CHEK2, ATM, BRIP1 (FANCJ), PALB2 (FANCN), 
and susceptibility genes (RAD51C (FANCO)) [6]. Receptors, 
protein tyrosine kinases, phosphatases, proteases, PI3K/Akt 
signaling pathway, microRNAs (miRs), and long noncoding 
RNAs (lncRNAs) are potential therapeutic targets. Recent re-
search reports that lncRNAs HOTAIR, SPRY4-IT1, GAS5, and 
PANDAR, which are new players in tumor develop- ment and 
prognosis, may have theranostic applications in breast cancer 
[7]. The combination of nu- cleic acid sequencing research with 
mass spectrophotometry-based peptide sequencing, post-trans- 
lational modification, and rational drug proposal will offer an 
additional inclusive indulgent of the pathophysiology of breast 
cancer and contribute to the development of treatment strategies. 
This research directed to systematically validate the data of pre-
vious studies on breast cancer to fill the gaps in large-scale me-
ta-analyses and evaluate pivotal genes that can be used as new 
biomarkers to promote early diagnosis and treatment.

Due to the high incidence and poor prognosis of breast cancer, 
as well as the limitations of the varying results obtained through 
different experimental procedures and microarray platforms, 
we integrated a large number of DNA microarray data sets for 
meta-analysis. This analysis was con- ducted with an aim to 
improve the statistical ability to detect differentially expressed 
genes, assess heterogeneity, and possibly yield stronger, more 
reproducible, and more accurate predictions.

Material and Methods
Acquisition of Datasets
We performed an automated search of the National Center for 
Biotechnology Information (NCBI) Gene Expression Synthesis 
(GEO) database (NCBI, http:/www.cn.ncbi.com), as per the 2009 
recommended Reporting Items for Systematic Reviews and Me-
ta-Analysis Guidelines, and used the keyword “breast cancer” in 
our search. We used the following inclusion criteria for the data-
sets: (1) the study must have been conducted on humans (Homo 
sapiens), (2) the platform for sequencing must come from either 
the Affymetrix platform or the Illumina platform, (3) the study 

should contain datasets of non-cell line breast cancer patients 
and corresponding normal tissue samples, (4) the datasets must 
not have literature traceability, (5) the datasets must come from 
DNA methylation-based studies, (6) and the datasets must come 
from miRNA-based studies. Our data were chosen by two sepa-
rate analysts. A discussion with a third analyst resolved any con-
flict between the two analysts. We have checked and preserved 
data from The Cancer Genome Atlas (TCGA) database on the 
expression and clinical data of breast cancer patients.

Meta-Analysis of Microarray Datasets
We downloaded the microarray dataset files (.CEL) from the 
GEO database that met our inclusion criteria. By use of R statisti-
cal 3.6.3 software (https:/www.r-project.org/) a meta-analysis of 
the gene expression profiles was performed using the combined 
T-values and Z-scores. It used the packages MAMA, mataMA, 
affyPLM, CLL, and RankProd. When two meta-analyses were 
performed, the combined T-value approach (threshold being ab-
solute value >7) and the Z-score meta-analysis (threshold being 
absolute value >3) were used as combination cutoff criteria, and 
the differentially expressed genes (DEGs) were authenticated.

Pathway Enrichment Analysis
Built on the outcomes of the meta-analysis, the most significant-
ly differentially expressed genes were evaluated by using enrich-
ment analyses. Set of genetic analysis tools based on network 
(http://www.webgestalt.org/option.php), through to the false 
discovery rate significantly threshold (FDR) <0.1 gene and ge-
nome Kyoto encyclopedia (KEGG pathway enrichment analysis 
to identify the most significant differences between genes. To 
test the purpose of immune cells in breast cancer, we provided a 
text-based gene matrix transposed file wherein each line defined 
LM22 with their markers [25]. Gene Set Enrichment Analysis 
(GSEA) was performed genes hierarchical by T-values in the 
meta-analysis. Subsequently, the LM22 process study was con-
ducted using the following terms: B cell memory, B cells naive, 
Plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 mem-
ory activated, T cells CD4 memory resting, T cells controlling 
(Tregs), T cells follicular aid, T cells gamma delta, NK cells rest-
ing, NK cells activated, Macrophages M2, Monocytes, Macro-
phages M1, Dendritic cell resting, Macrophages M1.

Protein-Protein Interaction Network Construction
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http:/string- db.org) provides information 
on protein-protein interactions (PPIs) [26]. We used STRING to 
model a PPI network of DEGs with a confidence score of > 0.7 
as the result truncation criterion was used to gain insight into 
and forecast the cellular structure and biological activity of the 
defined DEGs. Using cytoscape software, the PPI network was 
visualized.

Selection of Pivotal Modules
CentiScaPe 2.1 was used to assess a PPI network’s degree, tight-
ness, and intermediacy. The degree of a node is the total number 
of incident edges (interactions) on a node [27]. We authenticated 
the central gene, based on the degree of a node. The Molecular 
Complex Detection (MCODE) program was later used to pick 
the most important aggregate module in Cytoscape’s PPI net-
work, where the cutoff degree = 2, node score cutoff = 0.2, depth 
= 100, and K-core = 2 was the highest. In addition, the WEB-
based GEne SeT AnaLysis Toolkit was used to perform DEG ‘s 
study of KEGG pathway enrichment in each module with a large 



   Volume 4 | Issue 4 | 138Adv Bioeng Biomed Sci Res, 2021 www.opastonline.com

in women and is the second utmost common form of cancer 
amongst women in developing countries [1]. Therefore, breast 
cancer is the leading malignancy which poses a significant risk 
to the health of women. The age-standardized incidence rate 
(ASIR) of breast cancer in 175 countries showed a growing pat-
tern from 1990 to 2017, with ASIRs rising by more than 50 % 
in 65 countries [2]. Despite improve- ments in screening, treat-
ment and care, almost 12% of individuals diagnosed with breast 
cancer ultimately develop metastatic disease, indicating breast 
cancer that has spread from the breast to other body parts [3]. 
In addition, despite substantial efforts in traditional therapies 
involving sur- gery, chemotherapy, radiation therapy, the breast 
cancer survival scenario, hormone therapy, and immunotherapy, 
particularly metastatic cancer, remains bleak [4]. From a patho-
physiological and molecular viewpoint, breast cancer metastasis 
entails dramatic changes in the levels of micro-envi- ronmental 
genes, cells and tumors, contributing to deterioration of the or-
gans and death [5]. There- fore, the identification of new treat-
ment targets and the search for effective chemotherapeutic drugs 
are of vital importance for conquering drug resistance in breast 
cancer. 

With continued development of high-throughput technolo-
gies, a number of genetic changes related to breast cancer have 
been gradually discovered, such as in high-penetrance genes 
(BRCA1, BRCA2, PTEN, and TP53), genes involved in DNA 
repair (CHEK2, ATM, BRIP1 (FANCJ), PALB2 (FANCN), 
and susceptibility genes (RAD51C (FANCO)) [6]. Receptors, 
protein tyrosine kinases, phosphatases, proteases, PI3K/Akt 
signaling pathway, microRNAs (miRs), and long noncoding 
RNAs (lncRNAs) are potential therapeutic targets. Recent re-
search reports that lncRNAs HOTAIR, SPRY4-IT1, GAS5, and 
PANDAR, which are new players in tumor develop- ment and 
prognosis, may have theranostic applications in breast cancer 
[7]. The combination of nu- cleic acid sequencing research with 
mass spectrophotometry-based peptide sequencing, post-trans- 
lational modification, and rational drug proposal will offer an 
additional inclusive indulgent of the pathophysiology of breast 
cancer and contribute to the development of treatment strategies. 
This research directed to systematically validate the data of pre-
vious studies on breast cancer to fill the gaps in large-scale me-
ta-analyses and evaluate pivotal genes that can be used as new 
biomarkers to promote early diagnosis and treatment.

Due to the high incidence and poor prognosis of breast cancer, 
as well as the limitations of the varying results obtained through 
different experimental procedures and microarray platforms, 
we integrated a large number of DNA microarray data sets for 
meta-analysis. This analysis was con- ducted with an aim to 
improve the statistical ability to detect differentially expressed 
genes, assess heterogeneity, and possibly yield stronger, more 
reproducible, and more accurate predictions.

Material and Methods
Acquisition of Datasets
We performed an automated search of the National Center for 
Biotechnology Information (NCBI) Gene Expression Synthesis 
(GEO) database (NCBI, http:/www.cn.ncbi.com), as per the 2009 
recommended Reporting Items for Systematic Reviews and Me-
ta-Analysis Guidelines, and used the keyword “breast cancer” in 
our search. We used the following inclusion criteria for the data-
sets: (1) the study must have been conducted on humans (Homo 
sapiens), (2) the platform for sequencing must come from either 
the Affymetrix platform or the Illumina platform, (3) the study 

should contain datasets of non-cell line breast cancer patients 
and corresponding normal tissue samples, (4) the datasets must 
not have literature traceability, (5) the datasets must come from 
DNA methylation-based studies, (6) and the datasets must come 
from miRNA-based studies. Our data were chosen by two sepa-
rate analysts. A discussion with a third analyst resolved any con-
flict between the two analysts. We have checked and preserved 
data from The Cancer Genome Atlas (TCGA) database on the 
expression and clinical data of breast cancer patients.

Meta-Analysis of Microarray Datasets
We downloaded the microarray dataset files (.CEL) from the 
GEO database that met our inclusion criteria. By use of R statisti-
cal 3.6.3 software (https:/www.r-project.org/) a meta-analysis of 
the gene expression profiles was performed using the combined 
T-values and Z-scores. It used the packages MAMA, mataMA, 
affyPLM, CLL, and RankProd. When two meta-analyses were 
performed, the combined T-value approach (threshold being ab-
solute value >7) and the Z-score meta-analysis (threshold being 
absolute value >3) were used as combination cutoff criteria, and 
the differentially expressed genes (DEGs) were authenticated.

Pathway Enrichment Analysis
Built on the outcomes of the meta-analysis, the most significant-
ly differentially expressed genes were evaluated by using enrich-
ment analyses. Set of genetic analysis tools based on network 
(http://www.webgestalt.org/option.php), through to the false 
discovery rate significantly threshold (FDR) <0.1 gene and ge-
nome Kyoto encyclopedia (KEGG pathway enrichment analysis 
to identify the most significant differences between genes. To 
test the purpose of immune cells in breast cancer, we provided a 
text-based gene matrix transposed file wherein each line defined 
LM22 with their markers [25]. Gene Set Enrichment Analysis 
(GSEA) was performed genes hierarchical by T-values in the 
meta-analysis. Subsequently, the LM22 process study was con-
ducted using the following terms: B cell memory, B cells naive, 
Plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 mem-
ory activated, T cells CD4 memory resting, T cells controlling 
(Tregs), T cells follicular aid, T cells gamma delta, NK cells rest-
ing, NK cells activated, Macrophages M2, Monocytes, Macro-
phages M1, Dendritic cell resting, Macrophages M1.

Protein-Protein Interaction Network Construction
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http:/string- db.org) provides information 
on protein-protein interactions (PPIs) [26]. We used STRING to 
model a PPI network of DEGs with a confidence score of > 0.7 
as the result truncation criterion was used to gain insight into 
and forecast the cellular structure and biological activity of the 
defined DEGs. Using cytoscape software, the PPI network was 
visualized.

Selection of Pivotal Modules
CentiScaPe 2.1 was used to assess a PPI network’s degree, tight-
ness, and intermediacy. The degree of a node is the total number 
of incident edges (interactions) on a node [27]. We authenticated 
the central gene, based on the degree of a node. The Molecular 
Complex Detection (MCODE) program was later used to pick 
the most important aggregate module in Cytoscape’s PPI net-
work, where the cutoff degree = 2, node score cutoff = 0.2, depth 
= 100, and K-core = 2 was the highest. In addition, the WEB-
based GEne SeT AnaLysis Toolkit was used to perform DEG ‘s 
study of KEGG pathway enrichment in each module with a large 

  Volume 4 | Issue 4 | 139Adv Bioeng Biomed Sci Res, 2021 www.opastonline.com

FDR threshold < 0.1.

Survival Analysis using Module Genes
The Gene Expression Profiling Interactive Analysis (GEPIA) 
database (http:/gepia.cancer- pku.cn/detail.php) had been used 
to illustrate the connection in breast cancer patients between 
the module genes and survival. GEPIA’s RNA-Seq dataset was 
based on the Xena project of the University of California Santa 
Cruz (http:/xena.ucsc.edu), that is measured using a convention-
al pipeline [28]. The 95% confidence interval and p-value hazard 
ratio were determined and the map was visualized.

Receiver Operating Characteristic Curve and Logistic Re-
gression Analysis
Using the receiver Operating Characteristic (ROC) curve study, 
the sensitivity (true positive rate) and specificity (true negative 
rate) of module genes in the efficacy of breast cancer chemo-
therapy were evaluated, and the area under the curve (AUC) was 
explored using MedCalc statistical software.

To further evaluate how well the genes predict breast cancer che-
motherapy efficacy, we constructed a logistic regression mod-
el using R statistical software for five cross-validation [29]. A 
training set was constructed using 70% of the original dataset 
selected at random, whereas the remaining 30% was used as 
a test set to verify the model. Moreover, precision, recall rate, 
accuracy, and F1 scores were introduced to better evaluate the 
performance of the subclassification models. The accuracy of 
the classifier was set as the amount of the overall figure of cor-
rect judgments, and high accuracy was defined as high accuracy 
of breast cancer chemotherapy efficacy prediction. The rate of 
recall measured the proportion of all objects that were retrieved 
(TP) against all “objects to be retrieved” (TP+FN). Precision 
measured the percentage of all objects retrieved (TP+FP), “to 
be retrieved.” Accuracy and recall affect each other, and ideally, 
their values are unlikely to be both large; hence, we considered 
calculating F1 scores as comprehensive evaluation indicators. 
F-measure has been described as the weighted harmonic mean 
of recall and precision, and is a comprehensive index of evalua-
tion. The aforementioned methods are summarized in Figure 5.

Results
Identification of Differentially Expressed Genes Through 
Meta-Analysis
Based on the inclusion norm, eight GEO datasets from the 
NCBI were obtained, listed as fol- lows: GSE93601, GSE10780, 
GSE39004 GPL6244, GSE39004 GPL13534, GSE65212, 
GSE45827, GSE87049, GSE29044 (Figure SI). Meta-analysis 
contained a total of 1,247 samples of breast cancer and 801 nor-
mal tissue samples. The GEO platform files were collected from 
the datasets using the Affymetrix gene chips and Illumina gene 
chips (Table 1).

Figure SⅠ: Selection procession of microarray datasets for me-
ta-analysis.

We reported 9,595 common genes across all databases, and used 
two methods to conduct a meta-analysis of multiple gene ex-
pression profiles based on combined T-values and Z-scores. A 
total of 222 DEGs were identified (Figure 1), as well as 161 
upregulated and 61 downregulated genes.

Figure 1: The schematic workflow of the present study.
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Pathway Enrichment Analyses
For additional discover the roles of the DEGs, we grouped the 
222 DEGs into different func- tional KEGG groups and then car-
ried out study of pathway enrichment with a meaning threshold 
of < 0.05. The top ten words enhanced in the group KEGG were 
formulated based on their p-val- ues (p< 0.05) (Figure 2A-B). 
The highest concentrated KEGG pathway terminology for the 
DEGs were Cell cycle (hsa04110), Tight junction (hsa04530), 
Th1 and Th2 cell differentiation (hsa04658), NF-κB signaling 
pathway (hsa04064), and T cell receptor signaling pathway 
(hsa04660), Th17 cell differentiation(hsa04659), Primary im-
munodeficiency(hsa05340), Oocyte meiosis(hsa04114), Ubiq-
uitin mediated proteolysis(hsa04120), Hippo signaling path- 
way(hsa04390). In addition, we also performed KEGG pathway 
analysis based on the Z-score of common genes, and the results 
showed that the cell cycle, DNA replication, pyrimidine metabo- 

lism, and primary immunodeficiency were significantly enriched 
(Figure 2C-F).

To investigate the immune-related characteristics that might be 
involved in immunoreactive breast tumors, GSEA enrichment 
analysis based on the LM22 pathway was performed to predict 
the tumor microenvironment. Newman et al. constructed a leu-
kocyte signature matrix that ena- bled further applications on 
immune infiltration using cell-type identification by approxi-
mating relative subsets of RNA transcripts, a new method that 
allows a large-scale analysis of RNA mix- tures [8]. Based on 
the LM22 gene sets, GSEA results showed that T cells gamma 
delta was signifi- cantly activated (Figure 2G). Compared to the 
normal group, genes associated with T cells were significantly 
activated in breast cancer tissues.

Figure 2: Venn diagram of DEGs.The 222 overlapping DEGs based on |z Score|>3 and |Test Statistic|>7.
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Hub Gene and Module Screening from the Protein-Protein 
Interaction Network and Survival Analysis
The STRING database was used to expose the central PPI net-
work to further analyze the DEGs and their potentially protein 
levels. Second, we set the PPI network as having 222 nodes and
271. Using the MCODE program (Figure 3A-B) the top 2 im-
portant modules were acquired from the DEGs PPI network. 
Then, the findings of the KEGG pathway review showed that the 
genes in module 1 were predominantly associated with the cycle 
of the cells, and four genes in module 2 were strongly correlat-
ed with the pathways associated with T. These include CD247 

(CD247), zeta chain of T cell receptor associated protein kinase 
70 (ZAP70), LCK proto-oncogene, Src family tyrosine kinase 
(LCK), and protein kinase C theta (PRKCQ).

To investigate the relationship between patient prognosis and 
these four genes, survival analy- sis of hub genes was per-
formed. The results demonstrated that the expression of CD247 
(P = 0.0058, HR=0.63), LCK (P = 0.041, HR=0.71), and PRK-
CQ (P = 0.019, HR=0.68), ZAP70 (P = 0.027, HR=0.69) (Figure 
3C-F). Suggesting that these genes are protective factors.

Figure 3: Pathway enrichment analyses of 222 DEGs. (A)The functional enrichment bubble map of pathways by KEGG pathway 
analysis, bubble size represents the number of gene in the pathways. (B) Genes included in the first ten pathways of KEGG pathway 
analysis. (C) The top 10 pathways and bottom 10 pathways of the KEGG pathway analysis based on the Z-score of common genes. 
(D-F) GSEA indicated significant enrichment of immune-related phenotype in the high-risk group patients. FDR false discovery 
rate; NES normalized enrichment score. (G) GSEA results based on the LM22 gene sets.
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Identifying Key Genes for Predicting Breast Cancer Chemo-
therapy Efficacy
Chemotherapy efficacy data of 219 patients were obtained and 
categorized into complete re- sponse, partial response, clinical 
progressive disease, and stable disease. We classified complete 
response and partial response into the category of good efficacy, 
whereas clinical progressive dis- ease and stable disease were 
classified into the category of poor efficacy.

ROC curve analysis was performed using data from the TCGA 
database, and AUC values were compared to assess the sensi-
tivity and specificity of the four overlapping genes above-men- 
tioned in the efficacy of chemotherapy for breast cancer. The 

genes were listed according to their AUC values (Figure 4A). 
ROC curves of PRKCQ in the TCGA database were displayed, 
showing sensitivity and specificity with an AUC of 0.660 (Fig-
ure 4B). Logistic regression was modeled af- terwards to further 
appraise the effectiveness of PRKCQ in predicting therapeutic 
efficacy. In the ROC curve of PRKCQ, the mean AUC (0.690 
± 0.033) (Figure 4C) was obtained after the con- struction of 
the confusion matrix. The average values of accuracy, precision, 
recall, and F1-score were 0.907, 1.000, 0.951, and 0.690, respec-
tively (Figure 4D). These results indicated that PRKCQ showed 
a positive performance in differentiating drug-sensitive patients 
from the non- sensitive ones.

Figure 4: Identification and analysis of key genes. (A,B) 2 modules obtained from PPI network of DEGs using the MCODE soft-
ware. (C-F) Four genes in module 2 (CD247, ZAP70, LCK, PRKCQ) significantly correlates with better OS of breast cancer.
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Figure 5: Identification of key genes for diagnosis of BC.(A) ROC curve analysis of the four DEGs involved in T-cell-associat-
ed pathways and in module 2 in TCGA database. Genes with an AUC value are shown. (B) ROC curve to assess sensitivity and 
specificity of PRKCQ expression as a diagnostic biomarker for BC in TCGA database. (C) ROC curve of PRKCQ in the five-fold 
cross-validation. (D) Evaluation metrics of each fold. All data are represented by mean ± SD.

Discussion
There has been a change toward more effective genetic screen-
ing, in recent years, to identify specific gene mutations associat-
ed with breast tumors, which could lead to “personalized medi- 
cine” and improved patient outcomes. Although a great deal of 
data has been obtained through mi- croarray research, most of 
these reports show different results from various experimental 
programs and microarray platforms. Even for the same gene, the 
results of differential expression can be re- versed in different 
data sets. Therefore, these data are limited, to some extent, and 
may affect DEG identification. A meta-analysis of several mi-
croarray datasets, nevertheless, extends the sample
 
size, thereby making DEGs recognition more accurate.
In the contemporary research, we achieved a meta-analysis to 
regulate the DEGs between breast tumor tissues and standard 
breast tissues. By combining the T-value and Z-scores, we iden-
ti- fied 222 DEGs in breast tumor tissues. We categorized these 
DEGs into functional groups accord- ing to their KEGG path-
ways. We used MCODE analysis to obtain the two most import-
ant modules from the DEG PPI networks. Genes in component 
1 were primarily associated with the cell cycle, whereas genes 
in module 2 were primarily enriched in T cell related pathways 
(T cell receptor sig- naling pathway, Th1 and Th2 cell differ-
entiation, Th17 cell differentiation, and primary immuno- defi-
ciency). We then used the expression of these four genes and the 
chemotherapy results of breast cancer patients for ROC curve 
analysis. Logistic regression analysis was used to confirm our 
results, which showed that PRKCQ had good predictive ability 
for therapeutic efficacy.
Immune disorders lead to tumor growth and T cells have been 
long identified to perform a major function in manipulating 

endogenous antitumor immunity [9,10]. Earlier research has 
shown that ZAP70, LCK, and CD247 play a vital role in gen-
erating the T cell receptor indicating path [11]. With the latest 
growing understanding of the immune micro-environment in tis-
sues of breast cancer, immune escape has become a significant 
predictor of the development of breast cancer [12-15]. After the 
occurrence of a tumor, tumor cells associate continuously with 
the immune mi- croenvironment and eventually acquire the im-
mune escape ability [16].

PRKCQ is a part of the new protein kinase C (PKC) family 
and features a special protein do- main system comprising of 
diacylglycerol functional groups; nevertheless, it lacks the cal-
cium binding sites typical of classical PKCs [17]. PRKCQ is 
typically recognized in the hematopoietic system, mainly in T 
cells, mast cells, natural killer (NK) cells and platelets and in the 
skeletal mus- cles, liver, thymus and nervous system. [18-21]. 
Past researchers have determined the essential role of PRKCQ 
in controlling multiple developmental concepts in T cell biology, 
such as the inte- gration of TCR and CD28 signals triggers the 
activation of signaling pathways (NF-ÿB and AP-1); these are 
necessary for efficient T cell activation, proliferation and differ-
entiation, the effector function of Th subsets (especially Th2 and 
Th17 cells), [22, 23]. Genetic and biochemical ap- proaches re-
vealed that mutation of the PRKCQ gene contributes to impaired 
receptor-induced stimulation of the signaling pathways AP-1, 
NF-ÿB, and NFAT, resulting in defective T-cell activa- tion and 
aberrant expression of apoptosis-related proteins, eventually 
causing deprived T-cell sur- vival [24]. Sadly, we cannot plan 
cell research to further analyze the effects of T cells and the role
of the cell cycle.
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Overall, the present study assessed DEGs by means of combined 
bioinformatics investigation to identify possible biomarkers and 
to forecast breast cancer growth and prognosis. Our research 
found that breast cancer development is associated with low ex-
pression of genes in the T cell pro- cess, offering strong evidence 
for potential genomic-based individualized care. Our study find-
ings show that PRKCQ is associated with T cell pathways and 
its expression is a good predictor of drug efficacy. PRKCQ could 
therefore be a biomarker for evaluating breast cancer prognosis. 
What is novel about this study is that it is the first time to find 
the relationship between T-cell related path- way genes and che-
motherapy and prognosis. Moreover, our large amount of data is 
the result of the integration analysis of multiple data sets, which 
is representative.

Conclusion
In our study, we find that PRKCQ is associated with T cell path-
ways and its expression is a good predictor of drug efficacy. It 
can therefore be used as a biomarker of breast cancer progno-
sis. Our findings also provide strong evidence for future ge-
nome-based individualized treatment of breast cancer.
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