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Abstract
This article considers implications of the Lorentz transformation for Lorentz covariant scalar and real-valued vector 
field theories. The Maxwell-Heaviside equations in a vacuum appear as a consequence of the restrictions imposed upon 
the latter ones. This suggests a discrepancy between the historical development of, and the logical relationship between 
Maxwell’s electrodynamics and special theory of relativity. The results for the Maxwell-Heaviside equations in a vacuum 
cum grano salis apply to Heaviside’s gravito electromagnetic equations as well. 
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1. Introduction
A Lorentz covariant aka manifest Lorentz invariant theory contains 
only Lorentz scalars, contra-  and  covariant  4-vectors  such  as  
xµ  =  (ct, r )  and  xµ  =  (ct, −r )  (signature  + − −−), respectively, 
and their extensions to 4-tensors. This implies strong restrictions 
onto admissible theories. In this contribution, we concentrate on 
scalar and real-valued vector fields to eventually obtain Maxwell’s 
equations in a vacuum. All functions will be supposed to be 
sufficiently continuously differentiable.

To begin with the simplest non-trivial case, Section II considers 
constraints posed by Lorentz covariance upon Lorentz scalar 
fields. A physically relevant result is the Klein- Gordon equation.

Although this contribution has been inspired by discussions on 
the relationship between the historical and logical developments 
of physical theories in general, it constraints itself to this special 
example. Historically, the special theory of relativity bases on 
Maxwell equations in a vacuum. Does this corresponds to the 
logical development? To shed light on that question, Section III 
explores real-valued vector fields.

Finally, Section IV summarizes and concludes this article.

2. Scalar Field Theories
An elementary Lorentz covariant scalar field theory is expected 
to contain a Lorentz- scalar field amplitude u(xµ) and a Lorentz 
covariant equation of motion. Since this section only serves as a 

preparation of the main section III, pseudo-scalars are omitted.

For such a field amplitude, the simplest Lorentz covariant 
differential equation is

where aν is a 4-source. That, however, is not an equation of motion. 
Moreover, by Schwartz’s theorem, there are the constraints

(the analogue in 3d is ∇ × (∇b(r)) = 0). We are not aware of a 
physical application of eq. (1).
The simplest Lorentz scalar operator of motion is the wave operator 
aka d’Alembertian,

Hence, Euler’s aka d’Alembert’s wave equation,

is Lorentz covariant, if the source function f (xμ) is a Lorentz 
scalar. A special case is the Klein-(Fock-)Gordon(-Schr¨odinger) 
equation,
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theorem, there are the constraints

∂σ∂νu = ∂σaν = ∂ν∂σu = ∂νaσ (2)

(the analogue in 3d is ∇× (∇b(r⃗)) = 0). We are not aware of a physical application of eq.

(1).

The simplest Lorentz scalar operator of motion is the wave operator aka d’Alembertian,

□ := ∂σ∂σ =
∂2

c2∂t2
− ∇⃗2 . (3)

Hence, Euler’s aka d’Alembert’s wave equation,

□u(xµ) = f(xµ) (4)

is Lorentz covariant, if the source function f(xµ) is a Lorentz scalar. A special case is the

Klein-(Fock-)Gordon(-Schrödinger) equation,

□ψ(xµ) =
m2c2

ℏ2
ψ(xµ) , (5)

for the wave function ψ of spinless quantum particles of mass m, e.g. pions.

III. REAL-VALUED VECTOR FIELDS

Analogously to the foregoing section, an elementary Lorentz covariant theory of real-

valued vector fields contains a real-valued 4-vector field amplitude Aν(xµ) and a Lorentz-

covariant equation of motion. (Aν is a 4-vector, iff AνAν = Lorentz scalar.) The simplest

non-trivial differential equation reads

∂νA
ν(xµ) = 0 . (6)
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for the wave function ψ of spinless quantum particles of mass m, 
e.g. pions

3. Real-Valued Vector Fields
Analogously to the foregoing section, an elementary Lorentz 
covariant theory of real- valued vector fields contains a real-valued 
4-vector field amplitude Aν (xµ) and a Lorentz- covariant equation 
of motion. (Aν is a 4-vector, iff Aν Aν = Lorentz scalar.) The simplest 
non-trivial differential equation reads

That, however, is not an equation of motion but a constraint, again. 
If Aν denotes the electromagnetic 4-potential, eq. (6) is known as 
Lorenz gauge. In what follows, we will assume that it holds true. 
(In case of ∂ν A

ν = s ≠ 0, one can use the gauge freedom to set Aν = 
Aν + χν, where ∂ν χ

ν = s.)

Inspired by the fundamental theorem of vector algebra in ℜ3 
(Helmholtz’s theorem), an alternative operation of first-order 
derivatives w.r.t. xµ is

Again, that is not an equation of motion but, this time, a definition. 
Within electrodynamics, Fσν equals the Faraday tensor aka 
electromagnetic tensor, electromagnetic field tensor, field strength 
tensor, Maxwell bivector.

Furthermore, analogously to the scalar wave equation (4), there 
is the Lorentz covariant vector wave equation as an equation of 
motion,

where f ν is a 4-source. Within electromagnetism, f ν = μ0  j 
ν, where 

μ0 is the vacuum magnetic permeability aka magnetic constant and 
jν = (cρ, j) the 4-current density. It is equivalent with the following 
equation of second order suggested by relation (7),

Within electromagnetism, ∂σ F
σν = f ν = μ0  j 

ν are the inhomogeneous 
Maxwell-Heaviside equations in a vacuum. 

Moreover, there is the Bianchi identity,

Within electromagnetism, it represents the homogeneous Maxwell-
Heaviside equations in a vacuum.

Notice that, in contrast to the analogous case in Helmholtz’s 
theorem in ℜ3 (but a constant term), Aν is not completely determined 
by eqs. (6). . . (8). One can add to Aν a smooth function 
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electromagnetic 4-potential, eq. (6) is known as Lorenz gauge. In what follows, we will

assume that it holds true. (In case of ∂νAν = s ̸= 0, one can use the gauge freedom to set

Aν = Ãν + χν , where ∂νχ
ν = s.)

Inspired by the fundamental theorem of vector algebra in ℜ3 (Helmholtz’s theorem), an

alternative operation of first-order derivatives w.r.t. xµ is

∂σAν(xµ)− ∂νAσ(xµ) =: F σν(xµ) . (7)
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F σν equals the Faraday tensor aka electromagnetic tensor, electromagnetic field tensor, field
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magnetic permeability aka magnetic constant and jν = (cρ, j⃗) the 4-current density. It is

equivalent with the following equation of second order suggested by relation (7),

∂σF
σν = ∂σ (∂

σAν − ∂νAσ) = □Aν = f ν . (9)

Within electromagnetism, ∂σF σν = f ν = µ0j
ν are the inhomogeneous Maxwell-Heaviside

equations in a vacuum.

Moreover, there is the Bianchi identity,

∂γFνσ + ∂νFσγ + ∂σFγν = 0 . (10)

Within electromagnetism, it represents the homogeneous Maxwell-Heaviside equations in a
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ν = 0 and, (ii), sufficiently smooth initial values

Fσν(0, r⃗) and correct boundary conditions are prescribed. Both facts are well known from

electromagnetism.
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eq. (6). F σν, however, is uniquely determined by eqs. (9) and (10), 
if, (i), the initial values of jν obey the equation of continuity ∂ν

 jν = 
0 and, (ii), sufficiently smooth initial values Fσν (0, r) and correct 
boundary conditions are prescribed. Both facts are well known 
from electromagnetism.

4. Summary and Conclusions
We have rearranged well-known facts such that the question 
arises whether, logically, EITHER the Lorentz transformation is 
a consequence of Maxwell’s theory (historical devel-opment), 
oR Maxwell equations in a vacuum follow from the restrictions 
posed by Lorentz covariance as required by Poincar´e’s and 
Einstein’s special relativity. The simplest way to do so uses the 
4-potential Aν = (cΦ, A ). The scalar Φ and vector A potentials enter 
Maxwell’s original equations but not the ‘rationalized’ Maxwell-
Heaviside equations nowadays taught as “Maxwell equations”. 
Because the Lorentz transformation can be derived independently 
of electromagnetism, that reasoning suggests to logically consider 
the Lorentz transformation to be primary w.r.t. electromagnetism. 
The results for the Maxwell-Heaviside equations in a vacuum cum 
grano salis apply to Heaviside’s gravito electromagnetic equations 
as well.

On the other hand, the structure of Maxwell’s equations in a 
vacuum can be derived from the continuity equation (see Appendix 
A). This suggest Maxwell’s equations in a vacuum to be primary 
against the Lorentz transformation.

Therefore, logically, the Lorentz transformation and Maxwell’s 
theory should be treated on equal footing.

Measuring the forces between spherical charges (Coulomb) and 
thin parallel conductors (Amp`ere), respectively, as a function 
of their distances, it follows that there is a universal constant of 
dimension velocity. However, this gives not any hint to the fact that 
that velocity equals the speed of a wave of electric and magnetic 
fields, nor that light is an electromagnetic wave.

These investigations have been performed in the spirit of Heinrich 
Hertz’s program, viz., to represent classical mechanics such that 
all other branches of physics can be derived from it. It is powerful 
in its concreteness of approach. And it is limited by the fact that 
one arrives at new relationships, the physical meaning of which is 
unclear. However, to our knowledge, there is none generalization 
of an existing theory which does better.
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That, however, is not an equation of motion but a constraint, again. If Aν denotes the

electromagnetic 4-potential, eq. (6) is known as Lorenz gauge. In what follows, we will

assume that it holds true. (In case of ∂νAν = s ̸= 0, one can use the gauge freedom to set

Aν = Ãν + χν , where ∂νχ
ν = s.)

Inspired by the fundamental theorem of vector algebra in ℜ3 (Helmholtz’s theorem), an

alternative operation of first-order derivatives w.r.t. xµ is

∂σAν(xµ)− ∂νAσ(xµ) =: F σν(xµ) . (7)

Again, that is not an equation of motion but, this time, a definition. Within electrodynamics,

F σν equals the Faraday tensor aka electromagnetic tensor, electromagnetic field tensor, field

strength tensor, Maxwell bivector.

Furthermore, analogously to the scalar wave equation (4), there is the Lorentz covariant

vector wave equation as an equation of motion,

□Aν(xµ) = f ν(xµ) , (8)

where f ν is a 4-source. Within electromagnetism, f ν = µ0j
ν , where µ0 is the vacuum

magnetic permeability aka magnetic constant and jν = (cρ, j⃗) the 4-current density. It is

equivalent with the following equation of second order suggested by relation (7),

∂σF
σν = ∂σ (∂

σAν − ∂νAσ) = □Aν = f ν . (9)

Within electromagnetism, ∂σF σν = f ν = µ0j
ν are the inhomogeneous Maxwell-Heaviside

equations in a vacuum.

Moreover, there is the Bianchi identity,

∂γFνσ + ∂νFσγ + ∂σFγν = 0 . (10)

Within electromagnetism, it represents the homogeneous Maxwell-Heaviside equations in a

vacuum.

Notice that, in contrast to the analogous case in Helmholtz’s theorem in ℜ3 (but a

constant term), Aν is not completely determined by eqs. (6). . . (8). One can add to Aν a

smooth function ∂νχ(xµ) which obeys □χ = 0. This is the gauge freedom mentioned after

eq. (6). F σν , however, is uniquely determined by eqs. (9) and (10), if, (i), the initial values

of jν obey the equation of continuity ∂νj
ν = 0 and, (ii), sufficiently smooth initial values

Fσν(0, r⃗) and correct boundary conditions are prescribed. Both facts are well known from

electromagnetism.
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Aν = Ãν + χν , where ∂νχ
ν = s.)

Inspired by the fundamental theorem of vector algebra in ℜ3 (Helmholtz’s theorem), an

alternative operation of first-order derivatives w.r.t. xµ is

∂σAν(xµ)− ∂νAσ(xµ) =: F σν(xµ) . (7)

Again, that is not an equation of motion but, this time, a definition. Within electrodynamics,

F σν equals the Faraday tensor aka electromagnetic tensor, electromagnetic field tensor, field

strength tensor, Maxwell bivector.

Furthermore, analogously to the scalar wave equation (4), there is the Lorentz covariant

vector wave equation as an equation of motion,

□Aν(xµ) = f ν(xµ) , (8)

where f ν is a 4-source. Within electromagnetism, f ν = µ0j
ν , where µ0 is the vacuum

magnetic permeability aka magnetic constant and jν = (cρ, j⃗) the 4-current density. It is

equivalent with the following equation of second order suggested by relation (7),

∂σF
σν = ∂σ (∂

σAν − ∂νAσ) = □Aν = f ν . (9)

Within electromagnetism, ∂σF σν = f ν = µ0j
ν are the inhomogeneous Maxwell-Heaviside

equations in a vacuum.

Moreover, there is the Bianchi identity,

∂γFνσ + ∂νFσγ + ∂σFγν = 0 . (10)

Within electromagnetism, it represents the homogeneous Maxwell-Heaviside equations in a

vacuum.

Notice that, in contrast to the analogous case in Helmholtz’s theorem in ℜ3 (but a

constant term), Aν is not completely determined by eqs. (6). . . (8). One can add to Aν a

smooth function ∂νχ(xµ) which obeys □χ = 0. This is the gauge freedom mentioned after

eq. (6). F σν , however, is uniquely determined by eqs. (9) and (10), if, (i), the initial values

of jν obey the equation of continuity ∂νj
ν = 0 and, (ii), sufficiently smooth initial values

Fσν(0, r⃗) and correct boundary conditions are prescribed. Both facts are well known from

electromagnetism.

4

That, however, is not an equation of motion but a constraint, again. If Aν denotes the

electromagnetic 4-potential, eq. (6) is known as Lorenz gauge. In what follows, we will

assume that it holds true. (In case of ∂νAν = s ̸= 0, one can use the gauge freedom to set
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the then head of the international office Zhanar Bayseitovna 
Bayseitova, and the colleagues of the chair of mathematics, 
physics, and informatics.

Appendix A: Derivation of the structure of Maxwell’s 
Equations in a Vacuum from the Continuity Equation
Following Mie’s textbook, one can proceed as follows (recall that 
all functions are assumed to be sufficiently smooth) [1].

The continuity equation reads (actually, ρ and j are the free charge 
and current densities)

Now, there is always a vector field D such that

This corresponds to Gauss’ law.

Further, inserting Gauss’ law (A2) into the continuity equation 
(A1) yields, using Schwartz’s theorem,

Hence, by virtue of ∇ · (∇×) ≡ 0, there is a vector field H such that

This corresponds to Maxwell’s flux law. Of course, the physical 
content of the equations does not follow from such kind of 
derivation. The same holds true for eq. (5), the structure of which 
follows from setting u ∝ f in the wave equation (4). Similarly, all 
derivations of the Lorentz transformation not using light imply a 
characteristic velocity, the value of which can be determined only 
through experiments or the connection with other theories, notably 
the Lorentz force.
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Appendix A: Derivation of the structure of Maxwell’s equations in a vacuum from

the continuity equation

Following Mie’s textbook [1], one can proceed as follows (recall that all functions are

assumed to be sufficiently smooth).

The continuity equation reads (actually, ρ and j⃗ are the free charge and current densities)

∇ · j⃗ + ∂ρ

∂t
= 0 . (A1)

Now, there is always a vector field D⃗ such that

∇ · D⃗ = ρ . (A2)

This corresponds to Gauss’ law.

Further, inserting Gauss’ law (A2) into the continuity equation (A1) yields, using
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Hence, by virtue of ∇ · (∇×) ≡ 0, there is a vector field H⃗ such that

∇× H⃗ = j⃗ +
∂D⃗

∂t
. (A4)

This corresponds to Maxwell’s flux law.

Of course, the physical content of the equations does not follow from such kind of deriva-

tion. The same holds true for eq. (5), the structure of which follows from setting u ∝ f

in the wave equation (4). Similarly, all derivations of the Lorentz transformation not using

light imply a characteristic velocity, the value of which can be determined only through

experiments or the connection with other theories, notably the Lorentz force.

[1] G. Mie, Lehrbuch der Elektrizität und des Magnetismus: Eine Experimentalphysik des Weltäthers
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