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Abstract
A rigorous multiobjective nonlinear model predictive control is performed on the microbiome dynamic model that takes 
into account competition, amensalism, parasitism, neutralism, commensalism and cooperation. The optimization lan-
guage pyomo is used in conjunction with the state of the art global optimization solver BARON. It is demonstrated that 
when the species that produces the required product is favorable to the other species there is an initial decrease in the 
required product before an increase happens. 
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1. Introduction
There has been a lot of research that describe the complex inter-
actions of the many microbial organisms that exist in the micro-
bial cluster in chemostats. The microbial consortium is a com-
plex system with higher‐order dynamic characteristics that are 
governed by commensalism, amensalism, co-operation, neutral 
behavior and parasitism. To explain these complex interactions, 
highly sophisticated nonlinear models have been developed. 
Such nonlinearities pose challenges to the performance of opti-
mization and control tasks. In this article multiobjective nonlin-
ear model predictive control for a dynamic microbiome model is 
performed using the modeling language Pyomo in conjunction 
with the state of the art global optimization solver BARON. The 
document is organized as follows. The background is followed 
by the description of the model equations and the nonlinear 
model predictive control strategy. This is followed by the dis-
cussion of the results and conclusions 

2. Background
Fredrickson & Stephanopoulos and Du et al, discuss the commu-
nications between the microbes via metabolic or genetic signals 
and these interactions are responsible for the resilience of the 
whole microbial community to adverse conditions [1,2]. Such 
sustainable resilience may be impossible for the individual cells 
[3,4]. The advantages that cocultures demonstrate over monocul-
tures include robustness to perturbations, compartmentalization 
of incompatible reactions and division of labor [5,6]. Microbial 
coculture or consortia have been applied to configurate differ-
ent sections of metabolic pathways to improve catalytic perfor-
mance and has led to the production of biofuels and nutritional 
products [7-11]. Synthetic biology tools such as cell signalling 
translators and biosensors have been developed to regulate the 
composition of cultures [12-16]. Microbial interactions are im-
portant to develop advanced biomaterials, biofilm formation and 

disarm antibiotic resistant superbugs [17-19]. Some researchers, 
present kinetic models that describe the effect of nutrient and en-
vironmental conditions on cell growth [20-22]. Several workers 
have modified the original Monod model to incorporate extra 
terms [23-26]. Tsuchiya et al., have formulated a set of coupled 
Monod equations that exhibit oscillatory behavior [27]. Self-in-
hibitory factors and nutrient limiting conditions have been incor-
porated in a hybrid Monod model 10 that accurately describes 
cell growth. 

The Lotka Volterra modeln describes the dynamic species inter-
action in closed systems [28,29]. The complex dynamics of the 
interacting species in the microbial consortia poses challenges 
to track the population changes in the interacting species. The 
complexity of the dynamics is because of the presence of singu-
larities such as limit points and branch points (that give rise to 
multiple trajectories) and Hopf bifurcation points that cause os-
cillations. The presence of microbes everywhere, and their role 
in human health has resulted in the design of bacterio-therapies 
where bacteria is administered to patients for therapeutic pur-
poses. One must clearly understand the details of the microbial 
dynamics in a colony to be able to the design of resulting thera-
peutics. The human microbiome constitutes all the microorgan-
isms that live in and on the surface of our bodies. The microbi-
ome plays a significant role in several human diseases [30-35]. 
Given the microbiome’s role in human health, and in the design 
and development of bacterio-therapies, which are cocktails of 
several bacteria working together to achieve specific therapeutic 
effects, it is important to understand the population dynamics in 
the microbiome.

Stein et al, model microbial dynamics using the continuous time 
deterministic generalized Lotka-Volterra (gLV) equations, re-
duce it to a discrete time linear model via a log transform, and use 
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a L2 penalized linear regression to infer model parameters [36]. 
Some researchers discuss the ecological interaction types (mu-
tualism, commensalism, amensalism, neutral behavior, competi-
tion and exploitation) [37-40]. This led to the development and 
parameterization of community dynamic models [41-45]. The 
aim of this paper is to perform rigorous multiobjective nonlinear 
model predictive control on the microbiome using the model de-

scribed in Xu that takes into account competition, amensalism, 
parasitism, neutralism, commensalism and cooperation [10]. 
Details of this model are presented in the next section.

3. Microbiome Model 
The equations that govern the microbiome model are [10]
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The nomenclature in these equations are given by 

 _ axA m maximal specific growth rate for species A (1/h) 

  A  specific growth rate for species A (1/h)  

 _ axB m   maximal specific growth rate for species B (1/h) 

 B  specific growth rate for species B (1/h) 

 SAK   substrate saturation constant for species A (g/L) 

 SBK   substrate saturation constant for species B (g/L) 

 ASY   species A biomass yield from substrate S (g/g) 

 BSY   species B biomass yield from substrate S (g/g) 

 BAY   product B (PB) yield from intermediate A (PA) (g/g) 

 PSY   intermediate A (PA) yield from substrate S (g/g) 

 α    growth‐associated intermediate A (PA) formation coefficient (dimensionless) 

 β     growth‐unassociated intermediate A (PA) formation rate (1/h) 

 AB   interaction coefficient of species A imposes on species B (dimensionless) 

  BA   interaction coefficient of species B imposes on species A (dimensionless) 

 k      rate constant of intermediate A (PA) converted to product B (PB) (1/h)  

 Km    intermediate A saturation constant for species B (g/L) 

 Ax   species A biomass in the CSTR (g/L)  

 Bx   species B biomass in the CSTR (g/L) 
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•	  β growth‐unassociated intermediate A (PA) formation rate 

(1/h)
•	        interaction coefficient of species A imposes on species 

B (dimensionless)
•	        interaction coefficient of species B imposes on species 

A (dimensionless)
•	 k rate constant of intermediate A (PA) converted to product 

B (PB) (1/h) 
•	 Km intermediate A saturation constant for species B (g/L)
•	        species A biomass in the CSTR (g/L) 
•	        species B biomass in the CSTR (g/L)
•	        intermediate A concentration in the CSTR (g/L) 

•	    product B concentration in the CSTR (g/L)
•	 S substrate concentration in the CSTR (g/L) 
•	     substrate concentration in the feeding stream (g/L) 
•	 D dilution rate in the CSTR (1/h)

Chart 1 shows the nature of the interactions when the values of    
             are -1, 0 or 1. These interactions are competition, amen-
salism, parasitism, neutralism, commensalism and cooperation. 
The interaction coefficient was defined by a dimensionless factor 
(              ) that describe the interactions between species A and 
B. A pointed arrow indicates beneficial relation, a blunt‐ended 
arrow indicates harmful relation The other parameter values are      
            = 1.6/h;             = 1.2/h;       = 1.0 g/L;        = 0.8 g/L;       = 
50g/L;       = 0.5 g/g;       = 0.8 g/g;        = 0.8 g/g;      = 0.4 g/g; 
α = 0.5 and β = 0.5
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Chart. 1  
4. Multiobjective Nonlinear Model Predictive Control (MN-
LMPC )method
The multiobjective nonlinear model predictive control (MN-
LMPC) method is used to perform the calculations [46,47]. This 
method is rigorous and it does not involve the use of weighting 
functions not does it impose additional parameters or additional 
constraints on the problem unlike the weighted function or the 
epsilon correction method For a problem that is posed as 

The MNLMPC method first solves dynamic optimization prob-
lems independently minimizing/maximizing each xi individually 
[48]. The minimization/maximization of xi will lead to the val-
ues xi

* . Then the optimization problem that will be solved is

This will provide the control values for various times. The first 
obtained control value is implemented and the remaining dis-
carded. This procedure is repeated until the implemented and the 
first obtained control value are the same. This will also enable in 
the drawing of the Pareto Curves which show the variation of the 
optimal values of one variable with another.

The optimization package in Python, PYOMO where the dif-
ferential equations are automatically converted to a Nonlinear 

Program (NLP) using the orthogonal collocation method The 
Lagrange-Radau quadrature with three collocation points is used 
and 10 finite elements are normally chosen to solve the opti-
mal control problems [49].The resulting nonlinear optimization 
problem will be solved using the solver Baron BARON imple-
ments a Branch-and-reduce strategy to provide valid lower and 
upper bounds for the optimal solution and provides a guaranteed 
global optimal solution [50]. This algorithm combines constraint 
propagation, interval analysis, and the duality in it reduces arse-
nal with enhanced branch and bound concepts as it winds its way 
through the hills and valleys of complex optimization problems 
in search of global solutions. BARON is accessed through the 
PYOMO-GAMS27.2 interface [51]. To summarize the steps of 
the algorithm are as follows
1.	 Minimize/maximize xi subject to the differential and alge-

braic equations that govern the process using PYOMO and 
BARON. This will lead to the value x*

i  
2.	 Minimize              subject to the differential and algebraic 

equations that govern the process using PYOMO and BAR-
ON. This will provide the control values for various times.

3.	 Implement the first obtained control values and discard the 
remaining.

4.	 Repeat steps 1 to 4 until there is insignificant difference be-
tween the implemented and the first obtained value of the 
control variables. 

 PB is the required product that is produced from PA Hence both   
PB  and PB  are maximized. The maximization of PA and PB will 
yield the values PA

*  and PB
*. The function                    

is minimized. All the optimization is performed subject to equa-
tions 1-7. This is done for various combinations of γAB  and   γBA 
which individually take on values of -1, 0 and 1. The combina-
tions of γAB  and γBA are
 [(0,0), (0,-1), (0,1), (1,0), (1,-1), (1,1), [(-1,0), (-1,-1), (-1,1)]. 
The dilution rate D is the control variable. 

5. Results and Discussion
Figures 1(a, b), 2(a,b),….9(a,b) show the plots of PA  and PB ver-
sus t. Figures 1c-9c show the Pareto surfaces( PA versus PB ver-
sus t). In all the cases where  γBA  is 1 (figures 2a,2b,2c, 5a,5b,5c, 
8a,8b,8c) there is an initial monotonic decrease in PA  while  PB 
first decreases before increasing. In all other cases, there is a 
monotonic increase in PA and a monotonic decrease in PA To un-
derstand the cause for this one has to compare PA the   versus t 
curves for the cases when γBA is not equal to 1, with the same 
curve when γBA is unity. While all the curves show an initial de-
crease in PA  (in figs 2a and 8a, where γBA  is 1,  PA also increases 
after an initial decrease) the initial decrease in the cases when γBA 
is not equal to 1, is less pronounced than when  γBA is unity. The 
reason for this is the that initially the conversion of xA is used in 
the production of production of xB  and much of the xB  results in 
more  xA and not in  PA or  PB Hence ,      < 0  until the value of  
xB  goes high enough to cause to value of the derivative        to 
become positive. Therefore, when the interactive coefficient of 
the species that produces the required product is 1 (or when the 
species that produces the required product is favorable to the 
other species) one must wait for sometime before the required 
product concentration starts to increase. 
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Fig 1a( AB  = 0 ; BA  =0) 

 

 

 

 

 

Fig 1a( AB  = 0 ; BA  =0) 
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Fig. 1b ( AB  = 0 ; BA  =0) 

 

 

 

Fig. 1b ( AB  = 0 ; BA  =0) 
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Fig. 1 c ( AB  = 0 ; BA  =0) 

 

 

 

 

 

 

 

 

Fig. 1 c ( AB  = 0 ; BA  =0) 

 

 

 

 

 

 

 

 

 

 

Fig 2a ( AB  = 0 ; BA  =1) 

 

 

 

 

 

Fig 2a ( AB  = 0 ; BA  =1) 
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Fig 2b( AB  = 0 ; BA  =1) 

 

 

 

 

 

 

Fig 2b( AB  = 0 ; BA  =1) 
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Fig 2c( AB  = 0 ; BA  =1) 

 

 

 

 

 

 

Fig 2c( AB  = 0 ; BA  =1) 
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Fig 3a( AB  = 0 ; BA  =-1) 

 

 

 

 

 

 

Fig 3a( AB  = 0 ; BA  =-1) 
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Fig 3b( AB  = 0 ; BA  =-1) 

 

 

 

 

 

 

Fig 3b( AB  = 0 ; BA  =-1) 
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Fig 3c( AB  = 0 ; BA  =-1) 

 

 

 

 

 

 

 

Fig 3c( AB  = 0 ; BA  =-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4a( AB  = 1 ; BA  =0) 
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Fig 4b( AB  = 1 ; BA  =0) 
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Fig 5a ( AB  = 1 ; BA  =1) 
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Fig 6a ( AB  = 1 ; BA  =-1) 
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Fig 6b( AB  = 1 ; BA  =-1) 

 

 

 

 

 

 

 

 

 

Fig 6b( AB  = 1 ; BA  =-1) 
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Fig 7a( AB  = -1 ; BA  =0) 
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Fig 8a( AB  = -1 ; BA  =1) 
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Fig 9c( AB  = -1 ; BA  =-1) 

5. Conclusions and Future Work
Multiobjective nonlinear model predictive control of the dynam-
ics in the microbial consortium involving two active organisms 
was performed. The dynamics involve competition, amensal-
ism, parasitism, neutralism, commensalism and cooperation. It 
is shown that when the species that produces the required prod-
uct is favorable to the other species there is an initial decrease 
in the required product before an increase takes place. A wait-
ing period is necessary before the concentration of the required 
product starts to increase. Future work will involve more than 
two active organisms in the microbiome.

Data Availability Statement
The authors confirm that the data supporting the findings of this 
study are available within the article.
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