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Abstract 
Emergency decision-making for communities and countries is an important and critical tool. It improves the effectiveness 
and reliability to response emergencies which minimizes the rate of casualties, environmental damages and economic losses. 
In the event of emergency decision-making, the main issue is extreme imprecision, ambiguity, and fuzziness. This paper is 
devoted to the study of q‐rung orthopair fuzzy aggregation operators under the confidence levels and their applications to 
multiple-attribute group decision making (MAGDM) problems. The concept of q-rung orthopair fuzzy set (q-ROFS) is used 
as tool to describe undetermined information and is superior to the intuitionistic set (IFS) and Pythagorean fuzzy set (PFS). 
The distinguishing feature of the q-ROFS is that the sum of the q-th power of the membership degree and the q-th power of 
non-membership degree is bounded by 1. As a result, the range of uncertain information that it may describe is expanded. In 
this work, we focus on MAGDM problems under the fuzzy environment. First, based on aggregation operators some drawbacks 
of the already existing MAGDM methods are analyzed. 

Moreover, we present some modified operational laws and some of their properties to overcome these drawbacks. Next, related 
to q-ROFS fuzzy-weighted averaging (q-ICROFWA) and fuzzy-weighted power averaging (q-ICROFWPA) aggregation operator 
under confidence levels along with their properties are presented. By using these operators’ q-ICROFWA and q-ICROFWPA 
an advanced method is proposed to deal with MAGDM problems in fuzzy environment. At last, the validity and feasibility of 
this method is illustrated with some numerical examples.
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1. Introduction
Decision-making plays an important role in our daily life. Most of 
the time, we face emergencies and need to make quick decisions 
based on available information. Depending on the nature of the 
problem and situation, each decision requires a different theory 
and context. To handle these situation Zadeh, started this journey 
by introducing the concept of fuzzy set (FS), having just one 
element known as membership function describing only the 
satisfaction degree of an object while no information about the 
dissatisfaction. With the passage of time this theory failed to deal 
with data acquiring the information of interest of dissatisfaction 
and satisfaction. Due to this drawback, Atanassov, introduced 
the notion of IFS, by giving each set element in the form of an 
ordered pair , where  and  stands for the degree of membership 
and non-membership respectively [1,2]. 

After some time, this field was applied in many real life 
problems when the IFS cannot be used to situations with data in 
the form of intervals. So, that mathematician needs some more 
powerful methods to overcome the mentioned drawbacks. Later, 
Atanassov and Gargov generalized the idea of intuitionistic 
fuzzy set and presented the idea of interval-valued intuitionistic 

fuzzy set, where the grade of membership , and non-membership 
, are intervals rather than real numbers with condition . As per 
the requirement for problem solving every method need some 
operators which play the role of back bone, as seen in the above 
mentioned literature, therefore, Aggregation operators are 
very important gears for aggregating the given information in 
different fields about different alternatives [3]. The importance 
of operators related to intuitionistic fuzzy environment and 
interval valued IFS is studied in by many scholars and developed 
several operators with these different areas and applied them on 
decision-making problems. Keeping in view the importance 
of these operators, Wei presented the notion of Hamacher 
and picture fuzzy aggregation operators and also developed 
multi-attribute group decision making problem based on the 
proposed operators [4-9]. Wang et al., presented the idea of 
new operators named as Muirhead mean operators using picture 
fuzzy numbers [10,11]. Rahman developed the notion of several 
averaging and geometric logarithmic aggregation operators 
based on intuitionistic fuzzy numbers. Tian et al. used Shapley 
fuzzy measure and presented the notion of power operator and 
weighted geometric operator. Zhang et al., He et al., Li et al., 
Yang et al., Meng et al., Ding et al. developed many aggregation 

Journal of Mathematical Techniques and Computational Mathematics 
ISSN: 2834-7706



    Volume 3 | Issue 2 |2J Math Techniques Comput Math, 2024

operators based on intuitionistic fuzzy environments [12-18].

With increasing the sophistication of human knowledge 
modeling related to decision making problems and the 
development of theories, needed more improvement to deal with 
the highest powers of IFS, Yager introduced a new concept of 
q-rung orthopair fuzzy set (q‐ROFS). In q‐ROFS q-th power of 
membership with the sum of q-th power of non-membership is 
bounded by one. Moreover, it is proved that IFS and PFS are 
the special cases of q-ROFS [19]. It shows that q‐ROFS is the 
generalization of the above mentioned methods which covers 
a wide range of its information and can handle more suitable 
uncertain environment. Furthermore, Yager in, studied some 
basic properties of q-ROFS and used it in further studies 
related to this class. Next, Liu et al., studied q-rung method for 
operators like orthopair fuzzy weighted averaging (q-ROFWA) 
and orthopair fuzzy weighted geometric (q-ROFWG) and based 
on these solved more decision problems. Currently, Peng et 
al., introduced the idea of q-ROFS information measure such 
as: entropy, similarity measure, inclusion measure and distance 
measure [20-22].

In addition to these amazing achievements in the study of 
q-ROFS, all the information related to multi-decision making 
(MCDM) has not been incorporated into the information fusion 
step in existing efforts.  In the above mentioned methods of 
MCDM the decision was completely dependent on the basis of 
criteria only, where no importance were given to the familiarity 
(known as confidence level) of the experts involved in the process 
of decision making. Therefore, the familiarity of the observer 
must be factored into q-ROFS environment to achieve more 
reliable results in these situations. We focused in this study, to 
overcome these type of disadvantages by combining the expert’s 
confidence level with q-ROFS evaluated alternatives. The 
following confidence q-ROFS aggregation operators were used 
to combine these two sources of information: confidence q‐rung 
orthopair fuzzy weighted geometric (q-CFWG), confidence q‐
rung orthopair fuzzy weighted average (q-COFWA), confidence 
q‐rung orthopair fuzzy ordered weighted geometric (q-CFOWG), 
confidence q‐ rung orthopair fuzzy ordered weighted average 
(q-COFWOA), are the operators proposed by many scholars and 
most of their important properties are established. With the use 
of their parameterizations property (confidence levels), these 
specified operators may more clearly describe the real-world 
scenario in a q-rung orthopair fuzzy environment.

In the aforementioned literature, we came to know that in the 
different times different operators are introduced to overcome 
the drawbacks of the already existing methods, but still there 
are some drawbacks. This article is an attempt in that series 
to overcome the drawback of IFN where the NMED of IFN is 
zero, this will give its aggregated value zero without regarding 
the matter that how much is value of others NMED [23-25]. 
Similarly, for the value 1 of MED, will give its aggregated value 
1 without regarding the matter that how much is value of others 
MED. Keeping in mind these drawbacks, we explained it with 
examples and some improved q-ROFS operational laws such as 
q-CROFWOA, q-CRFOWG and q-ICROFWA are introduced.

This article contributed as: (i) the drawbacks of some already 
existing aggregation operators are studied and analyzed (ii) 
some new operators such as q-ICROFWA and q-ICROFWPA are 
introduced (iii) a new method is modified for MAGDM problems 
on the base of q-ICROFWA and q-ICROFWPA operators (iv) the 
practicability and feasibility of this modified method is verified 
with some numerical examples.

2. Preliminaries
This section is devoted to the review of some basic concepts, 
definitions and operators that will be needed later on.

• Definition 1
Let a non-empty set X, FS is defined by		   with	
is mapped from X to   be called the membership degree (MED) 
of x.
Moreover, the notion of FS is generalized to AIFS, consists of 
membership and non-membership (NOMED) functions, defined 
as follows [1].
• Definition 2
Let X be a fixed set; an AIFS T in X is given by			 
	             	            with		  are mapped from 
X to [0, 1] satisfying the conditions		             	     	
	  	          and	              represents MED and 
NOMED respectively [2].

2.1. Some Operational Laws of q-ROF Number
• Definition 3
[26] Let X be a fixed set and the q-ROFS G are defined as	
			   such that                 are respectively 
denote MED and NOMED, satisfying the basic conditions		
		     and			   where
 Furthermore, the hesitancy or indeterminacy of the given set is 
given by:  
• Definition 4
Let two q-ROFNs be such that	      and              then

{ }, ( ) :T x x x Xζη= ∈ ( )xζη

{ }, ( ), ( ) :T x x x x Xζ ζη ϑ= ∈ ( ), ( )x xζ ζη ϑ
0 ( ), ( ) 1,x xζ ζη ϑ≤ ≤

0 ( ) ( ) 1,  ,x x x Xζ ζη ϑ≤ + ≤ ∀ ∈ ( ), ( )x xζ ζη ϑ

{ }( ), ( ) :G GG H x M x x X= ∈ ( ), ( )G GH x M x

0 ( ), ( ) 1,G GH x M x≤ ≤ 0 ( ) ( ) 1,q q
G GH x M x≤ + ≤ 1.q ≥

1

( ) ( ( ) ( ) ( ) ( ) ) .q q q q q
G G G G Gx H x M x H x M xπ = + −

( )1 1 1,b η ϑ= ( )2 1 1, ,b η ϑ=

NOMED, satisfying the basic conditions 0 ( ), ( ) 1,G GH x M x   and 

0 ( ) ( ) 1,q q
G GH x M x    where 1.q   Furthermore, the hesitancy or indeterminacy of 

the given set is given by:
1

( ) ( ( ) ( ) ( ) ( ) ) .q q q q q
G G G G Gx H x M x H x M x      

 Definition 4 
Let two q-ROFNs be such that  1 1 1,b    and  2 1 1, ,b    then 

i)  
1

1 2 1 2 1 2 1 2,q q q q qbb     
 

    
                

 

ii)  
1

1 2 1 2 1 2 1 2, q q q q qbb     
 

    
               

 

iii)   
1

1 1 11 1 ,qqb
   

 
   
                

 

iv)   
1

1 1 1, 1 1 qqb
  

 
   
               

 

where  0,   is any real number. Next, let  ,b    be a q-ROFN, then the score 

function is given by ( ) q qS b     and its accuracy function is defined by 

( ) q qH b     under the basic condition that ( ) [ 1,1]S b    and ( ) [0,1]H b   [26]. 

 Definition 5 
Let two q-ROFNs be  1 1 1,b   and  2 2 2,b   , then its score and accuracy 

functions will satisfy the following condition [27]s. 

i) Let 1( )S b and 2( )S b be the score functions such that 1 2( ) ( )S b S b  then 1 2.b b  

ii) Let  1 2( ) ( )S b S b  such that the accuracy functions satisfy the condition 

1 2( ) ( )H b H b then 1 2.b b  Moreover, if 1 2( ) ( )H b H b , then 1 2.b b  

 Definition 6 
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 Definition 6 
[27] Power average operator for 1 2 3( ,  ,  ,.... , )nX x x x x can be defined as follows 

1
1 2 3

1

(1 ( ))
( ,  ,  ,....,  ) ,

(1 ( ))

n

j j
j

n n

j
j

E x x
PA x x x x

E x













 

where
1,

 ( ) sup( , )
n

j i j
i i j

E x x x
 

  . If, sup( , )i jx x denotes the degree of support ix from jx , 

then  

i) 0 sup( , ) 1,i jx x   

ii) sup( , )i jx x  is commutative  

iii) sup( , ) sup( , )x y a b , when .x y a b    

 

3. q-CROFN Operators  

In this section, we introduce some operators under q-rung orthopair fuzzy numbers. 

 

 Definition 7 

Let a collection of q-CROFN be   , 1j j jb j n    , with a weighted vector 

 1 2 3, , ,...,
T

j     and let j  be the confidence level of jb  such that 0 1,j   

0 1,j   and
1

1.
n

j
j




  

 2
1

1/

1
1

- ,                           (1)( , ,..., ) 1 1 j j j j
k q

q
k

k
j j

j j
ROFWA b bq C b

   
 

 

 
     

 
  

 
1

1/

1 2
1

- ,                 ( , ,        ..., ) 1 1    (2)j jj j
n n

j j
j

q
q

j
j

ROFWG b bq C b
  

 
 

 
   


  

  
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 
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 

 
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 

       

 

0.3 0.4 0.2 0.2 0.3 0.1 0.6 0.3

4 4

1 1

0.3 0.4 0.2 0.2 0.3 0.1 0.3 0.1

1/2

1 2 3

2 2 2
2

2

4

1/

( ,- ,

1 1 0.9 1 0.7 1 0.8 1 0.7

,0.1 0.2 0.4 0.5
0.49,0.61

, , ) 1 1 j j j j
j j

j j

qROFWA b b bq C b
   

 

   

 

   


 
 



  


      











 



 

 

 Example 2 

Let  1 0.8,0.2 ,0.3b  ,  2 0.6,0.2 ,0.2b  ,  3 0.7,0.2 ,0.3b   and  4 0.5,0.3 ,0.6b   

be the four q-ROFNs with their respective confidence level. Moreover, the 
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1 1
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1/2
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1/2

- ,

1 1 0.8 1 0.6 1 0.7 1 0.7

,0.2 0.2 0 0.5
0

( , , ,

,

) 1

. 0

1

40

j j j j
j j

j

q

j
Rq C OFWA b b b b

   
 

   

 

   

 
 

 
     

  

  



   
 

 

By changing the value of 1b  and 2b  such that  1 0.5,0.2 ,0.3b  and
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The above proposed operators have some drawbacks such as the NOMED in the 

equation (1) and MED of equation (2) are their respective entries products which 

will give a zero by taking only one zero entry in the data as shown in example 1. 

Similarly, in example 2, it is shown that by changing the values of MED does not 

affect the calculated value of NOMED. Therefore, it does not provide the actual 

information to the decision makers.
 
These operators can be improved by using the 

idea of to overcome the mentioned drawbacks as follows [28].
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The above proposed operators have some drawbacks such as the NOMED in the equation (1) and MED of equation (2) are their 
respective entries products which will give a zero by taking only one zero entry in the data as shown in example 1. Similarly, in 
example 2, it is shown that by changing the values of MED does not affect the calculated value of NOMED. Therefore, it does 
not provide the actual information to the decision makers. These operators can be improved by using the idea of to overcome the 
mentioned drawbacks as follows [28].
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 Theorem 1 
Let  1 1 1, ,b    2 2 2,b    and  3 3 3,b   the q-ROFNs, satisfying the condition 

that 1,q   1 2,  ,  0,     then  

i) 1 2 2 1bbb b                  

ii) 1 2 2 1bbb b                 

iii)    31 1 32 2b bb b b b                 

iv)    31 1 32 2b bb b b b                

v)   11 2 2bb bb                

vi)  1 2 1 2b bb b                  

vii)   21 12 1 11b b b               

viii)  2 1 211 1 1bb b                  

Proof: By using definition (i) and (ii) with simple straight forward calculation of 

Theorem (i) and (ii) can easily be proved. Next, we prove here (iii), as follows: 

Taking the left-hand side of (iii), implies that 
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where the right-hand side of (iii), yields 
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Hence (iii) is proved. Similarly, equation (iv) will be proved on the same lines as 

proved in (iii). Moreover, to prove (v), let the left-hand side  
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Similarly, (viii) can be proved by using the same calculation as in the proof (vii). 
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Similarly, (viii) can be proved by using the same calculation as in the proof (vii).

• Example 3
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4. Some Revised q-CROFS Operators  
This section is devoted to the study of improved confidence level q-rung orthopair 

fuzzy weighted averaging operator q-ICROFWA.  
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Proof: The required result can be proved by using mathematical induction: 

 Step 1: For n=1, from the left-hand side of (7), we have  
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Proof: The required result can be proved by using mathematical induction:
• Step 1: For n=1, from the left-hand side of (7), we have 

Hence, for n=1, (7) is true. Moreover, it can also be proved for n=2, proceeding on the same lines as above.
• Step 2: Suppose that the (7) is true for n=k. 
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Similarly, the right-hand side of (7), implies that 
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Hence, for n=1, (7) is true. Moreover, it can also be proved for n=2, proceeding on 

the same lines as above. 

 Step 2: Suppose that the (7) is true for n=k. 
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Furthermore, for n=k+1, we have 
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Hence, it is proved by mathematical induction that the required result is true for 

any value of k. Next, we have to prove that  1 2, , , nbq ICROFWA b b   is still a q-

ROFN. For this, let  1 2, , , ,nq ICROFWA b b c db    then, if q ICROFWA  is a q-

ROFN, it will satisfy, the following two conditions: 

i) 0 , 1,c d   

ii) 0 , 1,q qc d   

For i), it is given that 0 , 1,j j    which implies that  
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This shows that  0 1c  . Moreover, as 0 , 1,q qc d   can be written as 
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yields that,  0 1d   and condition i) is proved. Furthermore, for the second 

condition, we have 
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Thus, condition ii), is proved which shows that  1 2, , , nbq ICROFWA b b   is still a 

q-ROFN. 

The following theorem shows the idempotency of the q-ICROFWA. 

 

 Theorem 3 

Let a collection ,   (1 j n)j j jb      of q-CROFNs such that ,jb b    , then

1 2   ( , ,..., )jq ICROFWA b b b b  . 
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Proof: By applying definition (1), we have  
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

  

The boundedness of q-CROFNs is shown by the following theorem. 

 

 Theorem 4 

 Let ,j j jb    be a collection of q-CROFN with 1,2,...,j n  such that 

1

min ( ),max ( min ( )q q q q q
j j jj j j jb         and  max ( ),q

j jb H  , then it gives that

 1 2   ,  ,  . . . ,    bnb q ICROFWA b b b    , where 

1

0,                                                          if min ( ) max ( ),
    

       min ( )  max ( ) ,   if min ( ) max ( ).

q q q
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Proof: (1) For the MED of  q ICROFWA , with  1 2,  ,  . . . ,   = b,nb b b  we get 
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Moreover, for NOMED, we get 
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In view of the fact that            
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In view of the fact that            
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 Example 4 
By using the data of example 2,  
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0.44,0.18
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

By changing the value of 1b  and 2b  such that  1 0.5,0.2 ,0.3b   and

 2 0.4,0.2 ,0.2b  , we have the new result as: 0.17,0.33 . Hence, by changing the 

value of MED parameters also change the MED and NOMED of the calculated 

result, wherein example 2, it was shown that by changing the MED parameters has 

no effect on the result. 

 

4.1. Some Modified Q-Rung Orthopair Averaging Power Fuzzy Operator 

 Definition 8 
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By changing the value of 1b  and 2b  such that  1 0.5,0.2 ,0.3b   and

 2 0.4,0.2 ,0.2b  , we have the new result as: 0.17,0.33 . Hence, by changing the 

value of MED parameters also change the MED and NOMED of the calculated 

result, wherein example 2, it was shown that by changing the MED parameters has 

no effect on the result. 

 

4.1. Some Modified Q-Rung Orthopair Averaging Power Fuzzy Operator 

 Definition 8 

4.1. Some Modified Q-Rung Orthopair Averaging Power Fuzzy Operator
• Definition 8

Consider ( ),  (j=1,2,3,...,n)j j jb    be the set of q-CROFN, such that q-ICROFPA 

is defined by:  

1 2 3 1( , , ,..., ) (1 ( ))                 (12)n
n k k kq ICROFPA b b b b S b b     

With     
1,

( ) sup( , )
n

k k l
k k l

S b b b
 

   

Here, ( )kS b  denotes the degree of support of the thk  CROFN with others 

CROFN’s, as much their value are closer they will support more each other. 

 

 Definition 9 
Consider 1 1 1( )b     and 2 2 2( )b     be the two q- CROFNS. Then, the hesitance 

degree of 1b  and 2b  is given by the following formula: 

 1 1 12 2 2
1 2

(1 )
( , ) ,                          (13)

2

q q q q q qh h
d b b

          
  

with  [0,1]d  , [0,1]h  and (1 ),  j=1,2.
j j

q q q
j      Moreover, from equation (13), 

different distance measure can be obtained as the parameter h varies as shown in 

the following cases. 

 For 1h  , hesitance degree preference maybe reduced to the hamming such 

that 

1 12 2
1 2( , )

2

q q q q

d b b
     

 . 

 For 0.5h  , hesitance degree preference maybe reduced to the hamming 

indeterminacy degree preference distance given by the following relation 

 1 1 12 2 2
1 2

0.5
( , )

2

q q q q q q

d b b
         

 . 

 Theorem 5 
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 Consider the set of  ,q CROFN  ( , )j j jb   , with  1, 2,...,j m , then its aggregation 

still remains a  ,q CROFN  such that 
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Proof: By taking  
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 and then proceeding on the same lines as in 

Theorem 4, the required result can be proved. Hence, to avoid repetition the proof 

is omitted here. In Definition 9, the weighted vector is not under the consideration 

which may affect the decision making in many actual situations to overcome these 

situations; we define the q-ICROFWA operator as given below. 

 

 Definition 10 
Consider ( ),  (j=1,2,3,...,n)j j jb    be the set of q-CROFN, such that q-ICROFPA 

is defined by: 

 
 

1

1
1 2 3

1 ( )

1 ( )
 ( , , ,..., )                   (14)m

j j j
j

k
j j j j j

n
S b

S b b
q ICRFOWPA b b b b

 

 







 
  
  
  
 
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For the sake of simplicity, we take  
 

1

1

1 ( )

1 ( )
m

j j j
j

k
j j j j j

j
S b

S b b

 

 








 
  
 
  
 

 with  1,2,3,...,j k ,

1 2 3, , , ...,j k      and 1 2 3, , ,...,j k     with 0 , 1,j j  
1

1
k

j
j




 and 
1

1.
k

j
j






Moreover, eq. (14), can be written as  

1 2 3 1 ( , , ,..., ) k
n j j j jq ICRFOWPA b b b b b     

 

 Theorem 6 
Consider the set of  ,q CROFN  ( , )j j jb   , with  1, 2,...,j m , then according 

Definition 9, its aggregation still remains a  ,q CROFN  such that  

     
1 1

1 2 3
1 1 1

( , , ,..., ) 1 1 , 1 1 .
j j jq qk k k

q q q q
n j j j j

j j j
q ICROFWPA b b b b

  

   
  

   
          
   
   

  

               

Proof: The required proof can be obtained on the same lines as Theorem 2. Hence, 

to avoid repetition the proof is omitted here. 

 

 Theorem 7 
Consider the set of  ,q CROFN  ( , )j j jb   , with  1,2,...,j k , with  ,jb b    then 

1 2 3( , , ,..., )nq ICROFWPA b b b b b   

Proof: The required proof can be obtained on the same lines as Theorem 3. Hence, 

to avoid repetition the proof is omitted here. 

 

 Theorem 8 
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Let ,j j jb    be a collection of q-CROFN with 1,2,...,j n  such that  

1

min ( ),max ( min ( )q q q q q
j j jj j j jb         and  max ( ),q

j jb H  , then it gives that

 1 2   ,  ,  . . . ,    bnb q ICROFWA b b b    , where H is the same as defined in 

Theorem 4. 

Proof: The required proof can be obtained on the same lines as Theorem 4. Hence, 

to avoid repetition the proof is omitted here. 

 

6. An Approach to MAGDM Method Under Confidence Level 

This Section is devoted to the study of multi attribute group decision making 

(MAGDM) based on the developed operators q ICROFWA  and .q ICROFWPA  A 

real life problem in example 5, is considered to demonstrate the MAGDM method 

effectively. 

Algorithm: Let us consider the set of k decision makers (experts)

1 2 3, , ,..., kD D D D D , 1 2 3, , , ..., nC C C C C be the set of n attributes, 

1 2 3, , , ..., mA A A A A be m alternatives. Moreover,  ,p p p
ij ij ijb    with 1,2,...,p k are 

the jC  attributes from alternatives of the experts  kD . Let  0,1pw   be the weighted 

vector with  1 2 3, , ,..., kw w w w w  of experts, such that
1

 1
k

p
p

w


 . Similarly, for the 

confidence levels of the experts, we have   0,1p  with
1

  1
k

p
p




  . To effectively 

assist the developed operators in group decision making problems, the detail of the 

aforementioned method are described in the following steps: 
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 In the first step, the decision matrices can be modeled by using the available 

information. In most cases there are two types of criteria such as cost and 

benefit, then cost criteria can be normalized by: 

   
 

, ,  for the benifit criteria 
,

, ,  for the cost criteria 

p p
mij ijp p p

ij ij ij p p
mij ij

A
b

A

 
 

 


  



 

 In the second step, the attribute values can be aggregated by using the 

following formula  
1

1

1

1 2

1

1

1 1

( , ,..., )            (15)
1

,

1

k k

ij

k k

ij

k k

ij ij

qqn k
j

k k k k qqi i i in n k
j

q qn k k
j

S q ICROFWA b b b

 

 

 





 







             

              
                   







 

 Collective preference values iS  can be obtained by using the operator 

q ICROFWPA , such that 

 

     

1

1

1

1 1

( , ,..., )

1 1

                                (16)

, 1 1

k
i

k k
i i

i i i

k k k
i i i i

qqp k
ik

qq q qp pk k k
k k

S q ICROFWA b b b



 



  



 

 

 
       

 


 
               

 



 

 

 In this step, iS  can be ranked by using the accuracy and score function. 

In the last step, the best alternative can be selected by using the best values of iS  



    Volume 3 | Issue 2 |19J Math Techniques Comput Math, 2024

7. Illustrative Example
This section is devoted to illustrate in detail the application of the proposed method. Furthermore, the superiority and effectiveness 
of the MAGDM method can be verified with some examples. 

7.1. Illustrative example on the Proposed Method
Example 5
Let a company have a choice to invest the money in the given four alternatives such as A1, A2, A3 and A4, whose weighted vector 
is		       . The company must choose the best option keeping in view the following four attributes such as C1, C2, C3 and 
C4 representing risk analysis, growth analysis, social political impact analysis and environmental analysis respectively. Here, the 
cost type criteria are represented by C1, C3 and benefit type criteria is given by C2, C4. The decision is made by three experts  		
                   whose weighted vector is		  . To choose the best option the detail of the MAGDM method is explained as 
below with q=2.

( ) 0.4,0.3,0.1,0.2ϖ =

 ( 1, 2,3)iD i = ( ) 0.3,0.2,0.1ω =

Step 1: In this step, we have to construct the decision matrix of q-ROFs

Table 1: Decision Matrix of q-ROFs

Step 2: The data taken in this example consist of two types cost and benefit. Therefore, Table 1, can be normalized as shown in the 
Table 2, as below:

choose the best option keeping in view the following four attributes such as C1, C2, C3 and C4 

representing risk analysis, growth analysis, social political impact analysis and environmental 

analysis respectively. Here, the cost type criteria are represented by C1, C3 and benefit type 

criteria is given by C2, C4. The decision is made by three experts  ( 1,2,3)iD i  , whose weighted 

vector is   0.3,0.2,0.1  . To choose the best option the detail of the MAGDM method is 

explained as below with  2q  . 

Step 1: In this step, we have to construct the decision matrix of q-ROFs 

Table 1: Decision Matrix of q-ROFs 
        C1       C2       C3         C4 
 
 
D1 

A1  0.70,0.30 ,0.30   0.60,0.60 ,0.20   0.50,0.70 ,0.20   0.70,0.60 ,0.10  

A2  0.40,0.80 ,0.40   0.70,0.40 ,0.30   0.70,0.80 ,0.30   0.80,0.30 ,0.30  

A3  0.70,0.50 ,0.10   0.50,0.40 ,0.20   0.60,0.80 ,0.30   0.50,0.90 ,0.50  

A4  0.60,0.50 ,0.30   0.50,0.60 ,0.50   0.70,0.60 ,0.10   0.80,0.20 ,0.40  

 
 
D2 

A1  0.60,0.70 ,0.40   0.70,0.90 ,0.30   0.60,0.80 ,0.40   0.90,0.20 ,0.10  

A2  0.50,0.70 ,0.20   0.50,0.70 ,0.10   0.60,0.40 ,0.20   0.80,0.20 ,0.40  

A3  0.60,0.90 ,0.40   0.90,0.30 ,0.30   0.70,0.80 ,0.10   0.50,0.70 ,0.40  

A4  0.60,0.80 ,0.40   0.60,0.70 ,0.40   0.90,0.30 ,0.40   0.70,0.30 ,0.40  

 
 
D3 

A1  0.90,0.20 ,0.10   0.60,0.80 ,0.40   0.90,0.30 ,0.20   0.90,0.20 ,0.30  

A2  0.80,0.50 ,0.40   0.90,0.30 ,0.40   0.50,0.80 ,0.30   0.60,0.50 ,0.40  

A3  0.70,0.40 ,0.10   0.60,0.70 ,0.30   0.60,0.70 ,0.40   0.50,0.80 ,0.20  

A4  0.60,0.40 ,0.10   0.90,0.20 ,0.10   0.70,0.30 ,0.10   0.60,0.70 ,0.10  

 

Step 2: The data taken in this example consist of two types cost and benefit. Therefore, Table 1, 

can be normalized as shown in the Table 2, as below: 
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Table 2: Normalized Decision Matrix of q-ROFs 
        C1       C2       C3         C4 
 
 
D1 

A1  0.30,0.70 ,0.30   0.60,0.60 ,0.20   0.70,0.50 ,0.20   0.70,0.60 ,0.10  

A2  0.80,0.40 ,0.40   0.70,0.40 ,0.30   0.80,0.70 ,0.30   0.80,0.30 ,0.30  

A3  0.50,0.70 ,0.10   0.50,0.40 ,0.20   0.80,0.60 ,0.30   0.50,0.90 ,0.50  

A4  0.50,0.60 ,0.30   0.50,0.60 ,0.50   0.60,0.70 ,0.10   0.80,0.20 ,0.40  

 
 
D2 

A1  0.70,0.60 ,0.40   0.70,0.90 ,0.30   0.80,0.60 ,0.40   0.90,0.20 ,0.10  

A2  0.70,0.50 ,0.20   0.50,0.70 ,0.10   0.40,0.60 ,0.20   0.80,0.20 ,0.40  

A3  0.90,0.60 ,0.40   0.90,0.30 ,0.30   0.80,0.60 ,0.10   0.50,0.70 ,0.40  

A4  0.80,0.60 ,0.40   0.60,0.70 ,0.40   0.30,0.90 ,0.40   0.70,0.30 ,0.40  

 
 
D3 

A1  0.20,0.90 ,0.10   0.60,0.80 ,0.40   0.30,0.90 ,0.20   0.90,0.20 ,0.30  

A2  0.50,0.80 ,0.40   0.90,0.30 ,0.40   0.80,0.50 ,0.30   0.60,0.50 ,0.40  

A3  0.40,0.70 ,0.10   0.60,0.70 ,0.30   0.70,0.60 ,0.40   0.50,0.80 ,0.20  

A4  0.40,0.60 ,0.10   0.90,0.20 ,0.10   0.30,0.70 ,0.10   0.60,0.70 ,0.10  

Step 3: In this step, the attribute values of the matrices k
ijD  can be aggregated by using the 

following formula (15), as shown in Table 3: 

Table 3: Integrated Decision Matrix 
 S1 S2 S3 S4 

1S  (0.25,0.80)  (0.36,0.80)  (0.34,0.94)  (0.31,0.21)  

2S  (0.38,0.37)  (0.36,0.35)  (0.35,0.29)  (0.25,0.15)  

3S  (0.36,0.21)  (0.35,0.28)  (0.36,0.93)  (0.36,0.35)  

4S  (0.32,0.95)  (0.31,0.42)  (0.15,0.46)  (0.34,0.86)  

 

Step 4: This step is devoted to the calculation of preference values iS , by using (16), we have 

1 (0.31,0.85)S  , 2 (0.35,0.33)S  ,   3 (0.36,0.62)S    and  4 (0.31,0.91)S   

Table 2: Normalized Decision Matrix of q-ROFs 
        C1       C2       C3         C4 
 
 
D1 

A1  0.30,0.70 ,0.30   0.60,0.60 ,0.20   0.70,0.50 ,0.20   0.70,0.60 ,0.10  

A2  0.80,0.40 ,0.40   0.70,0.40 ,0.30   0.80,0.70 ,0.30   0.80,0.30 ,0.30  

A3  0.50,0.70 ,0.10   0.50,0.40 ,0.20   0.80,0.60 ,0.30   0.50,0.90 ,0.50  

A4  0.50,0.60 ,0.30   0.50,0.60 ,0.50   0.60,0.70 ,0.10   0.80,0.20 ,0.40  

 
 
D2 

A1  0.70,0.60 ,0.40   0.70,0.90 ,0.30   0.80,0.60 ,0.40   0.90,0.20 ,0.10  

A2  0.70,0.50 ,0.20   0.50,0.70 ,0.10   0.40,0.60 ,0.20   0.80,0.20 ,0.40  

A3  0.90,0.60 ,0.40   0.90,0.30 ,0.30   0.80,0.60 ,0.10   0.50,0.70 ,0.40  

A4  0.80,0.60 ,0.40   0.60,0.70 ,0.40   0.30,0.90 ,0.40   0.70,0.30 ,0.40  

 
 
D3 

A1  0.20,0.90 ,0.10   0.60,0.80 ,0.40   0.30,0.90 ,0.20   0.90,0.20 ,0.30  

A2  0.50,0.80 ,0.40   0.90,0.30 ,0.40   0.80,0.50 ,0.30   0.60,0.50 ,0.40  

A3  0.40,0.70 ,0.10   0.60,0.70 ,0.30   0.70,0.60 ,0.40   0.50,0.80 ,0.20  

A4  0.40,0.60 ,0.10   0.90,0.20 ,0.10   0.30,0.70 ,0.10   0.60,0.70 ,0.10  

Step 3: In this step, the attribute values of the matrices k
ijD  can be aggregated by using the 

following formula (15), as shown in Table 3: 

Table 3: Integrated Decision Matrix 
 S1 S2 S3 S4 

1S  (0.25,0.80)  (0.36,0.80)  (0.34,0.94)  (0.31,0.21)  

2S  (0.38,0.37)  (0.36,0.35)  (0.35,0.29)  (0.25,0.15)  

3S  (0.36,0.21)  (0.35,0.28)  (0.36,0.93)  (0.36,0.35)  

4S  (0.32,0.95)  (0.31,0.42)  (0.15,0.46)  (0.34,0.86)  

 

Step 4: This step is devoted to the calculation of preference values iS , by using (16), we have 

1 (0.31,0.85)S  , 2 (0.35,0.33)S  ,   3 (0.36,0.62)S    and  4 (0.31,0.91)S   

Table 2: Normalized Decision Matrix of q-ROFs

Table 3: Integrated Decision Matrix

Table 3: Integrated Decision Matrix

Step 3: In this step, the attribute values of the matrices       can be aggregated by using the following formula (15), as shown 
in Table 3:

k
ijD

Table 2: Normalized Decision Matrix of q-ROFs 
        C1       C2       C3         C4 
 
 
D1 

A1  0.30,0.70 ,0.30   0.60,0.60 ,0.20   0.70,0.50 ,0.20   0.70,0.60 ,0.10  

A2  0.80,0.40 ,0.40   0.70,0.40 ,0.30   0.80,0.70 ,0.30   0.80,0.30 ,0.30  

A3  0.50,0.70 ,0.10   0.50,0.40 ,0.20   0.80,0.60 ,0.30   0.50,0.90 ,0.50  

A4  0.50,0.60 ,0.30   0.50,0.60 ,0.50   0.60,0.70 ,0.10   0.80,0.20 ,0.40  

 
 
D2 

A1  0.70,0.60 ,0.40   0.70,0.90 ,0.30   0.80,0.60 ,0.40   0.90,0.20 ,0.10  

A2  0.70,0.50 ,0.20   0.50,0.70 ,0.10   0.40,0.60 ,0.20   0.80,0.20 ,0.40  

A3  0.90,0.60 ,0.40   0.90,0.30 ,0.30   0.80,0.60 ,0.10   0.50,0.70 ,0.40  

A4  0.80,0.60 ,0.40   0.60,0.70 ,0.40   0.30,0.90 ,0.40   0.70,0.30 ,0.40  

 
 
D3 

A1  0.20,0.90 ,0.10   0.60,0.80 ,0.40   0.30,0.90 ,0.20   0.90,0.20 ,0.30  

A2  0.50,0.80 ,0.40   0.90,0.30 ,0.40   0.80,0.50 ,0.30   0.60,0.50 ,0.40  

A3  0.40,0.70 ,0.10   0.60,0.70 ,0.30   0.70,0.60 ,0.40   0.50,0.80 ,0.20  

A4  0.40,0.60 ,0.10   0.90,0.20 ,0.10   0.30,0.70 ,0.10   0.60,0.70 ,0.10  

Step 3: In this step, the attribute values of the matrices k
ijD  can be aggregated by using the 

following formula (15), as shown in Table 3: 

Table 3: Integrated Decision Matrix 
 S1 S2 S3 S4 

1S  (0.25,0.80)  (0.36,0.80)  (0.34,0.94)  (0.31,0.21)  

2S  (0.38,0.37)  (0.36,0.35)  (0.35,0.29)  (0.25,0.15)  

3S  (0.36,0.21)  (0.35,0.28)  (0.36,0.93)  (0.36,0.35)  

4S  (0.32,0.95)  (0.31,0.42)  (0.15,0.46)  (0.34,0.86)  

 

Step 4: This step is devoted to the calculation of preference values iS , by using (16), we have 

1 (0.31,0.85)S  , 2 (0.35,0.33)S  ,   3 (0.36,0.62)S    and  4 (0.31,0.91)S   
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Table 2: Normalized Decision Matrix of q-ROFs 

 

Insert Table: 3 

Step 3: In this step, the attribute values of the matrices k
ijD  can be aggregated by 

using the following formula (15), as shown in Table 3: 

Table 3: Integrated Decision Matrix 

 

 Step 4: This step is devoted to the calculation of preference values iS , by 

using (16), we have 

 1 (0.31,0.85)S  , 2 (0.35,0.33)S  ,   3 (0.36,0.62)S    and 

 4 (0.31,0.91)S   
 Step 5: In this step, iS  can be ranked by using the score function. 

1( ) 0.63L S   ,  2( ) 0.01L S  ,   3( ) 0.25L S   ,   4( ) 0.73L S   . 

 Step 6: By the score function, we have: 2 3 1 4A A A A   . Hence, 2A  is the 

best choice. 

Next, by changing the value of 3,5,7,9,11q  , we have the following table: 

 
Insert Table: 4 

Table 4: Results for different q-values 

 

8. Comparative and Sensitive Analysis 

The q-ROFS  1q q    with ( 1q  ) is the successful generalization of IFS

 1   , PFS  2 2 1    and Fermatean fuzzy set  3 3 1   , by considering 

more information to handle the real life problem. Thus, the proposed aggregation 

Step 5: In this step, iS  can be ranked by using the score function. 

1( ) 0.63L S   ,  2( ) 0.01L S  ,   3( ) 0.25L S   ,   4( ) 0.73L S   . 

Step 6: By the score function, we have: 2 3 1 4A A A A   . Hence, 2A  is the best choice. 

Next, by changing the value of 3,5,7,9,11q  , we have the following table: 

Table 4: Results for different q-values 
Values of q Score function Ranking 
3 2 3 1 4( ) ( ) ( ) ( )L S L S L S L S    2 3 1 4A A A A    

5 2 3 1 4( ) ( ) ( ) ( )L S L S L S L S    2 3 1 4A A A A    

7 2 1 3 4( ) ( ) ( ) ( )L S L S L S L S    2 1 3 4A A A A    

9 2 1 3 4( ) ( ) ( ) ( )L S L S L S L S    2 1 3 4A A A A    

11 2 1 3 4( ) ( ) ( ) ( )L S L S L S L S    2 1 3 4A A A A    

 
8. Comparative and Sensitive Analysis 

The q-ROFS  1q q    with ( 1q  ) is the successful generalization of IFS  1   , PFS

 2 2 1    and Fermatean fuzzy set  3 3 1   , by considering more information to handle 

the real life problem. Thus, the proposed aggregation operators under q-ROFS environment are 

more generalized as compared to already existing methods. Moreover, there are some drawbacks
 

such as the NOMED in the equation (1) and MED of equation (2) with their respective entries 

products which will give zero by taking only one zero entry in the data as shown in example 1. 

Similarly, in example 2, it is shown that by changing the values of MED does not affect the 

calculated value of NOMED. Therefore, it does not provide the actual information to the 

decision makers.
 

Therefor in this paper, we presented some modified operational laws and some of their properties 

to overcome these drawbacks. Next, related to q-ROFS fuzzy-weighted averaging (q-

ICROFWA) and fuzzy-weighted power averaging (q-ICROFWPA) aggregation operator under 

confidence levels along with their properties are presented. By using these operators’ q-

ICROFWA and q-ICROFWPA an advanced method is proposed to deal with MAGDM problems 

Table 4: Results for different q-values

8. Comparative and Sensitive Analysis
The q-ROFS                  with (q > 1 ) is the successful generalization of IFS            , PFS		       and Fermatean fuzzy set , by 
considering more information to handle the real life problem. Thus, the proposed aggregation operators under q-ROFS environment 
are more generalized as compared to already existing methods. Moreover, there are some drawbacks such as the NOMED in the 
equation (1) and MED of equation (2) with their respective entries products which will give zero by taking only one zero entry in the 
data as shown in example 1. Similarly, in example 2, it is shown that by changing the values of MED does not affect the calculated 
value of NOMED. Therefore, it does not provide the actual information to the decision makers.

Therefor in this paper, we presented some modified operational laws and some of their properties to overcome these drawbacks. Next, 
related to q-ROFS fuzzy-weighted averaging (q-ICROFWA) and fuzzy-weighted power averaging (q-ICROFWPA) aggregation 
operator under confidence levels along with their properties are presented. By using these operators’ q-ICROFWA and q-ICROFWPA 
an advanced method is proposed to deal with MAGDM problems in fuzzy environment. For comparison, if we consider the data 
with one zero entry then there is no conclusion by using the existing methods as shown in the following table:

( )1q qη ϑ+ ≤ ( )1η ϑ+ ≤ ( )2 2 1η ϑ+ ≤

in fuzzy environment. For comparison, if we consider the data with one zero entry then there is 

no conclusion by using the existing methods as shown in the following table: 

Table: 5 Comparison of existing Methods with one zero entry 
Existing Methods Score function  Ranking Order Conclusion 

Wang and Liu[30] 
1 2 3 4( ) ( ) ( ) ( )L S L S L S L S    1 2 3 4A A A A                

No 

Wang and Liu [31]   1 2 3 4( ) ( ) ( ) ( )L S L S L S L S    1 2 3 4A A A A    No 

Proposed method  2 3 1 4( ) ( ) ( ) ( )L S L S L S L S    2 3 1 4A A A A    Yes 

The above comparisons shows that, the operator proposed in this paper is better than the existing 

other methods for q-ROFS environment under the confidence level. Therefore, it is most 

reasonable to get conclusion of MAGDM problem of any kind data by using this method. 

9. Conclusions  
The parameter q, in q-ROFS plays an important role to express fuzzy information in wider range 

than IFS and PFS. This shows that q-ROFS is the generalization of IFS and PFS, where 1q  is 

not limited to a specific number and can be extend to desirable number needed for available data. 

In this study, based on aggregation operators some drawbacks of the already existing MAGDM 

methods are analyzed. Moreover, we presented some modified operational laws and some of 

their properties to overcome these drawbacks. Next, related to q-ROFS fuzzy-weighted 

averaging (q-ICROFWA) and fuzzy-weighted power averaging (q-ICROFWPA) aggregation 

operator under confidence levels along with their properties are presented. By using these 

operators’ q-ICROFWA and q-ICROFWPA an advanced method is proposed to deal with 

MAGDM problems in fuzzy environment. At last, we solved some numerical examples to show 

the validity and feasibility of this method. Further, this research can be extended to complex 

Logarithmic operators, complex Inducing variables, complex Linguistic terms, complex 

Confidence level, complex Hamacher operators, complex Interval-valued approach, complex 

Einstein approach, complex Dombi approach, complex Symmetric operators, complex Power 

operators, complex Hamacher interval approach, complex Dombi interval approach, complex 

Einstein approach, complex Einstein interval  etc. 
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Table: 5 Comparison of existing Methods with one zero entry

The above comparisons shows that, the operator proposed in 
this paper is better than the existing other methods for q-ROFS 
environment under the confidence level. Therefore, it is most 
reasonable to get conclusion of MAGDM problem of any kind 
data by using this method.

9. Conclusions 
The parameter q, in q-ROFS plays an important role to express 
fuzzy information in wider range than IFS and PFS. This shows 
that q-ROFS is the generalization of IFS and PFS, where  is 
not limited to a specific number and can be extend to desirable 
number needed for available data. In this study, based on 
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aggregation operators some drawbacks of the already existing 
MAGDM methods are analyzed. Moreover, we presented 
some modified operational laws and some of their properties 
to overcome these drawbacks. Next, related to q-ROFS fuzzy-
weighted averaging (q-ICROFWA) and fuzzy-weighted 
power averaging (q-ICROFWPA) aggregation operator under 
confidence levels along with their properties are presented. 
By using these operators’ q-ICROFWA and q-ICROFWPA an 
advanced method is proposed to deal with MAGDM problems in 
fuzzy environment. At last, we solved some numerical examples 
to show the validity and feasibility of this method. Further, this 
research can be extended to complex Logarithmic operators, 
complex Inducing variables, complex Linguistic terms, complex 
Confidence level, complex Hamacher operators, complex 
Interval-valued approach, complex Einstein approach, complex 
Dombi approach, complex Symmetric operators, complex 
Power operators, complex Hamacher interval approach, complex 
Dombi interval approach, complex Einstein approach, complex 
Einstein interval  etc.
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