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Abstract
This paper shows a mathematical modeling method using different machine learning algorithms for prediction of 
probability of procuring Pancreatic Cancer (PC). Each algorithm reports its own accuracy, precision, recall and 
F1-score. Also, a Bayesian network model is used to determine the probability each subject has in contracting PC 
on the basis of certain preconditions, like his dietary habits and other biological attributes. This paper makes use of 
the PC dataset as provided by the National Cancer Institute in collaboration with National Institute of Health (NIH). 
The features obtained from this dataset can have either a binary value or a scalar value. The dataset consists of three 
questionnaires distributed to 155000 subjects. In each of these questionnaires, the subject is asked about his dietary 
habits and illness history.

Ananya Dutta*

Gauhati University, Guwhati, Assam, India-781014

Keywords: NIH-PLCO Dataset, Feature Selection, Bayesian Network, Prediction Model, Feature Graph-Trends

1. Introduction
Pancreatic cancer (PC) is a disease with poor prognosis and survival 
rate. About 95% of people who contract PC would not make it to 
the five-year survival period [1]. Pancreas is an inner organ of the 
human body, surrounded by the duodenum and the small intestine; 
hence early symptoms are hard to detect [2]. Malicious cells in the 
pancreas are typically detected at a very advanced stage when it is 
impossible to save the patient. There is a pertinent need for a PC 
prediction model that can lead to early detection of this disease.
Many researchers are in search of biomarkers for early diagnosis 
of PC (see for example, [3–8]. However, evidence for identified 
biomarkers has not been very conclusive. Image analysis and 
machine learning algorithms have been used for distinguishing 
between benign and malignant tissues in endoscopic ultrasound 
(EUS) and computed tomography (CT) images see for example, 
[9–12].  However, these models can detect PC only at an advanced 
stage and hence are not very useful.

As a follow-up on our previous work on pancreatic cancer, this 
paper uses machine learning algo- rithms to identify a subset 
of features from the PLCO dataset as useful predictors of PC 
[13]. The Prostate, Lung, Colorectal and Ovarian (PLCO) 
cancer dataset is collected by the National Cancer Institute from 
approximately 155,000 participants. Each participant responded 
to three questionnaires consisting of 65 questions (or features) 
about demographics, dietary habits, illness history, and family 
background.  The dataset is highly imbalanced. To solve the 
unbalancing problem, we can use some data balancing algorithms 
to oversample the minority datapoints or undersample the majority 
datapoints so that both these datapoints are equal in number.

2. Problem Statement
Our problem is to infer whether a subject has pancreatic cancer 
or not given information about his demographic characteristics, 
dietary habits, illness history, and family background. This 
information is encoded as a vector of features. Formally, given a 
set of data  points X = [⃗x1, ..., ⃗ xN]  d×N   and  a  set of labels   T rue, F 
alse  ,  the goal is to map each data point ⃗xi 

d into one of the labels,  
where d  is the dimension of each data point, and N is the number 
of data points in the dataset.

In this paper, we will use the PLCO dataset where N = 155, 000. 
Each data point represents a subject as a d = 65dimensional feature 
vector. The biggest challenge with the PLCO dataset is that it is 
highly imbalanced. Only 0.48% of the data points belong to the 
T rue class; rest are F alse. To classify this imbalanced dataset, 
we use techniques from data visualization, data balancing 
using oversampling and undersampling, feature selection, and 
probabilistic inference. Along the way, we find interesting insights 
into the correlates of pancreatic cancer, some of which are 
consistent with what has been reported in the medical sciences/
healthcare literature while a few others are yet to be investigated 
thoroughly.

3. Models and Methods
3.1 Data Visualization Methods
t-distributed stochastic neighbor embedding (t-SNE) 
algorithm. t-SNE is a widely-used algo- rithm for dimensionality 
reduction that can be used to visualize high dimensional data 
by embedding the datapoints into a 2D or 3D-space. As Van der 
Maaten and Hinton explained [1, 14]. “The similarity of datapoint 

International Journal of Cancer Research & Therapy
ISSN: 2476-2377



  Volume 8 | Issue 3 | 117Int J Cancer ResTher, 2023

xj to datapoint xi is the conditional probability pj i, that xi would  
pick  as  its  neighbor  xj  if neighbors were picked in proportion to 

their probability density under a Gaussian centered at xi.”

Adaptive Synthetic (ADASYN) algorithm. ADASYN is a 
method of generating synthetic examples for minority classes 
using a weighted distribution as shown in Figure 2.  The algorithm 
flowchart is described in detail in [15].

3.2 Data Balancing Methods
k-means clustering. k-means clustering performed on the majority 

class of the dataset yielded 743 cluster centers. The value of k is 
based on idea of equalizing minority class with majority class 
and generating 743 clusters for majority class. These points were 
mixed with the datapoints of the minority class to remove bias, and 
generate a total of 1486 datapoints. The 24 prediction algorithms 
were run on this new dataset and the results were validated using 
5-fold cross validation. Table .1 shows the validation results.
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ILFS ECFS Relieff FSV Laplacian UDFS LLCFS CFS FASAL Lasso DGUFS No feature
selection

Fine Decision Tree

0.998,
1,
0.996,
0.998

0.9832,
0.996,
0.9711,
0.9834

0.9879,
0.9812,
0.9945,
0.9878

0.9919,
0.9879,
0.9959,
0.9919

0.9919,
0.9879,
0.9959,
0.9919

0.998,
0.9973,
0.9987,
0.998

1,1,1,1 1,1,1,1 1,1,1,1

0.996,
0.996,
0.996,
0.996

0.9899,
0.9892,
0.9906,
0.9899

1, 1,1,1

Medium
Decision Tree

0.998,
1,
0.996,
0.998

0.9832,
0.996,
0.9711,
0.9834

0.9879,
0.9812,
0.9945,
0.9878

0.9919,
0.9879,
0.9959,
0.9919

0.9919,
0.9879,
0.9959,
0.9919

0.998,
0.9973,
0.9987,
0.998

1,1,1,1 1,1,1,1 1,1,1,1

0.996,
0.996,
0.996,
0.996

0.9899,
0.9892,
0.9906,
0.9899

1, 1,1,1

Coarse Decision Tree

0.998,
1,
0.996,
0.998

0.9832,
0.996,
0.9711,
0.9834

0.9657,
0.9583,
0.9727,
0.9654

0.969,
0.969,
0.969,
0.969

0.969,
0.969,
0.969,
0.969

0.9825,
0.965,
1,
0.9822

1,1,1,1 1,1,1,1 1,1,1,1

0.998,
0.996,
1,
0.998

0.9859,
0.9717,
1,
0.9857

1, 1,1,1

Linear Discriminant

0.9643,
1,
0.9334,
0.9656

0.683,
0.961,
0.6716,
0.9834

0.7995,
0.9973,
0.7146,
0.8326

0.998,
1,
0.996,
0.998

0.998,
1,
0.996,
0.998

0.998,
1,
0.996,
0.998

0.9623,
1,
0.9299,
0.9637

0.9314,
0.9358,
1,
0.8793

0.9987,
1,
0.9987,
0.9973

0.8493,
0.8291,
0.8640,
0.8462

0.5599,
0.5882,
0.5567,
0.572

0.9987,
1,
0.9987,
0.9973

Quadratic
Discriminant

0.9906,
0.9812,
1,
0.9905

0.6938,
0.9825,
0.6229,
0.7624

0.9246,
0.9650,
0.8929,
0.9276

0.9933,
0.9865,
1,
0.9932

0.9933,
0.9865,
1,
0.9932

0.9926,
0.9854,
1,
0.9927

0.9987,
1,
0.9987,
0.9973

0.9933,
0.9865,
1,
0.9932

0.9933,
0.9865,
1,
0.9932

0.8614,
0.9731,
0.7954,
0.8753

0.9092,
0.9502,
0.8781,
0.9127

0.998,
0.996,
1,
0.998

Logistic Regression

0.9684,
1,
0.9405,
0.9693

0.6992,
0.9987,
0.6246,
0.7685

0.7705,
0.9341,
0.7039,
0.8028

0.9933,
1,
0.9987,
0.9933

0.9993,
1,
0.9987,
0.9993

0.9939,
1,
0.9880,
0.994

0.998,
1,
0.996,
0.998

0.9987,
1,
0.9987,
0.9973

0.9307,
0.9906,
0.8846,
0.9346

0.5673,
0.5882,
0.5646,
0.5761

0.998,
0.996,
1,
0.998

Gaussian Naive Bayes

0.9919,
0.9865,
0.9973,
0.9919

0.9758,
0.9731,
0.9783,
0.9757

0.9098,
0.9664,
0.8682,
0.9146

0.9825,
0.9650,
1,
0.9822

0.9825,
0.965,
1,
0.9822

0.9933,
0.9867,
1,
0.9933

1,1,1,1

0.8163,
0.9919,
0.7341,
0.8437

1,1,1,1

0.7429,
0.9812,
0.6645,
0.7924

0.6703,
0.9664,
0.6069,
0.7456

0.9926,
0.9852,
1,
0.9925

Kernel Naive Bayes

0.998,
0.996,
1,
0.998

0.9791,
0.9785,
0.9798,
0.9791

0.9132,
0.9879,
0.8595,
0.9192

0.9966,
0.9933,
1,
0.9966

0.9966,
0.9933,
1,
0.9966

0.9987,
0.9973,
1,
0.9987

0.9953,
0.9906,
1,
0.9953

0.8183,
0.9973,
0.7344,
0.8459

0.9987,
0.9973,
1,
0.9987

0.7651,
0.9892,
0.6831,
0.8081

0.7544,
0.9892,
0.6731,
0.8011

0.987,
0.9744,
1,
0.987

Linear SVM

0.9933,
1,
0.9867,
0.9933

0. 6965,
0.9919,
0.6235,
0.7657

0.7974,
0.9933,
0.7137,
0.8306

1,1,1,1 1,1,1,1 1,1,1,1

0.9919,
1,
0.9841,
0.992

0.9926,
1,
0.9854,
0.9927

1,1,1,1

0.9374,
1,
0.8888,
0.9411

0.5727,
0.6420,
0.5638,
0.6004

0.9987,
1,
0.9973,
0.9987

Quadratic SVM

0.9926,
1,
0.9854,
0.9927

0. 6964,
0.992,
0.6239,
0.766

0.9805,
0.9919,
0.9697,
0.9807

1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1

0.9906,
0.9946,
0.9866,
0.9906

0.9933,
0.996,
0.9906,
0.9933

1, 1,1,1

Cubic SVM

0.9913,
1,
0.9828,
0.9913

0.6985,
0.9973,
0.6243,
0.7679

0.9906,
0.9946,
0.9866,
0.9906

1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1

0.9872,
0.9946,
0.9801,
0.9873

0.9778,
0.9892,
0.9671,
0.978

1, 1,1,1

Fine Gaussian SVM

0.9953,
0.9906,
1,
0.9953

0.6989,
1,
0.6238,
0.7684

0.9744,
0.9515,
0.9972,
0.9738

0.9852,
0.9704,
1,
0.985

0.9852,
0.9704,
1,
0.9852

0.9966,
0.9933,
1,
0.9966

0.9778,
0.9556,
1,
0.9773

0.9946,
0.9892,
1,
0.9946

1,1,1,1

0.9926,
0.9852,
1,
0.9925

0.9576,
0.9287,
0.9857,
0.9563

0.9845,
0.969,
1,
0.9843

Medium Gaussian
SVM

0.9939,
1,
0.988,
0.994

0.70,
1,
0.6249,
0.7692

0.895,
0.9865,
0.8339,
0.9038

1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1

0.9502,
0.9973,
0.9114,
0.9524

0.8801,
0.9098,
0.8439,
0.8756

1, 1,1,1

Coarse Gaussian
SVM

0.9933,
1,
0.9867,
0.9933

0.6904,
0.9785,
0.6208,
0.7597

0.8001,
0.9919,
0.7169,
0.8323

1,1,1,1 1,1,1,1 1,1,1,1

0.9872,
1,
0.9751,
0.9874

0.9973,
1,
0.9945,
0.9973

1,1,1,1

0.9374,
1,
0.8888,
0.9411

0.6090,
0.8264,
0.5760,
0.6788

1, 1,1,1

Fine KNN

0.9933,
1,
0.988,
0.994

0. 6999,
1,
0.6249,
0.7692

0.9441,
0.9879,
0.9084,
0.9465

0.9993,
1,
0.9987,
0.9993

0.9919,
0.9879,
0.9959,
0.9919

1,1,1,1

0.998,
1,
0.996,
0.998

1,1,1,1 1,1,1,1

0.9939,
0.9973,
0.9906,
0.994

0.8977,
0.9825,
0.84,
0.9057

1, 1,1,1

Cosine KNN

0.9764,
0.9906,
0.9634,
0.9768

0. 6972,
1,
0.6228,
0.7676

0.8855,
0.9879,
0.7813,
0.8726

1,1,1,1 1,1,1,1

0.998,
0.9973,
0.9987,
0.998

0.9919,
1,
0.9841,
0.992

0.9993,
1,
0.9987,
0.9933

1,1,1,1

0.9724,
0.9892,
0.957,
0.9729

0.7443,
0.9906,
0.6637,
0.7948

0.998,
0.996,
1,
0.998

Medium KNN

0.976,
1,
0.9538,
0.9763

0. 6972,
1,
0.6228,
0.7676

0.8432,
0.9987,
0.7618,
0.8643

0.9973,
1,
0.9946,
0.9973

0.9919,
0.9879,
0.9959,
0.9919

0.998,
0.996,
1,
0.998

0.9865,
1,
0.9738,
0.9867

0.9993,
1,
0.9987,
0.9933

1,1,1,1

0.9711,
0.9973,
0.9476,
0.9718

0.5444,
0.9906,
0.5235,
0.685

1, 1,1,1

Coarse KNN

0.9179,
1,
0.9538,
0.9763

0. 6972,
1,
0.6228,
0.7676

0.7995,
1,
0.7137,
0.833

0.9913,
1,
0.9828,
0.9913

0.9913,
1,
0.9828,
0.9913

1,1,1,1

0.967,
1,
0.9381,
0.9681

0.9953,
1,
0.9907,
0.9953

1,1,1,1

0.9374,
1,
0.8888,
0.9411

0.7773,
0.9704,
0.7,
0.8133

1, 1,1,1

Cubic KNN

0.9738,
0.996,
0.9536,
0.9743

0. 6972,
1,
0.6228,
0.7676

0.8149,
0.9987,
0.7303,
0.8437

0.9973,
1,
0.9946,
0.9973

0.9973,
1,
0.9946,
0.9973

0.9966,
0.9933,
1, 0.9966

0.961,
1,
0.9276,
0.9624

0.9973,
1,
0.9946,
0.9973

1,1,1,1

0.9563,
0.9973,
0.9216,
0.958

0.6676,
0.9865,
0.6023,
0.748

0.9946,
1,
0.9893,
0.9946

Weighted KNN

0.9872,
1,
0.9751,
0.9874

0. 6985,
1,
0.6238,
0.7684

0.8930,
0.9960,
0.8259,
0.9030

0.9993,
1,
0.9987,
0.9993

0.9993,
1,
0.9987,
0.9993

1,1,1,1

0.9953,
1,
0.9907,
0.9953

1,1,1,1 1,1,1,1

0.9933,
0.9987,
0.988,
0.9933

0.8466,
0.9906,
0.7691,
0.8659

1, 1,1,1

Ensemble Boosted
Trees

0.4987,
0.5989,
0.4989,
0.5443

0. 784,
0.5976,
0.9528,
0.7345

0.4987,
0.5989,
0.4989,
0.5443

0.4987,
0.5989,
0.4989,
0.5443

0.4987,
0.5989,
0.4989,
0.5443

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.9951,
1,
0.9952,
0.9976

Ensemble Bag Trees

0.9993,
0.9987,
1,
0.9993

0. 9872,
0.996,
0.9788,
0.9873

0.9939,
0.9892,
0.9986,
0.9939

0.996,
0.9919,
1,
0.9959

0.996,
0.9919,
1,
0.9959

0.9987,
1,
0.9973,
0.9987

1,1,1,1 1,1,1,1 1,1,1,1

0.9953,
0.9946,
0.996,
0.9953

0.9953,
0.9946,
0.996,
0.9953

0.4987,
0.5989,
0.4989,
0.5443

Ensemble Subspace
Discriminant

0.969,
1,
0.9417,
0.97

0. 7759,
0.9515,
0.7402,
0.8094

0.7995,
0.9960,
0.7150,
0.8324

0.9993,
1,
0.9987,
0.9993

0.9993,
1,
0.9987,
0.9993

0.9933,
0.9987,
1,
0.9933

0.967,
1,
0.9381,
0.9681

0.9017,
1,
0.8358,
0.9105

1,1,1,1

0.9367,
0.9987,
0.8886,
0.9404

0.5585,
0.5989,
0.5542,
0.5757

0.999,
1,
0.9952,
0.9976

Ensemble subspace
KNN

0.9987,
1,
0.9973,
0.9987

0.9132,
1,
0.8521,
0.9201

0.9926,
0.9946,
0.9906,
0.9926

0.9993,
1,
0.9987,
0.9993

0.9993,
1,
0.9987,
0.9993

1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1

0.9926,
0.996,
0.9893,
0.9926

1, 1,1,1

Ensemble RUS
Boosted
Trees

0.4987,
0.5989,
0.4989,
0.5443

0.9697,
0.996,
0.9463,
0.9705

0.4987,
0.5989,
0.4989,
0.5443

0.4987,
0.5989,
0.4989,
0.5443

0.4987,
0.5989,
0.4989,
0.5443

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.3984,
0.4983,
0.4428

0.4987,
0.5989,
0.4989,
0.5443

Table .1: Table showing accuracy, precision, recall and F1-score using 24 prediction algorithms with selected features for the
feature selection algorithms for k-means clustering
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SMOTE method of oversampling. The minority class was 
oversampled and the new dataset was run through the algorithms. 
The highest accuracy was given by Fine Decision Tree of 95.4%.

Downsampling method. The majority class dataset can be 
downsampled by an integer sampling factor, n. It samples the 
dataset by keeping the first sample and then every nth sample after 
that. In case of several columns in the dataset, each column will 
be treated as a separate sequence. After feeding the downsampled 
dataset into 24 algorithms, the highest accuracy was reported by 
Quadratic SVM of 56.4% only.

3.3 Feature Selection Methods 
Infinite Latent Feature Selection (ILFS) [16].  Consider a training 
set  = {⃗x1, ..., ⃗xn}, such that the distribution of the values 
assumed by the ith features is given by m 1 vector x⃗l, taking 
into account m samples. An undirected graph G is formed so 
that the features are represented by the nodes and the inter- node 
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the adjacency matrix, A associated with G, that represents the 
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can be represented by the binary function [16].
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..., xn} is the training set, xi ∈ Rd (1 < i < n) is the ith datum and n is the number of data 

points in the training set. The objective function of               

this algorithm is: For an arbitrary matrix, A ∈ Rr x p, its l2,1-norm [20]. Is
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nearest neighbor graph in the weighted feature space.   It performs joint clustering and feature 

weight learning [21]. 

 

Correlation based Feature Selection (CFS). This algorithm performs feature selection on the 

basis of the hypothesis,“good feature subsets contain features highly correlated with the 

classification, yet uncorrelated to each other” [22]. A merit function is a function that 

measures the agreement between data and the fitting model, for a particular choice of 

parameters. By definition, the merit function is small when the agreement is good. The merit 

function of a feature subset S consisting of k features is given as [1]. 
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Lasso. Consider a sample consisting of N cases, each of which consists of p covariates and 

a single outcome. If yi be the outcome and xi = (x1, x2, ..., xp) T be the covariate vector for 

the ith case. The parameters are estimated by solving the following optimization problem 
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Lasso. Consider a sample consisting of N cases, each of which 
consists of p covariates and a single outcome. If yi be the outcome 
and xi = (x1, x2, ..., xp) 

T be the covariate vector for the ith case. The 
parameters are estimated by solving the following optimization 
problem [24].

  
  

Dependence Guided Unsupervised Feature Selection (DGUFS). 
The objective of this algorithm is to select m most discriminative 
features (m < d) whose learned pseudo-label indicators are much 
closer to the cluster groups. It can be stated by the following 
discrimination promotion function [25].
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other synonyms, viz, belief networks, probabilistic network, 
causal network and knowledge map [26]. A conditional probability 
distribution P (xi parents (Xi)) defines the relationship between each 
node and its parents. It is defined by the following equation [26].
 

where P (x1,......xn) = probability of joint conjunction of events x1, 
x2,……xn.

Decision tree. The goal attribute is true if and only if the input 
attributes follow the paths towards a leaf with value true. This 
assertion gives a decision tree and its propositional logic can be 
written as follows [26].

	 Goal ⇔ P ath1V P ath2V...		  (14)

In MATLAB definition, fine trees have the highest model 
flexibility as they have many leaves to make many fine distinctions 
between classes [27]. They allow a maximum of 100 splits. In case 
of medium trees, the model flexibility is medium. They allow a 
maximum of 20 splits. In case of coarse trees, the model flexibility 
is low and they allow a maximum of 4 splits.

Logistic regression. The logistic function is given by the following 
equation [26].

 

It gives the probability of belonging to the class labeled 1. The 
process of fitting the weights of this model to minimize loss on a 
data set is called logistic regression.         

RUS boosted trees. Random under-sampling (RUS) is used to 
balance an imbalanced class that 
is a common problem for any datasets having rare occurrences of a 
particular event, the algorithm of which can be found I [28].

Bagged trees. “Bagging predictors is a method for generating 
multiple versions of a predictor and using these to get an aggregated 
predicton”- Breiman [29].  

Consider data   (yn, xn), n = 1..., N    in a learning set, where the y’s 
are either class labels or a numerical response.  If the input is x we 
predict y by ϕ (x, L), taking repeated bootstrap samples LB from L, 
and forming ϕ (x, LB) and if y is numerical

	  ϕB(x) = avbϕ (x, L(B))			   (16)

If y is a class label, let the ϕ(x, LB)   vote to form ϕB(x).  This is 
called “bootstrap aggregating” or bagging.  k-means clustering. 
In k-means clustering [30, 1]. the data (x1, x2, ..., xn) with n 
observations is segregated into k clusters (k ≤ n), S = S1, S2, ..., Sk 
so that the within cluster sum of squares (WCSS) or
variance is minimum.
 

where µi is the centroid of cluster Si imbalanced dataset by 
increasing the number of samples of the minority class. The 
algorithm flowchart is described in detail in [31].

Support Vector Machine. SVM is a type of supervised learning, 
where data that is not linearly separable can be easily separated by 
mapping them into higher dimensional space. The optimal SVM 
separator is found by solving the following [26].
 

where αj 0 and αjyj = 0. Solution of this equation is done using 
software called as quadratic programming.

K-nearest neighbor KNN algorithm classification is a type of 
clustering where the nearest k datapoints NN(k,xq) are considered. 
The distance metric is measured using Minkowski distance as 
follows [26].
  
 

When p = 2, it is called Euclidean distance and if p = 1, it is 
Manhattan distance.
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RUS boosted trees. Random under-sampling (RUS) is used to balance an imbalanced class that  

is a common problem for any datasets having rare occurrences of a particular event, the 

algorithm of which can be found I [28]. 

 

Bagged trees. “Bagging predictors is a method for generating multiple versions of a predictor 

and using these to get an aggregated predicton”- Breiman [29].   

 

Consider data   (yn, xn), n = 1..., N    in a learning set, where the y’s are either class labels or 

a numerical response.  If the input is x we predict y by ϕ (x, L), taking repeated bootstrap 

samples LB from L, and forming ϕ (x, LB) and if y is numerical 

 

 ϕB(x) = avbϕ (x, L(B)) (16) 

 

If y is a class label, let the   ϕ(x, LB)   vote to form ϕB(x).  This is called “bootstrap 

aggregating” or bagging.  k-means clustering. In k-means clustering [30, 1]. the data (x1, x2, 

..., xn) with n observations is segregated into k clusters (k ≤ n), S = S1, S2, ..., Sk so that the 

within cluster sum of squares (WCSS) or 

variance is minimum. 

 
  

where µi is the centroid of cluster Si imbalanced dataset by increasing the number of samples 

of the minority class. The algorithm flowchart is described in detail in [31]. 

Support Vector Machine. SVM is a type of supervised learning, where data that is not linearly 

separable can be easily separated by mapping them into higher dimensional space. The optimal 

SVM separator is found by solving the following [26]. 
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3.5 Evaluation Matrices
The statistical parameters calculated are as follows [1].

 

 

where tp, tn, fp, fn are the number of true positives, true negatives, 
false positives, false negatives respectively.
 
4. Experimental Results
4.1 Dataset
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made accessible by the National Cancer Institute by NIH. Around 
155,000 individuals have participated in the PLCO data collection 
[32]. Each of them have filled out three questionnaires-the 
Baseline Questionnaire (male-BQM/female-BQF), Other Cancer 
Form (OCF), and the Annual Study Update (ASU) form. Figure 2 
shows the 2D representation using AdaSyn algorithm and t-SNE 
algorithm [14] for the down-sampled dataset using selective 
sampling of majority class (PC=0), down-sampled dataset using 
k-means clustering and oversampled minority class(PC=1) of 
dataset using SMOTE algorithm.

4.2 Classification
Twenty four machine learning algorithms, briefly described in 
Section 3 were used and their statistical parameters are reported.
 
Using classification ensemble. In this ensemble algorithm, the 
weights or costs can be modified to correctly train the algorithm 
to predict PC. The weights are normalized to add unity, depicting 
the prior probabilities.  Suppose  ij (i, j   1...c  ,  ii= 0) is the cost 
of misclassification of the example of the ith class to the jth class, 
where c is the number of classes.  Then, the weight assigned to the 
ith class after rescaling is given as [33]. 
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(False positive) is 1000 times more serious than predicting PC for 
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shows confusion matrix without any weights where it improperly 
classified all PC cases and Figure 1b shows a very high weight 
applied to false positives which leads to misclassification of all 
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ILFS ECFS Relieff FSV Lapla
cian UDFS LLCFS CFS FSASL Lasso DGUFS

Education D D,K K D D D D D,K
Marital
Status D K K D D,K
Occupation D K K D K D D,K
Smoked
Pipe K K K D,K
Smoked
Cigar K K K D,K
No of
Sisters D D K K K D,K
No of
Brothers D K K D,K D D,K
Use of
Aspirin regularly K K K D D D,K
Use of
Ibuprofen regularly K K K K K D
No of Tubal/
Ectopic pregnancies K D,K D
Ever tubes tied? D K
Ever had fibrocystic
breast disease? K K
Ever had
Ovarian tumor/cyst? D
Ever had
endometriosis? K
Ever had uterine
fibroid tumors?
Ever tried to become
pregnant for a year or
so without success?

K

No of pregnancies? D D D,K D D,K D
No of still births? K
Age at
hysterectomy K K
Age started taking
birth control pills D D K D
Taken female years
hormones K K
Total years taken
female hormones D D D,K D
Age at when started to
urinate more than
once in night

D,K D,K D D K K

Age when told had
enlarged prostate D,K D,K D K K K D,K
Age when told had
inflammed prostate K K K
Age at vasectomy K K D K
Diagnosed
with hypertension K K D
Heart Attack K K D D
Stroke D
Emphysema K K
Bronchitis D D K
Diabetes D
Colorectal Polyps K K
Arthritis K K
Osteoporosis
Diverculitis
Gall bladder stone
or inflammation? D D K
Race D D D
Are you
of Hispanic origin
Ever had
biopsy of prostrate? D,K D
Ever had transurethral
resection of prostate? D,K D
Ever had prostatetomy
of benign disease? D,K D,K K
Ever had any prostate
surgeries D,K K
Ever been pregnant? D D,K D D,K D,K
Ever had
hysterectomy? K
Removed ovaries? K D K
Ever had
enlarged prostate? D,K K
Ever had
inflamed prostate?
Have problem
with prostate? K
During past year, how
many times wake up
in the night to urinate?

D D D

Ever had vasectomy? D D,K
Ever take birth
control pills? D K K
Ever take female
hormones? D K D
Ever smoke regularly
>6 months? D D K D,K
Smoke regularly now? D
Usually filtered
or not filtered? D K
Colon comorbidities
Liver comorbidities D,K
Family history of
pancreatic cancer D K
No of relatives with
pancreatic cancer D D K D
Prior history of
any cancer D K
Prior history of
pancreatic cancer D D D D
Gender D D D
No of cigarettes
smoked daily K K D D,K D K
Family history
of any cancer D

Table .2: Features(rows)selected by the different algorithms(columns) highlighting most selected features >=6
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Figure 2: PLCO dataset visualized in 2D using ADASYN algorithm (left) and t-SNE algorithm (right). (First row) Original dataset 
(total 154,897 points; False class 154,148; True class 749). (Second row) Balanced dataset using fixed-rate down- sampling (total 1486 
points; False class 743; True class 743). (Third row) Balanced dataset by downsampling using k-means clustering (total 1486 points; 
False class 743; True class 743). (Fourth row) Balanced dataset by oversampling using SMOTE algorithm (total 1486 points; False class 
743; True class 743).
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Figure 3:  Figure showing variation with P (C|E = true) using the most frequently chosen features from Table 3.
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Figure 3:  Figure showing variation with P (C|E = true) using the most frequently chosen 

features from Table 2. The orange line is a fitting curve 
Figure 3: Figure showing variation with P (C|E = true) using the most frequently chosen features from Table 2. The orange line is a 
fitting curve
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5 Conclusion
Certain features have been identified to have a direct relationship 
with pancreatic cancer, for example, smoking history, no. of 
cigarettes smoked in a day, genetics etc, whereas others have been 
identified by features selection algorithms and also by graphical 
representation to have an unproved connection with causing 
Pancreatic Cancer, for example, no. of brothers, total years taken 
female hormones [13]. Future work remains in order to find a 
mechanism in which a robot can predict with the highest accuracy 
the probability of a person having pancreatic cancer by getting 
answers to a set of features from the subject.
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