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Abstract
A rigorous multiobjective nonlinear model predictive control strategy was used for dynamic models involving the 
microalgae culture process. The models are the droop model, the nitrogen limited microalgae culture process model, and 
the Thornton model. It was shown that the implementation of the NLMPC method causes an increase in algal growth. 
The optimization language pyomo is used in conjunction with the state-of-the-art global optimization solvers IPOPT 
and BARON. Pareto surfaces are generated. When some optimal control profiles were found to exhibit sharp spikes, an 
activation factor involving the hyperbolic cotangent function was used to eliminate the inconvenient spikes.
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1. Introduction
 The benefits of producing biodiesel from microalgae are well-
known and welldocumented. These benefits arise from both 
productivity and sustainability. The production of biodiesel 
from microalgae is both sustainable and beneficial. It has been 
shown that the oil productivity of microalgae is much higher 
than the oil productivity of many other crops [1-11]. At this time, 
microalgae seem to be the primary source of biodiesel that can 
meet the growing need for energy. Microalgae are small-size 
biochemical industries as they consume nutrients to grow. There 
has been a considerable amount of modeling work by. Thornton, 
Weinhart, Bokhove Zhang., Sar, Kuma., Pisarenco, Rudnaya., 
Sacenco, Rademacher., ijlstra., Szabelska., Zyprych, Schans., 
Timperio, Daneerman], provided a model that considered the 
microalgae harvest rate and death rate. The effect of light and 
nutrients caused the development of the more complex nitrogen-
limited microalgae culture process [MCP] model [12-14]. 

This model was discussed in detail by Bernard and co-workers 
[16]. The research of Thornton et al [15] and Bernard et al [16] 
demonstrate that there is more than one factor that plays a role 
in the growth of microalgae. The aim of this work is to therefore 
perform multiobjective nonlinear model predictive control on 
the three models 1) the Droop model 2) the Thornton model 
and 3) the microalgae culture process [MCP] model. The paper 
is organized as follows. First, the three models are described. 
This is followed by a description of the multiobjective nonlinear 
model predictive control procedure. The results and discussion 
are then presented, followed by the conclusions.

1.2. Droop Model
The Droop model is very commonly used to demonstrate the 
microalgal culture dynamics and consists of three equations [12, 
13]:

Here X represents the biomass, S the concentration of the limiting 
nutrient [e.g., a nitrogen limitation induces lipid synthesis], q is 
the internal nitrogen cell quota which is defined by the amount 
of nitrogen per biomass cell unit, D is the dilution rate, in Sin is 
the influent inorganic nitrogen concentration and the growth rate 
of the biomass. The absorption rates P(S(t)) is represented by 
Michaelis Menton kinetics

whereas the maximum uptake rate and the half-saturation 
constant for substrate uptake. The growth rate µ(q) is based on 
the Droop function
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µ is the growth rate at a hypothetical infinite quota and is the 
minimal cell quota for which no algal growth can take place? 
The units of X and S are in g/L, while the units of µ, d, p are day 
-1. The parameter values are pm= 0 0.1 µ = 1.645, 0.04, qm=0.04, 
Ks=7.5. The two control variables are D (0.1 -1) the dilution rate, 
and in Sin (30-100) the influent inorganic nitrogen concentration.

1.3. Nitrogen Limited MCP model
The Nitrogen limited MCP model [Bernard] accounts for the 
response of microalgal pigment density to both light intensity 
and available nutrients [16]. The equations that constitute this 
model are
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Here X represents the biomass, S the concentration of the limiting 
nutrient [e.g., a nitrogen limitation induces lipid synthesis], q is 
the internal nitrogen cell quota which is defined by the amount 
of nitrogen per biomass cell unit, D is the dilution rate, Sm is the 
influent inorganic nitrogen concentration and the growth rate of 
the biomass. I0 irradiance at the surface. The units of X and S are 
in g/L, while the units of  µ, p ,d, are day-1. I*(µmoml-2s-1) is the 

irradiance at which the cells are photo-acclimated and in a light 
homogeneous steady-state culture, this variable is exactly the 
mean radiance I(µmoml-2s-1). Q1 is the upper limit for q and R is 
the respiration rate. A detailed description of all the parameters 
in the nitrogen limited MCP model is present in Bernard et al 
[16]. The parameter values and units are presented in table 1.

 

 

 

 

 

 

Table 1 

Parameter Value units 

   1.6 Day-1 

0Q   0.053 gNgC-1 

lQ   0.11 gNgC-1 

   0.1 gNgC-1 Day-1 

gK   1.25 2 1molm s − −
  

sK   50 gNm-3 

R 0.0081 1day−
  

a 16.2 m2 gChl-1 

b 0.087 m-1 

l 0.054 m 

max   0.12 gChl-1m2 

 

 

 

Table:1
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1.4. Thornton Model
The Thornton model [Thornton, A., Weinhart, T., Bokhove, 
O., Zhang, B., Sar, D.M. v. d., Kumar, K., Pisarenco, M., 
Rudnaya, M., Sacenco, V., Rademacher, J., ijlstra, J., Szabelska, 
A., Zyprych, j., Schans, M.v.d., Timperio, V. daneerman, F. 
and Setyowati, Suci and Mardlijah, Mardlijah, describes algal 

growth that is influenced by carbon dioxide concentration, 
nutrients, and glucose [15, 17]. Carbon dioxide is fed into the 
water and is converted into glucose by photosynthesis. The 
algae are additionally reduced because of harvest and death. The 
equations governing the Thornton model are
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A is the concentration of Algae, M is the nutrient concentration, 
and S and C represent the concentrations of glucose and carbon 
dioxide. Im and represent the inflow of nutrients and carbon 
dioxide while M1urn (value = 4) is the half-saturation constant 
for nutrient concentration inside algae. dr (value = 0.46) and hr 
(value =2) represent the harvest and death rates of the algae. 
The maximal nutrient concentration inside algae, pmax = 0.4. 
The rate constant for biomass growth and the rate constant 
for photosynthesis, αA, αS are 10.2 and 67.6 respectively. The 

constants k1 k2 k3 are 0.4, 0.05 and 0.05

2. Methodology [MNLMC method]
The multiobjective nonlinear optimal control [MOOC] method 
was first proposed by Flores Tlacuahuaz, Pilar and Toledo and 
used by Sridhar [18, 19]. This method does not involve the use 
of weighting functions nor does it impose additional constraints 
on the problem unlike the weighted function or the epsilon 
correction method [20]. For a problem that is posed as
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This will provide the control values for various times. The 
first obtained control value is implemented and the remaining 
discarded. This procedure is repeated until the implemented and 
the first obtained control value are the same. The optimization 
package in Python, Pyomo (Hart., Laird, Watson. Woodruff, 
Hackebeil), where the differential equations are automatically 
converted to a Nonlinear Program [NLP] using the orthogonal 
collocation method [21, 22]. The LagrangeRadau quadrature 
with three collocation points is used and 10 finite elements are 
chosen to solve the optimal control problems. The resulting 
nonlinear optimization problem was solved using the solvers 
IPOPT [23, 24]. BARON implements a Branch-and-reduce 
strategy to provide valid lower and upper bounds for the optimal 
solution and provides a guaranteed global optimal solution. This 
algorithm combines constraint propagation, interval analysis, 
and the duality in it reduces arsenal with enhanced branch and 
bound concepts as it winds its way through the hills and valleys 
of complex optimization problems in search of global solutions. 
To summarize the steps of the algorithm are as follows

• Minimize/maximize xi subject to the differential and algebraic 
equations that govern the process using Pyomo with IPOPT and 
Baron. This will lead to the value xi* at various time intervals ti. 
The subscript i is the index for each time step.

• Minimize	      subject to the differential and algebraic 
equations that govern the process using Pyomo with IPOPT and 
Baron. This will provide the control values for various times.
• Implement the first obtained control values and discard the 
remaining.
• Repeat steps 1 to 4 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables.

3. Results and Discussion
3.1. Droop model
For the multiobjective nonlinear model predictive control of the 
droop model, the control variables are           
are maximized individually which leads to the values 46.6396 
and 1.779 respectively. The new optimization problem would be 
the minimization of the function			 
subject the equations 1-5. The obtained NLMPC values of Sin and 
d were 100 and 0.78. Here, figs 1-7 represent the variation of the 
variables with time while figs 8-10 represent the Pareto surfaces. 
Fig. 2 and Fig. 5 show the variation of the control variables d 
and Sin the NLMPC strategy demonstrates an increase in both x 
and µ (figs 1 and 4).
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Figure 1: Droop model x versus t

Figure 2: Droop model d versus t
 

Fig. 2 Droop model d versus t 
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Fig. 3 Droop model x versus t 

 

 

 

 

 

 

 

 

Figure 3: Droop model x versus t

Figure 4: Droop model mu versus t

Figure 5: Droop model Sin versus t

 

 

Fig. 4 Droop model mu versus t 

 

 

 

 

 

 

 

 

 

Fig. 5 Droop model Sin versus t 
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Fig. 6 Droop model mu vs t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Droop model q vs t 
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Figure 7: Droop model q vs

Figure 8: Droop model x t mu surface

 

 

 

 

 

 

 

 

Fig. 8  Droop model x t mu surface 
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Fig. 9  Droop model t x  Sin surface 

 

 

 

 

 

 

Figure 9: Droop model t x Sin surface

Figure 10: Droop model t mu Sin surface

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  Droop model t mu  Sin surface 

 

3.2. Nitrogen limited MCP model
For the multiobjective nonlinear model predictive control of the 
nitrogen limited MCP model, the control variables are	
	       	       are maximized individually which leads to 
the values 206.95 and 3.1962 respectively. The new optimization 
problem would be the minimization of the function			 
		                   subject the equations 6-11The
obtained NLMPC values of Sin d and I0 were 30, 0.1 and 4.7. 
Figures 11-15 and figures 16a-e show the variation of the 
variables with time. Figs 12 and 13 show the variation of x and 
µ with time. While x is seen to increase µ tends to decrease with 
time although by a small value. Figs 11, 14 and 16(a-e) show 

the variation of d, Sin I0 While the variation of d, and Sin are 
relatively smooth (without spikes), the variation of I0 exhibits 
spikes (fig. 16a) which makes the implementation of the control 
difficult. In order to remedy this situation, I0 was replaced by I0 
tanh (I0). This replacement was not effective in removing the 
spikes (figs 16 b and 16 c). However, the pattern of the profiles in 
figures 16 b and 16c were very similar. This gave an indication 
that instead of by I0 tanh, I0 coth(I0). would be effective. The 
replacement of I0 by I0 coth (I0) was successful in removing the 
unwanted spikes that would make the implementation of the 
control difficult. Figures 17-21 show the Pareto surfaces for the 
nitrogen limited MCP model.

5.  The obtained  NLMPC values of inS  and d were  100  and  0.78. Here, figs 1-7 represent 

the variation of the variables with time while figs 8-10 represent the Pareto surfaces.  Fig. 
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demonstrates an increase in both x and   (figs 1 and 4).  
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Fig. 11 Nitrogen limited MCP model d versus t 

 

 

 

 

 

Fig. 12 Nitrogen limited MCP model x versus t 

 

 

Fig. 13 Nitrogen limited MCP model mu versus t 

 

 

 

 

 

 

 

Figure 11: Nitrogen limited MCP model d versus t

Figure 12: Nitrogen limited MCP model x versus t

Figure 13: Nitrogen limited MCP model mu versus t
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Fig. 14 Nitrogen limited MCP model Sin versus t 

 

 

 

 

 

 

Fug 15 Nitrogen limited MCP model s versus t 

 

 

 

 

 

 

 

 

 

 

Figure 14: Nitrogen limited MCP model Sin versus t

Figure 15: Nitrogen limited MCP models versus t

Figure 16(a): Nitrogen limited MCP model I0 vs t without activation factor
 

Fig 16a Nitrogen limited MCP model I0 vs  t without activation factor 

 

                   

Fig 16b and c  Nitrogen limited MCP model  I0tanh(I0) as activation factor                     

                                 

Fig 16d and e  Nitrogen limited MCP model  I0cothh(I0) as activation factor                     
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Fig 16a Nitrogen limited MCP model I0 vs  t without activation factor 

 

                   

Fig 16b and c  Nitrogen limited MCP model  I0tanh(I0) as activation factor                     

                                 

Fig 16d and e  Nitrogen limited MCP model  I0cothh(I0) as activation factor                     

 

Fig 16a Nitrogen limited MCP model I0 vs  t without activation factor 

 

                   

Fig 16b and c  Nitrogen limited MCP model  I0tanh(I0) as activation factor                     

                                 

Fig 16d and e  Nitrogen limited MCP model  I0cothh(I0) as activation factor                     

Figure 16(b and c): Nitrogen limited MCP model I0tanh(I0) as activation factor

Figure 16(d and e): Nitrogen limited MCP model I0cothh(I0) as activation factor

Figure 17: Nitrogen limited MCP model t x mu surface

 

         

 

Fig 17 Nitrogen limited MCP model  t x mu surface 
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Fig 18 Nitrogen limited MCP model  t x Sin surface 

 

 

 

 

 

 

 

Fig 19 Nitrogen limited MCP model  t mu Sin surface 

 

 

 

 

 

 

 

 

 

Figure 18: Nitrogen limited MCP model t x Sin surface

Figure 19: Nitrogen limited MCP model t mu Sin surface

Figure 20: Nitrogen limited MCP model t x d surface
 

Fig 20 Nitrogen limited MCP model  t x d surface 
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Fig 21  Nitrogen limited MCP model  t mu d surface 

 

 

 

 

 

 

 

 

 

 

Figure 21: Nitrogen limited MCP model t mu d surface

Figure 22: Thornton model a vs t

Figure 23: Thornton model m vs t

 

Fig. 22 Thornton model a vs t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 Thornton model m vs t 
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Fig. 24 Thornton model s vs t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25 Thornton model ic vs t 

 

 

 

 

Figure 24: Thornton models vs t

Figure 25: Thornton model ic vs t

Figure 26: Thornton model im vs t

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26 Thornton model im vs t 
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Fig. 27 Thornton model a,t,s surface 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Thornton model a, t, s surface

3.3. Thornton Model
For the multiobjective nonlinear model predictive control of 
the Thornton model, the control variables are 		
are maximized individually which leads to the values 16.143 and 
20.1514 respectively. The new optimization problem would be 
the minimization of the function 			       Subject  
the equations 12-15. The obtained NLMPC values of Ic and 
Im are 9.999 and 9.979. Figs 22-26 show the variation of the 
variables with time while fig 27 shows the Pareto surface. While 
the NLMPC procedure causes an increase in the algal biomass 
(fig 22), fig 24 shows an increase and a subsequent decrease in 
the value of the glucose concentration. This is to be expected 
since the growth of the algae requires the consumption of the 
glucose.

3.4. The main results of this work are the following
• A rigorous mulltiobjetive nonlinear model predictive control 
strategy was used for dynamic models involving the microalgae 
culture process. Three different models were used.
• These models are 1) The droop model 2) the nitrogen limited 
microalgae culture process model and 3) the Thornton model. 
It was shown that the implementation of the NLMPC method 
causes an increase in algal growth.
• For the nitrogen limited microalgae culture process model, the 
control profile (the irradiance at the surface) exhibited spikes 
making the implementation of the control difficult. This was 
remedied by using the hyperbolic cotangent function as the 
activation factor. 
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