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Abstract
This scientific paper investigates the application of the Voltaire-Gurset-Riemann method in solving partial differential equations, 
using a flickering wire as an example. The method proves to be a powerful tool in the analysis of dynamic systems, providing a 
deeper understanding of flicker behavior in a wire. The developed numerical solutions enable precise modeling and prediction 
of the behavior of the flickering structure. This study highlights the key steps in applying the method to a concrete example, 
providing a useful basis for further research in the field of partial differential equations.
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1. Introduction
In modern engineering and scientific research, solving partial differential equations is essential for understanding dynamic 
phenomena in various systems. In this context, the Voltaire-Gurset-Riemann method emerges as a powerful tool that provides an 
efficient solution to these equations. This paper focuses on the application of the mentioned method in the analysis of flickering wire, 
investigating in detail the numerical aspects and the accompanying implications for the dynamic behavior of the structure.

Our goal is to provide a fundamental understanding of how the Voltaire-Gurset-Riemann method can improve our understanding of 
flicker in wires and how we can use the obtained solutions in engineering applications. Through precise modeling and analysis of 
the results, we try to expand the scope of application of this method to different dynamic systems.

This introduction lays the groundwork for further consideration of our research, emphasizing the importance of studying vibrations 
in strings with the aim of applying the Voltaire-Gurset-Riemann method as a key tool in the analysis of dynamic phenomena.

2. Flickering Wire Equation
The given equation is :
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The given equation is : 

   
       

  
      (0<x<l; y>0),                                                             (1) 

where u is the unknown function of the variables x,y, together with the contour conditions: 

u(0,y)= u( l,y ) = 0 (y  )                                                                      (2) 

where l is a given constant, as well as the initial conditions 

u(x,0)=  ( )   (   )    ( )   (0    )                                       (3) 

where    and    are given functions. By putting u(x,y)= X(x)  Y(y), we have: 

          =0, 

i.e. 

   

   
  

  

                                                                                         (4) 

where λ is a constant. From (4), we get the following two ordinary differential equations of the 
second order with constant coefficients: 
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 Let it be now   0. Let's introduce a shift now      . The general solutions of the 
above equations are given by: 

X (x)=                    ( )                                      ̅̅ ̅̅ ̅ are 
arbitrary constants. 

The contour condition (2) gives 

  (                   )    (                 )(                   )=0                                                                                                 
(6) 

so we get that it is          

If       then it is also  k=0 and equations (6) become         On the basis of which we 
conclude if it is   0, solution to the problem (1)-(2)-(3) is just trivial i.e., u(x,y)=0. 

  Let it be   > 0. Then it is: 

 ( )       √        √                                                                    (7) 

Now replacing the contour conditions (2) and (7) we have that: 
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from which it follows that it is: 
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Therefore, the constant λ can have any values λn which are defined by 
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function u, defined by: 3 
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which makes the problem of determining arbitrary constants       reduced to developing 
functions       into Fourier series. 

With such determined coefficients       ( ) represents a solution to the problem (1)-(2)-(3). 
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initial conditions, the curve    becomes the length, as well as that it is unnecessary to introduce 
the operator  ̅  

 

Figure 1. Riemann's solution method 
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4. The Telegraphic Equation
The equation
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with the Bessel function of the first kind:

That means it is  W=  J0 (√2z) the solution of the differential equation (13), i.e., the function V has the form:

It follows from (15) that:
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Therefore:

is the required function V, by means of which we obtain the solution of the Cauchy problem for the telegraph equation. (O. Todone: 
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Solution of the telegraph equation

Figure 2: Solution of The Telegraph Equation
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This figure numerically solves the telegraph equation using an iterative approach. Parameters a, b and c represent constants in 
the equation, while the initial conditions are set according to the Cauchy problem. Through iterations, the function U(x, y) is 
approximated, and the results are displayed in a 3D graph. This process enables the analysis of the evolution of the solution in 
accordance with the set parameters and conditions. The results are shown in a 3D graph, where the X and Y axes are the spatial 
coordinates, and the Z axis is the value of the function u. The graph shows the propagation of the waves generated by the initial 
conditions. It is important to note that this solution is a simple example and provides only an approximate solution. For more 
accurate results, it may be necessary to use more sophisticated numerical methods or specialized libraries.
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A line n whose direction is determined by a vector (               ) we call conormal. 
Formula (2) then becomes: 
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where        is the marked derivative of the function u in the direction n.  

Now let's move on to solving the problem. Let's construct a circular cone K with the vertex at a 
point P(        ), so that the axis of the cone is parallel to the z axis and so that the angle at the 
vertex P is right. For area V we will take that part of the space that is bounded by the cone K and 
the surface S. 

Let the function v be defined by: 

v(x,y,z)=        √(    )  (    )  (    ) 
√(    )  (    ) 

. 

Obviously, on the cone K, S(v)=0 and v=0. Let's assume that u is the solution to the given 
problem. Formula (3) cannot be directly applied to the functions u and v and the region V, 
because the function v is discontinuous along the axis of the cone K, and its derivatives are 
discontinuous on the cone K. 

That is why we will extract the axis of the cone using a circular cylinder C with radius   , whose 
axis coincides with the axis of the cone K, and we will replace the cone K with a cone    whose 
vertex is at point P, its axis coincides with the axis of the cone K and the semi-angle φ at the 
vertex P is given by     

  -    

Let's form the area    using the surfaces thus introduced, which consists of that part of the area V 
which is inside the cone     and outside the cylinder C. 

The area     it is limited by the part of the surface S located inside   , in the tag    cylinder C 
and cone   . Formula (3) can be applied to the functions u and v and the area   , which now 
reads: 
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where z0 is the point where the axis of the cylinder penetrates the surface S.
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Since the function v is known, the function f is given, and the value of u and ∂u/∂n on the surface 
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solves the problem [1]. 
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All the mentioned extensions of the Riemann method refer to special equations of the hyperbolic 
type with more variables. However, J. Hadamard solved the Cauchy problem for an arbitrary 
hyperbolic equation with n variables[2] 
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The obtained solution in three-dimensional space shows the spatial distribution of the function u in relation to the parameters x, 
, and z. The solution clearly shows the shape and intensity of the function along different values of these parameters. The graph 
suggests complex changes in the solution of the differential equation with respect to variations in the initial conditions.

6. Goursat's Method
As is well known, a hyperbolic equation can be represented using certain transformations in the form:

16 
 

 
Figure 3. Presentation of the solution of the partial differential equation by Voltaire's method 

The obtained solution in three-dimensional space shows the spatial distribution of the function u 
in relation to the parameters x, y, and z. The solution clearly shows the shape and intensity of the 
function along different values of these parameters. The graph suggests complex changes in the 
solution of the differential equation with respect to variations in the initial conditions. 

Goursat's method 

As is well known, a hyperbolic equation can be represented using certain transformations in the 
form: 

     (   )    (   )    (   )   (   )                                          (1) 

The solution of equation (1) in the domain {(x,y): 0 ≤ x ≤ L, 0 ≤ y ≤ L} satisfies the conditions: 

u(x,0)=A(x), u(0,y)=B(y),                                                                                   (2) 

where A and B are given functions such that A(0)=B(0), it is called Gursat's solution, while 
problem (1)-(2) itself is called Gursat's problem. 

In the case that a=b=c=0, the solution to problem (1)-(2) can be determined in the final form. 

Indeed, from       (   ) , after integration by x we get: 

     (   )  ∫  (   )    
                                                                          (3) 

and integrating (3) over y we have  

 (   )   (   )   (   )   (   )  ∫  ∫ (   )   
 

 

 

 

 

16 
 

 
Figure 3. Presentation of the solution of the partial differential equation by Voltaire's method 

The obtained solution in three-dimensional space shows the spatial distribution of the function u 
in relation to the parameters x, y, and z. The solution clearly shows the shape and intensity of the 
function along different values of these parameters. The graph suggests complex changes in the 
solution of the differential equation with respect to variations in the initial conditions. 

Goursat's method 

As is well known, a hyperbolic equation can be represented using certain transformations in the 
form: 

     (   )    (   )    (   )   (   )                                          (1) 

The solution of equation (1) in the domain {(x,y): 0 ≤ x ≤ L, 0 ≤ y ≤ L} satisfies the conditions: 

u(x,0)=A(x), u(0,y)=B(y),                                                                                   (2) 

where A and B are given functions such that A(0)=B(0), it is called Gursat's solution, while 
problem (1)-(2) itself is called Gursat's problem. 

In the case that a=b=c=0, the solution to problem (1)-(2) can be determined in the final form. 

Indeed, from       (   ) , after integration by x we get: 

     (   )  ∫  (   )    
                                                                          (3) 

and integrating (3) over y we have  

 (   )   (   )   (   )   (   )  ∫  ∫ (   )   
 

 

 

 

 

16 
 

 
Figure 3. Presentation of the solution of the partial differential equation by Voltaire's method 

The obtained solution in three-dimensional space shows the spatial distribution of the function u 
in relation to the parameters x, y, and z. The solution clearly shows the shape and intensity of the 
function along different values of these parameters. The graph suggests complex changes in the 
solution of the differential equation with respect to variations in the initial conditions. 

Goursat's method 

As is well known, a hyperbolic equation can be represented using certain transformations in the 
form: 

     (   )    (   )    (   )   (   )                                          (1) 

The solution of equation (1) in the domain {(x,y): 0 ≤ x ≤ L, 0 ≤ y ≤ L} satisfies the conditions: 

u(x,0)=A(x), u(0,y)=B(y),                                                                                   (2) 

where A and B are given functions such that A(0)=B(0), it is called Gursat's solution, while 
problem (1)-(2) itself is called Gursat's problem. 

In the case that a=b=c=0, the solution to problem (1)-(2) can be determined in the final form. 

Indeed, from       (   ) , after integration by x we get: 

     (   )  ∫  (   )    
                                                                          (3) 

and integrating (3) over y we have  

 (   )   (   )   (   )   (   )  ∫  ∫ (   )   
 

 

 

 

 

16 
 

 
Figure 3. Presentation of the solution of the partial differential equation by Voltaire's method 

The obtained solution in three-dimensional space shows the spatial distribution of the function u 
in relation to the parameters x, y, and z. The solution clearly shows the shape and intensity of the 
function along different values of these parameters. The graph suggests complex changes in the 
solution of the differential equation with respect to variations in the initial conditions. 

Goursat's method 

As is well known, a hyperbolic equation can be represented using certain transformations in the 
form: 

     (   )    (   )    (   )   (   )                                          (1) 

The solution of equation (1) in the domain {(x,y): 0 ≤ x ≤ L, 0 ≤ y ≤ L} satisfies the conditions: 

u(x,0)=A(x), u(0,y)=B(y),                                                                                   (2) 

where A and B are given functions such that A(0)=B(0), it is called Gursat's solution, while 
problem (1)-(2) itself is called Gursat's problem. 

In the case that a=b=c=0, the solution to problem (1)-(2) can be determined in the final form. 

Indeed, from       (   ) , after integration by x we get: 

     (   )  ∫  (   )    
                                                                          (3) 

and integrating (3) over y we have  

 (   )   (   )   (   )   (   )  ∫  ∫ (   )   
 

 

 

 

 

The solution of equation (1) in the domain {(x,y): 0 ≤ x ≤ L, 0 ≤ y ≤ L} satisfies the conditions:

where A and B are given functions such that A(0)=B(0), it is called Gursat's solution, while problem (1)-(2) itself is called Gursat's 
problem.

In the case that a=b=c=0, the solution to problem (1)-(2) can be determined in the final form.
Indeed, from  uxy = f (x,y) , after integration by x we get:

and integrating (3) over y we have

i.e.,
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Let's prove that the functional series (  ) , (     ), (     )  are uniformly convergent. 

As the functions a,b,c are continuous, there exists a constant M such that | (   )|  
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That every solution of equation (8) satisfies (1) and (2) is verified directly by differentiation. 
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If we take that in (5) and (6) n → ∞, we have that is:

From (7) we get v = ux, w=uy, from where we conclude that the required function u satisfies the integro-differential equation:

That every solution of equation (8) satisfies (1) and (2) is verified directly by differentiation.
Let us now prove that the set Gursat problem has a unique solution. In contrast, let there be two identical solutions (x,y)→Ui 
(x,y),i=1,2,   of the given problem. Let's observe the function:

This function satisfies the integro-differential equation:

This equation is homogeneous. Let Q>0 be such a constant that
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for each n. From there it follows against the assumption that it is: 

U(x,y)=0, tj.,   (   )  (   )  

The established contraindication proves the uniqueness of the solution to Gursat's problem. 

Gursat's method 

 

Figure 4. Gursat's method 

The figure shows the solution using Gursat's method for a hyperbolic differential equation. The 
method uses successive approximations to numerically solve the problem. The solution is 
obtained by integrating the initial conditions with additional iterations. The label "Gursatov 
Method" above the image indicates exactly this numerical technique that is used to obtain the 
displayed 3D graph of the solution. 
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This paper studied a variety of numerical methods, including Volterian, Riemannian, and the 
telegraph equation, with an emphasis on solving hyperbolic differential equations that model the 
behavior of the wire. We analyzed the results obtained by applying these methods to a specific 
problem, showing them through 3D graphics. 

In the discussion, we highlighted the advantages and disadvantages of each method. For 
example, Volterra's method may be numerically stable but require a certain number of iterations 
to converge. The Riemann method, on the other hand, can be faster, but is sensitive to the 
discretization of space. We used the telegraph equation to model the behavior of the wire under 
the influence of a changing electric field. Through the implementation and analysis of the results, 
we noticed that Gursat's method converges towards a solution as the number of iterations 
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The established contraindication proves the uniqueness of the solution to Gursat's problem.
Gursat's method

Figure 4: Gursat's Method

The figure shows the solution using Gursat's method for a 
hyperbolic differential equation. The method uses successive 
approximations to numerically solve the problem. The solution 
is obtained by integrating the initial conditions with additional 
iterations. The label "Gursatov Method" above the image 
indicates exactly this numerical technique that is used to obtain 
the displayed 3D graph of the solution.

7. Discussion and Conclusion
This paper studied a variety of numerical methods, including 
Volterian, Riemannian, and the telegraph equation, with an 
emphasis on solving hyperbolic differential equations that model 
the behavior of the wire. We analyzed the results obtained by 
applying these methods to a specific problem, showing them 
through 3D graphics.

In the discussion, we highlighted the advantages and 
disadvantages of each method. For example, Volterra's method 
may be numerically stable but require a certain number of 
iterations to converge. The Riemann method, on the other hand, 
can be faster, but is sensitive to the discretization of space. 
We used the telegraph equation to model the behavior of the 
wire under the influence of a changing electric field. Through 
the implementation and analysis of the results, we noticed that 
Gursat's method converges towards a solution as the number of 
iterations increases. This numerical technique shows promising 
results in solving certain problems and can be applied to a wide 
range of hyperbolic equations. 

The discussion of the paper also includes consideration of the 

advantages and limitations of Gursat's method. This method 
can be useful in situations where an analytical solution is not 
available or difficult to perform. However, the parameters, 
such as the number of iterations, need to be carefully chosen 
to achieve convergence. In conclusion, the paper provides 
insight into the application of numerical methods for solving 
hyperbolic differential equations and explores the potential 
of Gursat's method in this context. Further research and 
comparison with other numerical techniques could contribute to 
a better understanding of the effectiveness of Gursat's method in 
different scenarios.

The conclusion of this paper indicates that the choice of a 
particular method depends on the specific application and 
characteristics of the problem. We hope that this research will 
contribute to the understanding of the advantages and limitations 
of different numerical techniques in the context of solving 
hyperbolic differential equations, especially in the domain of 
modeling the behavior of some continuous and discrete systems.
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