

ISSN: 2833-1389

Research Article

Journal of Traditional Medicine & Applications

Medicinal Flora of Chad: An Ethnobotanical Investigation into Traditional Healing Practices in N'djamena City

Abakar Bechir Seid^{1,7}, Joseph Ngoupayo¹, Ali Saeed Alqahtani², A B Bechir³, A B Mahamat⁴, Ngameni Barthelemy¹, H N Bayaga¹, Giulia Cappelli⁵, Bernard Gressier⁶ and Bruno ETO^{7*}

¹Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Cameroon

²Department of Pharmacognosy, College of Pharmacy, King Saudi University, Saudi Arabia

³Université des Sciences et de Technologie d'Ati, Ati, Tchad

⁴Institut National Supérieur d'Elevage de Mossoro, Ndjamena, Tchad

⁵Centre National de Recherche, Roma, Italy

⁶Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of pharmacy, University of Lille, France

⁷Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, France

*Corresponding Author

Bruno ETO, Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, France.

Submitted: 2024, Aug 26; **Accepted**: 2025, Jan 23; **Published**: 2025, Feb 06

Citation: Seid, A. B., Ngoupayo, J., Alqahtani, A. S., Bechir, A. B., Mahamat, A. B., et al. (2025). Medicinal Flora of Chad: An Ethnobotanical Investigation into Traditional Healing Practices in N'djamena City. *J Traditional Med Applications*, 4(1), 01-14.

Abstract

Ethnopharmacological Relevance: Traditional medicine plays a significant role in the daily lives of Chadians, harmonizing alongside modern healthcare services provided by medical centers and hospitals. This practice is deeply rooted in the culture, both in rural areas and urban centers across the country.

Aim of the Study: This study aims to comprehensively document the medicinal plants utilized by the residents of N'Djamena, the capital city of Chad. In addition to cataloging the plants, we seek to understand the methods of preparation and administration of traditional remedies.

Materials and Methods: A thorough ethnobotanical survey was conducted in ten districts of N'Djamena between August and September 2021. This approach allowed for a deep dive into the traditional medical practices of the region.

Results: The study revealed a remarkable wealth of traditional knowledge in primary healthcare, highlighting the importance of plants in the local pharmacopoeia. At the end of this survey, we interviewed 25 traditional healers, which led to the identification of 60 plant species belonging to 37 different botanical families. Among these, the Fabaceae and Combretaceae families stood out for their frequent use. The collected recipes comprised a total of 159 preparations, with roots (23.33%), leaves (21.66%), and fruits (11.66%) being the most commonly used plant parts. The most prevalent methods of administration were oral (71.66%) and Oral use (16.66%), while decoction (46.66%) and maceration (40%) were the most popular preparation techniques. Water (84.35%) was the most frequently

used solvent. These preparations were employed to treat a wide range of ailments, including malaria, typhoid fever, hemorrhoids, diarrhea, diabetes, gonorrhea, and sexual weakness.

Conclusions: This study underscores the extraordinary diversity of medicinal plants in Chad and their crucial role in primary healthcare. The 60 identified plants represent promising candidates for experimental studies aimed at developing new herbal medicines. By valuing traditional knowledge and integrating it into modern medical practices, it is possible to promote a holistic approach to healthcare that addresses the varied needs of the Chadian population.

Keywords: Ethnobotanical Inventory, Medicinal Plants, Traditional Medicine, Ndjamena Chad

1. Introduction

Improving human health is a pressing concern for many countries and international organizations worldwide, as it is a key aspect of sustainable development [1]. Despite the spectacular growth of the pharmaceutical industry, herbal medicine retains its significance, given that 25% of drugs produced and marketed globally are derived from plants. The African continent harbors a vast diversity of medicinal plants, with two-thirds of identified plant species residing in the tropical countries of Africa [2]. Access to these species is essentially cost-free for the population, with nearly 80% relying on them due to limited access to pharmaceutical drugs. However, the widespread adoption of traditional medicine poses several challenges, including insufficient scientific data resulting from tests evaluating the safety and efficacy of these traditional products [3]. The importance of plants for food, crafts, traditional medicine, pharmaceutical and phytopharmaceutical production, industry, economy, culture, and plant conservation in Africa, especially in Chad, remains in its infancy, despite being an essential resource for the planet. Additionally, very few inventories of medicinal plants have been conducted, despite the majority of the population relying on them for medical care. Given the variety and richness of Chad's flora, coupled with the limited number of local plants subjected to clinical investigations, it is crucial to conduct an ethnobotanical survey of plants used in traditional Chadian medicine, specifically in the city of N'Djamena.

N'Djamena lies within a dry tropical climate that has transitioned from the Sudanian-Sahelian type between 1951-1967 to a Sahelian type. Its climate is characterized by distinct seasons, including a long dry season lasting 7 to 8 months (from November to May) and a short rainy season spanning 3 to 5 months (from May to October). Precipitation levels range between 400 and 700 mm per year, occurring mainly as intermittent downpours, with recent years witnessing a concentration of rainfall over a three-month period (July to September). Temperature variations are considerable, ranging from 20°C to 45°C during the dry season and from 18°C to 30°C during the rainy season [4]. The soils in N'Djamena are predominantly clay-sandy to clayey, often containing limestone nodules. Soil composition varies depending on the location, and

despite the presence of clayey horizons, soil permeability is not negligible. Evaporation is the primary mechanism for dissipating surface water stagnation, despite the presence of clay. The characteristic vegetation formation in the area is shrub savanna dominated by Acacias, with additional steppic vegetation and varying densities of Balanite eagyptiaca and some species from the Combretaceae family. There is also a noticeable increase in urban tree planting initiatives as part of the government's environmental policy.

This survey aims to not only document the diversity of medicinal plants but also to contribute to the scientific understanding of their therapeutic potential and cultural significance in addressing health needs in Chad. By bridging traditional knowledge with modern scientific methods, we can unlock the full potential of Chad's rich botanical heritage for the benefit of its people and the wider global community.

2. Materials and Methods

2.1. Study Area Description

Our investigations were conducted in the city of N'Djamena, the capital and largest city of Chad, located in the central-western part of the country, on the right bank of the Chari River, at the confluence of the Chari and Logone rivers, approximately 100 km from Lake Chad. N'Djamena is situated at coordinates 12° 08' North latitude, 15° 02' East longitude, and an altitude of 295 meters [4]. N'Djamena serves as a vital hub for commerce, culture, and administration in Chad, making it an ideal location for studying traditional medicinal practices. Its geographical position at the convergence of major waterways and its proximity to Lake Chad contribute to its rich biodiversity and cultural heritage, including the utilization of medicinal plants in traditional healing methods. The city's diverse population, comprising various ethnic groups and communities, further enriches its traditional knowledge of medicinal plants. Our study aimed to explore and document this rich botanical heritage within the urban landscape of N'Djamena, shedding light on the use of medicinal plants in local healthcare practices.

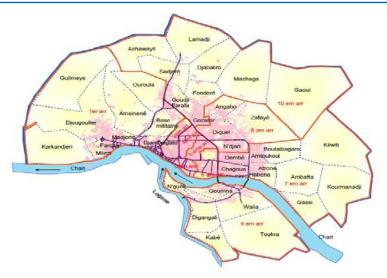


Figure 1: Geographical Map of N'Djamena

2.2. Material

All the medicinal plants listed in the province of N'Djaména.

2.3. Ethnobotanical Survey

The ethnobotanical survey was conducted across the ten different districts of N'Djamena, with two traditional practitioners selected from each district based on a sampling plan considering their ethnicities, religions, and various characteristics (including gender). With a total of 64 neighborhoods in N'Djamena distributed among the ten districts, our survey plan involved selecting two traditional practitioners from each district's different neighborhoods, except for the 5th district where we interviewed seven traditional practitioners. We interviewed a total of 25 traditional practitioners representing the main ethnic groups in the region, including Hausa, Arab, Baguirmi, Boulala, Mandra, Kotoko, Moundang, Sara, Yoruba, Borno, and Mousgoum. To ensure a comprehensive understanding of the subject matter, our survey utilized a pre-established questionnaire containing specific questions tailored for traditional practitioners and herbalists. These questions covered ethnobotanical characteristics (such as the form of usage and the plant parts used) and ethno-pharmacological aspects (including preparation methods, administration modes, and essential effects). This approach aimed to provide a more representative insight into the local therapeutic and traditional applications within the population of N'Djamena. Fieldwork was conducted primarily during daylight hours, either after sunrise or before sunset, to facilitate effective data collection and plant specimen gathering.

2.4. Selection of Plant Species

Three criteria guided the selection of medicinal plant species used:

- 1. Plants most commonly used by multiple traditional practitioners to treat a single ailment without the association of another plant.
- 2. Plants notable for their quality of treatment in Chadian traditional medicine, especially those used to treat specific ailments.
- 3. Plants that are diverse and accessible for collection.

2.5. Data Processing

The data recorded on the survey forms were processed and entered into GraphPad software. Data analysis utilized simple descriptive statistical methods. Quantitative variables were described using the usual descriptive statistics, including measures of central tendency (mean, median) and measures of dispersion (standard deviation, range). Qualitative variables were summarized using frequencies and percentages. Additionally, graphical representations such as histograms and pie charts were used to illustrate the distribution and characteristics of the collected data.

2.6. Statistical Analysis

The quantitative data collected underwent analysis of variance using GraphPad, version 5.0 software. The Tukey test was employed to discern differences between means. The analysis aimed to identify any significant variations or disparities among the collected data sets. Using ANOVA, we assessed the impact of different factors on the observed outcomes. Subsequently, the Tukey test was employed to conduct pairwise comparisons between multiple groups, enabling us to determine which means were significantly different from each other.

3. Results and Discussion

3.1 Floristic Aspect

3.1.1 Medicinal Plants Listed in the Province of N'Djaména

Scientific name	Family name	Local name	Herbarium	
Scientific name	Family name	Local name	identification	
Acacia albida; Faidherbia albida	Fabaceae	Haraz	Num 3301 /Chad	
Acacia nilotica	Fabaceae	Garade	Num 3499 /Chad	
Acacia senegal	Fabaceae	Kitir	Num 1286 /Chad	
Acassia sieberiana	Fabaceae	Kouk	Num 1747 /Chad	
Alium sativum	Amaryllidaceae	Thoum	44810 SRf/Cam	
Allium cepa	Amaryllidaceae	Bassal	42791 SRF/Cam	
Allium sp	Amaryllidaceae	Birrede	Not yet classified	
Anogeisus leiocarpus	Combretaceae	Sahba	Num 2419 /Chad	
Arachis hipogaea	Fabaceae	Foul	Num 1924 /Chad	
Artemisia herba-alba	Asteraceae	Chih	RAB76713	
Azadiracta indica	Meliaceae	Guindjé	Num 143 /Chad	
Balanites egyptiaca	Zygophyllaceae	Hydjilidje	Num 1847 /Chad	
Bauhina ruffessens	Fabaceae	Koulkoul	Num 1469 /Chad	
Blepharis maderaspatensis	Acantaceae	Albikhela	Num 2375 /Chad	
Boscia senegalensis	Capparaceae	Mikhète	Num 831 /Chad	
Brassica oleracea	Brassicaceae	Salat ta	Num 25686 SRF/Cam	
Calotrpis procera	Apocynacaea	Achorro/Ouchar	Num 2281 /Chad	
Camellia sinensis	Theaceae	Chahi	Num 43103 SRF/Cam	
Capparis decidua	Capparaceae	Toumtoum	Num 1201 /Chad	
Carica papaya	Caricaceae	Papai	Num 658 /Chad	
Cassia italica; Senna italica	Fabaceae	Tor Azarag/Sana sana	Num 728 /Chad	
Cassia seamea	Fabaceae	Dankani	Num 2308 /Chad	
Citrus aurantium	Rutaceae	Yossoufi	Num 34678 SRF/Cam	
Citrus limon	Rutaceae	Laymoune	Num 25861 SRF/Cam	
Cleome gynandra L	Cleomaceae	Timlegue	Num C1506 BF	
Coffea sp	Rubiaceae	Amkalawa	Num 58228 SRF/Cam	
Combretum glutinosum	Combretaceae	Habil	Num 2474 /Chad	
Combretum nigricans	Combretaceae	Chikhete	Num 1991 /Chad	
Cratera adensonia	Capparaceae	Dabcar	Num 1372 /Chad	
Cymbopogon schoenanthus	Capparidaceae	Mahareb	Num 1876 /Chad	
Delbergia melanoxylon	Fabaceae	Babanousse	Num 1305 /Chad	

Desmodium velutinum. Willd.	Fabaceae	Lebdo (Ngambay)	Num 26682
Diospyros mespiliformis	Ebenaceae	Djokhane	Num 1487/Chad)
Eucaluptus globulus	Fabaceae	Safarmotte	Num 4077 SRF/Cam
Ficus sp	Moraceae	Djimese	Num 1701 /Chad
Gossipium sp	Malvaceae	Goutoune	Num 1307 /Chad
Greuia bicolor	Malvaceae	Daraba cadade	Num 1301 /Chad
Guiera sengalensis	Combretaceae	Khibeche	Num 1474 /Chad
Hypheane thebaica	Arecaceae	Dom	Num 1336 /Chad
Khaya sengalensis	Meliaceae	Mouraie	Num 2336 /Chad
Kygelia africana	Fabaceae	Machtour	Num 1414/Chad
Leptadania hastata	Asclepiadaceae	Chalobe	Num 2922 /Chad
Manguifera indica	Anacardiaceae	Manga	Num 1747 SRF/Cam
Manihot esculenta	Euphorbiaceae	Angali	Num 1792 /Chad
Musa parasidiaca	Musaceae	Maouz	UIH001/1186
Nigelle sativa	Ranunculaceae	Kamoun	Num 3901 /Chad
Olimum basilicum	Lamiaceae	Amrihané	Num 6899 SRF/Cam
Philiostigma reticulatum	Fabaceae	Kharoum	Num 1205 /Chad
Prosopis africana	Fabaceae	Amkachaw	Num 1426 /Chad
Psidium guayava	Rosaceae	Khirwe	Num 1945 /Chad
Sarcocephalus latifolius	Myrtaceae	Djawafa	Num 49336 SRF/Cam
Scleroaerya biarrea	Anacardiaceae	Himede	Num 59469 SRF/Cam
Senna italica	Fabaceae	Sanasa	Num 13549 SRF/Cam
Sesamum indicum	Pedaliaceae	Simsim	Num 1277 /Chad
Syzygium sp	Myrtaceae	Grunful	Not yet classified
Tamarundus indica	Fabaceae	Ardeb	Num 2442 /Chad
Trigonella foenum graecum	Fabaceae	Hilba	FENU60001
Triulis terrestris	Zygophylaceae	Andirressa	Num 1990 /Chad
Vernonica clorata	Asteraceae	Tazou	Num 44933 SRF/Cam
Walteria indica	Malvaceae	Irgannar	Num 3299 /Chad
Zingiber officinalis	Zingiberaceae	Khurundjal	Num 14757 SRF/Cam
Ziziphus mauritiana	Ramnaceae	Nabag	Num 1213 /Chad

3.1.2. Most Represented Botanical Families in the City of N'Djamena

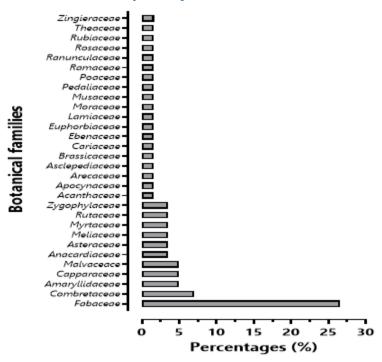


Figure 2: Percentage of Most Commonly Used Families in the Study Area

During our survey, we documented, collected, and identified 60 species of medicinal plants (Table 1). These 60 species, classified into 47 genera, belong to 37 plant families. Among these families, Fabaceae and Combretaceae were the most represented, accounting for 26.67% and 6.67% of the total species, respectively. Fabaceae emerged as the predominant family. This observation highlights the significance of Fabaceae and Combretaceae in the traditional medicinal practices of N'Djamena. These families likely contain species with potent therapeutic properties, contributing to their frequent utilization by traditional healers in the region.

3.1.3. Frequency of the Most Utilized Medicinal Plants

Analysis of the collected botanical data reveals that seven medicinal plants are the most commonly used in the survey area (see Figure 1). The species Khaya senegalensis, Guiera senegalensis, Allium sp, and Balanites egyptiaca are the most represented, accounting for 44%, 40%, 40%, and 36% respectively, followed by Diospyros mespiliformis, Prosopis africana, and Cassia italica with respective frequencies of 28%, 28%, and 24%.

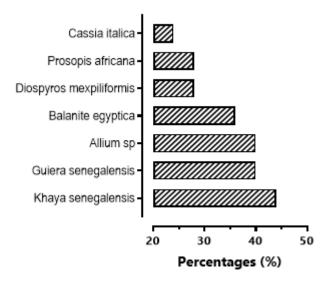


Figure 3: Frequency of Most Commonly Used Plants in the Study Area

3.2. Ethnobotanical and Pharmacological Aspect 3.2.1. Classes of Traditional Practitioners

The ethnobotanical survey was conducted among 25 traditional practitioners, with a distribution of 96% men and 4% women. This gender distribution is also reported in the work of Mamadou Aïssa et al. in 2017 [5]. According to traditional medical experience, 64% of traditional practitioners acquired their knowledge verbally from their parents or through involvement of the entire family in this field.

3.2.2. Preparation of Remedies

Medicinal species are used either alone or in combination with other plants for the treatment of various ailments, including malaria, typhoid fever, hemorrhoids (internal, external), diarrhea, constipation, diabetes, gonorrhea, jaundice, colic (intestinal, renal), parasitic diseases, and sexual weakness. The survey allowed us to record the recipes presented in the following tables:

Scientific name	Family name	Local name	Parts used	Method of preparation	Routes of administration	Diseases
Acacia albida; Faidherbia albida	Fabaceae	Haraz	bark	Decoction	Oral use	Joint pain
Acacia nilotica	Fabaceae	Garade	Stem and bark; fruit; leaves and fruit	Decoction or powder of fruits and dried leaves mixed	Oral use; Oral use, nasal route	Menorrhagia; Icterus; Gastritis; Angina; Dermatosis; Burn ulcer and breast cancer
Acacia senegal	Fabaceae	Kitir	Root	Maceration	Oral use	Headache
Acassia sieberiana	Fabaceae	Kouk	Root	Decoction	Oral use	Intestinal and renal colic, Diarrhoea
Alium sativum	Amaryllidace ae	Thoum	Garlic cloves	Direct intake	Oral use, nasal route	Fever, diabetes, malaria, sinusitis, cough, cold
Allium cepa	Amaryllidace ae	Bassal	Bulbs	Maceration	Foot bath, nasal route; Oral use, Oral use	Diabetes; sinusitis, coughs, colds; measles
Allium sp	Amaryllidace ae	Birrede	Bulbs, leaves	Decoction	Oral use	Sexual impotence, lack of spermatozoa, burn ulcers, breast cancer; joint pains; myoma, paralysis, female sterility
Anogeisus leiocarpus	Combretacea e	Sahba	Leaves; roots	Maceration or Decoction	Oral use	Diarrhoea; jaundice, joint pains
Arachis hipogaea	Fabaceae	Foul	Epicarp	Maceration of epicarp powder	Oral use	jaundice
Artemisia herba- alba	Asteraceae	Chih	Whole plant	Decoction or Maceration	Oral use; Topical use; gargle	Asthmatic attack, colic, dysentery; skin allergy; angina
Azadiracta indica	Meliaceae	Guindjé	Fruit, leaves,	Maceration of leaves and fruit, Decoction of roots	Oral use	Diabetes; malaria, fever

						Cough, bronchitis, cold, intestinal, and nephritic
D-1	Zygophyllac	11. 1::1: 1: .	Fruit, seeds,	Maceration or	Oral use	_
Balanites egyptiaca	eae	Hydjilidje	buds; stem, root	Decoction	Orai use	colic; jaundice; gastric ulcer; eye infection,
						joint pain
Bauhina ruffessens	Fabaceae	Koulkoul	Leaves and buds	Decoction	Oral use	Typhoid, diabetes,
						malaria, chickenpox
Blepharis				Maceration after		
maderaspatensis	Acantaceae	Albikhela	Whole plant	transformation into powder	Oral use	Female sterility
Boscia senegalensis	Capparaceae	Mikhète	Fruits	The fruit is eaten fresh after fermenting for 48	Oral use	Diabetes
				hours.		
Brassica oleracea	Brassicaceae	Salat ta	Leaves	Maceration	Oral use	Diabetes
<i>C.1.</i>		Achorro/O	T 0	T : 1.1 :	0.1.0.1	Filaria; gastric ulcer;
Calotrpis procera	Apocynacaea	uchar	Leaves; flowers	Topical dressing	Oral use; Oral use	abdominal pain;
C 11: : :	TI	Cl. 1:	T	D. C	Oral use; local application	Fever, malaria,
Camellia sinensis	Theaceae	Chahi	Leaves; roots	Decoction	on the scar	haemorrhage
			D 1 / 1	Maceration or grilling		
Capparis decidua	Capparaceae	Toumtoum	Bark; stems and	of chickens with fresh	Oral use	Fever; jaundice
			buds	stems;		
						Gonorrhoea, intestinal
Carica papaya	Caricaceae	Papay	Roots, leaves	Decoction	Oral use	worms, joint pains;
						jaundice.
		T.				Tooth decay, cough,
Cassia italica ;	E 1	Tor	Roots, leaves,	D 1	0.01.000	bronchitis, colds;
Senna italica	Fabaceae	Azarag/San	whole plant	Powdered paw	Oral use	jaundice, malaria,
		a sana				intestinal worms.
Cassia seamea	Fabaceae	Dankani	Roots	Decoction	Oral use	Typhoid, malaria
Citrus aurantium	Rutaceae	Youssuffi	Fruits	Maceration	Oral use	Joint pain
Citrus limon	Rutaceae	Laymoune	Fruits	Maceration	Oral use	Gastric ulcer, malaria
Cleome gynandra L.	Cleomaceae	Timlegue	Whole plant	Decoction	Oral use	Fever, buccal infection
Coffea sp	Rubiaceae	Amkalawa	seeds	Decoction	Oral use	Urinary retention
Combustan	Combretacea		Bark, roots,	Magazation		Canaari Dymmin1
Combretum		Habil	whole plant,	Maceration or	Oral use	Cancer; Burning ulcers;
glutinosum	e		seeds	Decoction		Malaria; Diarrhoea
Combretum	Combretacea	Cl:11	D4-	Danastian	O1	I 1:
Combretum nigricans	Combretacea e	Chikhete	Roots	Decoction	Oral use	Jaundice
		Chikhete Dabcar	Roots Bark, leaves	Decoction Poudre or Decoction or	Oral use	Jaundice Dermatitis, joint pain;

Cymbopogon schoenanthus	Capparidace ae	Mahareb	Whole plant	Decoction or Herbal tea	Oral use	Menorrhagia
Delbergia melanoxylon	Fabaceae	Babanouss e	Seeds	Maceration	Oral use	Sexual impotence
Diospyros mexpiliformis	Ebenaceae	Djokhane	Bark, roots	Decoction	Oral use	Cough, bronchitis, cold, pneumonia, intestinal and nephritic colic; headache
Eucaluptus globulus	Fabaceae	Safarmotte	Leaves and roots	Maceration	Oral use	Fever; intestinal worms
Ficus sp	Moraceae	Djimese	Roots	Decoction	Oral use	Fever
Gossipium sp	Malvaceae	Goutoune	Leaves	Decoction	Oral use	Diabetes, anaemia
Greuia bicolor	Malvaceae	Daraba cadade	Roots	Maceration	Oral use	Skin infection
Guiera sengalensis	Combretacea e	Khibeche	Roots; Whole plant; Leaves	Maceration or Decoction	Oral use; Oral use	Breast cancer and burn ulcer; Cough, bronchitis, cold, diarrhoea,
			Leaves, roots;			Gonococcal disease, malaria, diabetes; Diabetes Diarrhoea; hypertension,
Hypheane thebaica	Arecaceae	Dom	Fruit; Trunk of young plant	Maceration or Powder	Oral use, Eye drop	eye infection and haemorrhoids
Khaya sengalensis	Meliaceae	Mouraie	Fruits; bark, leaves, roots	Decoction or Maceration	Topical and oral use, Ear drop,	Burning ulcer, Tooth decay; Burning ulcer, Breast cancer, Ear infection; Fever, jaundice, Gastric ulcer, Headache, Intestinal worms
Kygelia africana	Fabaceae	Machtour	Fruits, leaves	Decoction or Powder	Oral use; Topical use	Typhoid; breast cancer; burn ulcer
Leptadania hastata	Asclepiadace ae	Chalobe	Whole plant	Decoction or Maceration	Oral use; Massage	Fever, diabetes, bone or joint lesions (fractures, dislocations)
Manguifera indica	Anacardiacea e	Manga	Bark and leaves	Decoction	Oral use	Insomnia, intestinal worms, diabetes

Manihot esculenta	Euphorbiace ae	Angali	Les tubercules	Maceration	Oral use	Sperm insufficiency
Musa parasidiaca	Musaceae	Moz	Bark and leaves	Decoction or Maceration	Oral use	Icterus, diabetes
Nigelle sativa	Ranunculace ae	Kamoun	Seeds	Maceration	Oral use; Oral use	Fever, dermatitis
Olimum basilicum	Lamiaceae	Amrihané	Whole plant	Powder	Oral use	Coughs, bronchitis, colds
Philiostigma reticulatum	Fabaceae	Kharoum	Leaves; roots	Maceration or Powder	Oral use; Topical use	Diarrhoea; Gonococcal disease
Prosopis africana	Fabaceae	Amkachaw	Les racines ; les écorce de racine ;	Powder or Decoction	Topical use; Oral use	Tooth decay, intestinal worms, diabetes, joint pain, malaria; Intestinal and renal colic.
Psidium guayava	Rosaceae	Khirwe	Les feuilles	Decoction	Oral use	Fever
Sarcocephalus latifolius	Myrtaceae	Djawafa	Les racines	Decoction	Oral use	Icterus, joint pain, complications following childbirth
Scleroaerya biarrea	Anacardiacea e	Himede	Bark and leaves	Maceration or Decoction	Oral use	Diabetes; joint pain
Senna italica	Fabaceae	Sanasa	Leaves; roots	Maceration or Powder	Oral use, Topical use	Constipation; gonorrhoea
Sesamum indicum	Pedaliaceae	Simsim	Seeds	Maceration	Oral use	Fever, sperm insufficiency
Syzygium aromaticum	Myrtaceae	Grunful	Seeds	Maceration or Essential oil	Oral use; Topical use	Asthma attack; tooth decay
Tamarundus indica	Fabaceae	Ardeb	Buds; leaves; fruit; bark	Maceration or Decoction	Oral use	Fever; diabetes; headache; myoma
Trigonella foenum graecum	Fabaceae	Hilba	Whole plant	Maceration or Decoction or Powder	Oral use; Nasal route	Dysentery, intestinal colic, diarrhoea, sinusitis
Triulis terrestris	Zygophylace ae	Andirressa	seeds	Maceration	Oral use	Sexual impotence
Vernonica clorata	Asteraceae	Tazou	leaves	Decoction	Oral use	Malaria
Walteria indica	Malvaceae	Irgannar	Whole plant	Decoction	Oral use	Joint pain, Dermatitis, Skin infection
Zingiber officinalis	Zingiberacea e	Khurundjal	bulb	Decoction	Oral use	Sexual impotence

Zizinhus mauritiana	Ramnaceae	Nabag	Bark roots	Maceration	Oral use	Gonorrhoea, Prolonged
Ziziphus mauritiana	Kaiiiiaccac	Nubug	Dark roots	Wacciation	Of all use	lochia

Table 1: List of Plant Species Found by Traditional Practitioners and Areas of Therapeutic Indication

3.2.3. Parts of Plants Used

According to the data collected during the survey, 11 different parts of plants are utilized for treating illnesses based on their therapeutic properties. Among the 159 recorded recipes, we present the utilization of these different parts in order of prevalence: roots

(23.33%), leaves (21.67%), fruits (11.67%), bark, whole plant, and seeds (10% each), bulbs (5%), tubers (3.33%), stems (2.62%), pods, and epicarp (1.67% each). Overall, traditional practitioners primarily utilize roots, accounting for 23.33% of plant parts used, compared to other parts (Figure 4).

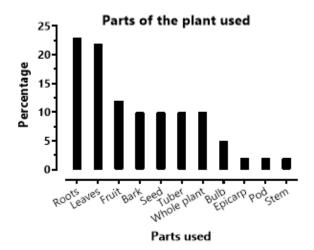


Figure 4: Graphical Representation of the Number of Plant Parts Used

3.2.4. Mode of Administration

The findings of this survey reveal that oral administration (71.67%) is the most preferred method among traditional healers, as well

as their patients, followed by Oral use (16.67%). Other modes of administration did not exceed a rate of more than 7% (Figure 5).

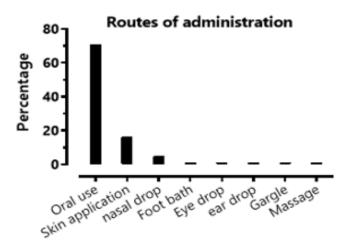


Figure 5: Graphical Representation of the Different Types of Administration Identified

3.2.5. Mode of Preparation

Many traditional healers always seek the simplest method to prepare herbal medicines. Consequently, it is recognized that decoction, with its percentage of 46.67% (Figure 6), represents the most suitable method for preparation.

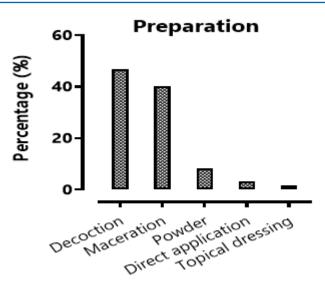


Figure 6: Graphs of the Different Preparation Methods Used

4. Discussion

The ethnobotanical survey conducted among 25 traditional healers has allowed for the inventory of potentially used medicinal plants in the city of N'Djamena. The utilization of these plants is closely linked to the profile of the respondents. Both elderly individuals and the younger generation share medicinal knowledge, albeit with slight differences in usage percentages. Women are nearly absent in the traditional medical field. Despite the challenges of life in the city, traditional healers often show great understanding regarding the pricing of herbal medicines, as prices are usually tailored to the financial capacity of their patients.

The investigations have gathered information concerning therapeutic practices in this city. The analysis of the results obtained by this survey identifies an inventory of 90 plants distributed among 37 families. It also shows that among the 37 families, Fabaceae is the most recorded (35%). From an ethnobotanical and pharmacological perspective, roots constitute the most utilized part (23.4%), decoction is the most practiced pharmaceutical form (52%), and traditional remedies are more commonly consumed orally (68%). Similarly, among all treated diseases, digestive disorders and infectious diseases represent the most frequently mentioned ailments.

The most represented Botanical Families used by traditional healer in the City of N'Djamena was Fabaceae. This result is similar to that observed in the capital of a neighbouring country of Chad in Bangui by Lakouéténé and colleagues in 2009 [6]. The Fabaceae, or Leguminosae, are a family of dicotyledonous plants in the order Fabales. It is one of the largest families of flowering plants, third only to the Orchidaceae and Asteraceae in terms of the number of species and is most easily found in the towns and cities of Central Africa. In contrast the most commonly used medicinal plants in

the survey area were Khaya senegalensis and Guiera senegalensis and has been previously documented in the literature by Haidara et al. in 2020 [7]. Similarly, the multiple uses of Balanites egyptiaca by local populations in the Ouaddai province of Chad have been reported by Abdoulaye Brahim et al. in 2017 [8].

These findings underscore the importance of these medicinal plants in the traditional healing practices of the region. The high frequency of utilization those plants suggests that these species possess potent therapeutic properties and are valued by traditional healers for their efficacy in treating various ailments. Further research into the pharmacological properties and mechanisms of action of these plants could provide valuable insights for their potential integration into modern healthcare systems. This study reveals that in the study area, there are more men working as traditional healers. The ethnobotanical survey was conducted among 25 traditional practitioners, with a distribution of 96% men and 4% women. This gender distribution is also reported in the work of Mamadou Aïssa et al. in 2017 [7]. Indeed, age emerged as a predominant factor in qualifying a traditional healer. The majority of traditional healers were elderly individuals, as these older individuals are often considered to provide more reliable information. Traditional medicine (TM) is deeply rooted in ancestral knowledge and oral tradition, with younger generations often lacking interest in traditional practices. This finding aligns with ethnobotanical surveys conducted in Benin by Koudokpon et al. in 2017 and by Bentabet et al. in 2022 in Algeria [9,10].

In traditional medicine, the parts of the plant used to make the traditional potion are also important. Overall, traditional practitioners primarily utilize roots, accounting for 23.3% of plant parts used, compared to other parts. This finding differs from those found in Niger, where bark is the most utilized due to its high yield in active ingredients, efficacy, and conditions of use [11]. Roots are readily available throughout the year, even for non-annual plants. Despite the delicacy of their harvest, they remain the most resilient to heat, humidity, and transportation. Although the dry season is preferable for harvesting among traditional practitioners, it was noted that certain plant parts require collection during or at the end of the rainy season, such as leaves and fruits. This exploration revealed that plant parts are often used in combination to enhance efficacy, especially for treating infectious diseases [12-14]. However, the association is not limited to plants alone; sometimes, plants need to be mixed with an acidified solution (such as natural yogurt, tamarind fruit juice, etc.), or a vehicle to enhance their effects.

The mode of drug administration is also important. The findings of this survey reveal that oral administration (71.67%) is the most preferred method among traditional healers, as well as their patients, followed by Oral use (16.67%). Other modes of administration did not exceed a rate of more than 7%. For both traditional healers and patients, the oral route is the royal road for administering medicines. Oral administration appears to be the quickest in terms of absorption and distribution, enabling the treatment of diseases related to unknown or incurable causes, including witchcraft. Therefore, administering orally is deemed necessary, followed by body cleansing treatments. All diseases with internal triggers (such as hemorrhoids, intestinal worms, etc.) typically require this mode of administration. This investigation aligns with similar findings reported by Dibong and colleagues in 2011 in Cameroon [15]. This preference for oral administration underscores the perceived efficacy and convenience associated with this mode of delivery. It allows for rapid absorption and systemic distribution of the medicinal components, facilitating their therapeutic effects on internal ailments. Additionally, the cultural and traditional beliefs surrounding the perceived potency of orally administered remedies may contribute to its widespread adoption among traditional healers and patients alike.

Many traditional healers always seek the simplest method to prepare herbal medicines. Consequently, it is recognized that decoction, with its percentage of 46.67% (Figure 6), represents the most suitable method for preparation. Decoction allows for the extraction of a maximum of active principles and helps to mitigate or eliminate the toxicity of certain recipes. It also facilitates the homogeneous combination of multiple plants. Additionally, maceration and infusion also play a significant role in maximizing the extraction of active principles and therapeutic effects. Numerous studies have echoed similar approaches, including the ethnobotanical study conducted by Mehdioui and Kahoudji in 2007 among the riparian population of the Amsittène forest [16].

This emphasis on decoction aligns with the traditional practices of many cultures, where boiling plant materials in water is a common method for preparing herbal remedies. Decoction is valued for its ability to release active compounds from plant tissues, making them more readily available for absorption and exerting therapeutic effects. Moreover, the simplicity and accessibility of this method make it particularly suitable for traditional healers who may lack sophisticated equipment or resources for more complex extraction techniques.

Highlights

- Traditional medicine is widely used by Chadians, with more than 80% of the population relying on it, even in the capital city of Ndiamena.
- The study revealed a remarkable wealth of traditional knowledge in primary healthcare, highlighting the importance of plants in the local pharmacopoeia.
- The results obtained will be used by the Ministry of Health to create a positive list of plants to be recommended to the population for primary care.

5. Conclusion

In conclusion, this study is a source of information on not only the medicinal flora found around Chad's capital, but also on the diseases treated by traditional healers and the population concerned. This study will serve as a basis for the development of improved traditional medicines for our populations.

Authors Contribution Statement

Abakar Bechir Seid: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Resources, Visualization, Writing – original draft.

Joseph Ngoupayo and Giulia Cappelli: Methodology, Validation. Bernard Gressier: Conceptualization, Writing.

Bruno ETO: Conceptualization, Data curation, Formal analysis, Methodology, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

A B Bechir, A B Mahamat, Ngameni Barthelemy: Investigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

The authors would like to thank the direction of Pharmacopeia and Traditional Medicine, Ministry of Health and Prevention, B.P. 440, N'djamena, Chad and TBC Laboratory (Faculty of Pharmacy, University of Lille) for assistance and helpful discussion.

References

- 1. Regional Committee for Africa, 56. 2006. "Health research: program of action for the WHO African Region: report by the Regional Director".
- 2. Sofowara, A. (1993). Medicinal plants and traditional

- medicine in Africa Spectrum books LTD. *Ibadan, Nigeria*, 289.
- 3. World Health Organization. (2013). *WHO traditional medicine strategy: 2014-2023*. World Health Organization.
- Bazin, F., Bechir, A. B., & Khamis, D. D. (2013). Etude prospective: systèmes d'élevage et changements climatiques au Tchad. Institut de recherches et d'applications des méthodes de développement, Rapport final.
- Jazy, M. A., Karim, S., Morou, B., Sanogo, R., & Mahamane, S. (2017). Enquête ethnobotanique auprès des tradipraticiens de Santé des régions de Niamey et Tillabéri au Niger: Données 2012–2017. Eur. Sci. J, 13, 276-304.
- Lakouéténé, D. P. B., Ndolngar, G., Berké, B., Moyen, J. M., KoshKomba, E., Zinga, I., ... & Chèze, C. (2009). Enquête ethnobotanique des plantes utilisées dans le traitement du paludisme à Bangui. *Bull Soc Pharm Bord*, 148, 123-38.
- Mahamane, H., Ardine, A. C., Ben Adam, M. A., Mamadou, G., Mahamadou, T., & Rokia, S. (2020). Enquête Ethnobotanique Des Plantes Utilisées Pour La Protection Cutanée Des Personnes Atteintes D'albinisme Dans Le District De Bamako (Mali) Et Analyse Qualitative De Bixa Orellana L.(Bixaceae). Bixaceae). Eur Sci J ESJ [Internet], 30.
- 8. Abdoulaye, B., Bechir, A. B., & Mapongmetsem, P. M. (2017). Utilités socioéconomiques et culturelles du Balanites aegyptiaca (L.) Del.(Famille Zygophyllaceae) chez les populations locales de la Région du Ouaddaï au Tchad. *Journal of Applied Biosciences, 111*, 10854-10866.
- Koudokpon, H., Dougnon, V. T., Bankolé, H. S., Fah, L., Hounmanou, Y. M. G., Baba-Moussa, L., & Loko, F. (2017). Enquête ethnobotanique sur les plantes utilisées dans le traitement des infections au Sud-Bénin. *Health Sciences and*

- *Disease*, 18(2).
- Bentabet, N., Rajaa, R., & Sakina, N. (2022). Enquête ethnobotanique et inventaire des plantes médicinales utilisées dans le traitement des maladies dermatologiques dans la ville d'Ain Temouchent. *Journal of applied Biosciences*, 170(1), 17704-17719.
- Baggnian, I., Abdou, L., Yameogo, J. T., Moussa, I., & Adam, T. (2018). Étude ethnobotanique des plantes médicinales vendues sur les marchés du centre ouest du Niger. *Journal of Applied Biosciences*, 132, 13392-13403.
- 12. Bruno, E. T. O. (2013). Research in clinical phytopharmacology to develop health care in developing countries: State of the art and perspectives. *Phytopharmacol*, 4(2), 149-205.
- 13. Boutahiri, S., Bouhrim, M., Abidi, C., Mechchate, H., Alqahtani, A. S., Noman, O. M., ... & Eto, B. (2021). Antihyperglycemic effect of lavandula pedunculata: in vivo, in vitro and ex vivo approaches. *Pharmaceutics*, *13*(12), 2019.
- Zakraoui, M., Outman, A., Kinambamba, M. S., Bouhrim, M., Ndjib, R. C., Alshawwa, S. Z., ... & Eto, B. (2024). Ifanosine: Olea europaea L. and Hyphaene thebaica L. combination, from traditional utilization to rational formulation: Preclinical and clinical efficacy on hypertensives patients. *Journal of Ethnopharmacology*, 325, 117834.
- Dibong, S. D., Mpondo, E. M., Ngoye, A., Kwin, M. F., & Betti, J. L. (2011). Ethnobotany and phytomedicine of medicinal plants sold in Douala markets.
- 16. Mehdioui, R., & Kahouadji, A. (2007). Etude ethnobotanique auprès de la population riveraine de la forêt d'Amsittène: cas de la Commune d'Imi n'Tlit (Province d'Essaouira). Bulletin de l'Institut scientifique, Rabat, section Sciences de la vie, 29, 11-20.

Copyright: ©2025 Bruno ETO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.