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Abstract
The goal and mandate of dairy farming is the production of milk from healthy animals. In consideration of this objec-
tive, the company Animal Health Vision - AHV developed an innovation plan that is based on a twofold strategy: first, 
to develop innovative solutions and up-to-date protocols for the effective use of animal health products, and second, 
to advance animal health, welfare, and the ability of dairy cows ability to withstand infectious diseases, ultimately 
resulting in a decreased reliance on antibiotics. The aim of this work is to assess the impact  of AHV products on a 
cow's lifetime (longevity) and milk production. The research was conducted on a dataset consisting of 162.057  milk 
production records consisting of 1208 Dutch farms and 213.047 animals. The longevity of the dairy cows was ex-
tracted for 64.467 cows selected from 3171 farms. The results show that AHV products QuickTM and ExtraTM improve 
longevity by an average of 0.7 years when compared to animals that did not receive such products. The average lon-
gevity of animals that received at least one of such AHV products is 6.52  years. Furthermore, we could show that for 
the top 10 largest farms, there is an increased average milk yield of 1.6% per lactation as compared to the animals 
that did not receive any AHV product.
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ISK = Individuele Standaard Koe
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1. Introduction
Milk yield and longevity are two of the most important decision 
factors for optimal herd management [1]. For example, farmers 
use lactation models to forecast the farm’s income, determine the 
required nutrition and energy consumption, optimize the selection 
and culling decisions, and enhance animal monitoring systems [2-
5].

The longevity of a cow, that is the time the animal spends on the 
farm from birth until culling, is influenced by several factors not 
only pertaining to their health but also due to herd management. 

In modern dairy farming, it is rare for cows to be removed from 
the herd solely due to old age.  Instead, farmers consider a range 
of factors, including the cow’s milk yield, reproductive ability, and 
overall health [6, 7]. Therefore, the expected longevity and milk 
production of a cow is the result of many different factors [8, 9].

1.1. Plant-Derived Products to Combat Bacterial Disorders
Antibiotic resistance has become an increasing global concern. In 
turn, the use of antibiotics in farm animals is discouraged and re-
stricted to prudent use guidelines [10, 11].

Given this demand to reduce the use of antibiotics in farm animals,  
alternative and effective approaches to combat bacterial disorders 
need to be implemented. AHV products like AspiTM, ExtraTM, or 
QuickTM, comprising of highly standardized blends of herbal ex-
tracts supplemented with minerals to meet the requirements of a 
cow at different stages of lactation and stimulating the innate im-
mune response. Moreover, AHV products are designed to prevent 
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bacterial biofilm formation, considering that bacterial and multi-
species biofilms are one of the most common sources of chronic 
infections and an accelerating inflammatory response to otherwise 
mild infections. Hence these products provide a valuable addition 
to conventional treatment options for bacterial disorders.

1.2. Aim
The purpose of this research is to study the impact of AHV solu-
tions on the lifetime of the animals while at the same time assess-
ing the factors that explain culling and understanding the effect 
of AHV solutions on milk production. As a byproduct of this re-
search work,  we provide insight into key precursors impacting 
the life length and milk production and how these translate into 
financial returns for the farmer. We hypothesize that the use of 
AHV treatment will increase longevity, milk production and return 
on investment.

1.3. Structure
This work is organized as follows. First, the data preparation is 
presented in section 2. Second, the longevity analysis is outlined 
in section 3 whilst the milk production is described in section 4. In 
section 5, the ROI model is discussed and finally, conclusions and 
suggestions for further research are described in section 6.

2. Data Preparation
The data preparation phase covers activities required to set up the 
final dataset. Several pre- processing steps were taken before mod-
el prediction. These steps include data cleaning, standardization, 
and categorical variable encoding. Each of these steps is explained 
in more detail in later sections. In sections 2.1 and 2.2,  the dataset 
and feature selection phase are explained.

2.1. Datasets
The data consists of farmer's records of milk production and re-
production (so called MPR data) and RVO (Netherlands Enter-
prise Agency) recording all living animals and animal movements 
in The Netherlands. The MPR dataset covers 10 years of animal 
data from 2013 to 2023 while the longevity dataset considers 
animals with ages between 20 months (earliest calving age) and 
20 years (theoretical maximum life span). In total, it comprises 
162.057 MPRs for 1208 farms and 64.467 culled animals. The data 
is provided by Farmtrace and CRV, a dairy farmer cooperative. 
Farmtrace integrates farm data at-scale from multiple farm sys-
tems across multiple countries. An overview of this data is listed 
in Table 1 below.

Datasets Farms Animals MPRs
Longevity 3.171 64.467 NA
Milk 1.208 213.047 162.057
Table 1: Datasets for Longevity and Milk Production

Note that the longevity dataset contains more farms than the milk 
dataset because the RVO database contains other farms besides 
AHV clients due to selling/buying. However, the data for non-
AHV clients may not include all the movements for these farms. 
Here an MPR is a unique Company-date data point.

2.2. Feature Selection
We built two models to assess the impact of features on culling 
and milk production.  In the case of longevity, the model estimates 
the probability of culling using the Gradient Boosting (XGBoost), 
while for milk production we consider a regression as a function of 
multiple features. Gradient Boosting is a machine learning model 
based on gradient descent and decision trees. This model is very 
successful in various data-driven tasks and provides robust feature 
selection.

The prediction variables are selected in two stages. First, we gather 
and build several features based on expert-opinion knowledge, and 
then keep only weakly correlated features to remove redundancy 

in the feature space [8]. In the second stage, the model is built, 
and feature importance is assessed on the prediction accuracy. A 
correlation between milk production and longevity with their as-
sociated precursors is calculated using the Spearman-rank method. 
The identification of relevant longevity features and prediction is 
performed using the XGBoost  method.

3. Longevity
Longevity is defined as the age of an animal at the culling time. An 
animal can move between multiple farms before being sent to cull-
ing. We restrict our dataset to animals that are born at a farm and 
whose only movement is to culling. Therefore, we do not consider 
intermediate movements like selling or buying. We do this to re-
move the dependence of culling on multiple external farm factors.

The culling age of an animal is defined as the number of days from 
birth till movement to the culling house (divided by 365 days for 
year count).  The summary statistics for the full dataset are:
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Farms Nr. Culled Min date Max date Min age Max age Avg Age 25th 50th 75th
3171 64467 2001-03-

04
2023-01-
06

1.5 years 19.4 years 5.77 years 3.96 5.56 7.2

Table 2: Summary Statistics of Culled Animals With Ages Between 1.5 and 20 Years

Year Animals Longevity (years)
2021 245.965 5.97
2020 240.216 5.84
2019 233.374 5.62
2018 318.712 5.55
2017 354.451 5.58
2016 286.347 5.73
2015 251.551 5.75

Table 3: Average Culling Age in the Netherlands Since 2015 (Source CRV)

In Table 3 we show national statistics provided by CRV, which 
we use as a benchmark. We estimate the national average culling 
age in the period 2015-2021 to be 5.71 years (this is a period that 
we can use to compare with AHV products). Despite our dataset 
being much smaller than CRV, the estimated average culling age in 
the same period is approximately 5.72 years, which is remarkably 
close to CRV’s.

3.1. Culling Age at AHV Farms
This section looks at the culling age of animals that did not receive 
AHV products. A ”treated” animal is an animal that received at 
least one AHV solution. We further distinguish those animals that 
received a QuickTM and/or ExtraTM (QE) tablet or did not receive 
any solution, not necessarily AHV, (NO-TRT) according to our re-
cordings (collected data via sales reps and farmer’s administration 
data). The statistics are summarized in Table 5.

Treated Nr. Culled Min date Max date Min age Max age Avg Age 25th 50th 75th
AHV 2822 2015-04-01 2023-01-05 696 days 16.1 yrs 6.42 4.80 6.26 7.86
QE 2161 2019-07-16 2023-01-05 696 days 16.1 yrs 6.59 5.04 6.47 8.02
NO-TRT 57013 2001-03-04 2023-01-06 548 days 19.35 yrs 5.74 3.9 5.52 7.27
NON-AHV 61645 2001-03-04 2023-01-06 548 days 19.35 yrs 5.74 3.92 5.52 7.27

Table 5: Summary Statistics for (Non)-AHV, QE and Non-Treated (NO-TRT) animals

We can compare with CRV values by restricting to the same period 
of 2015-2021, see table 3. We calculate that AHV-treated animals 
have an average culling age of 6.41 years (median 6.26), QE ani-
mals have an average of 6.59 and not-treated animals an average 
of 5.68.

To assess the statistical significance of these differences we use a 
t-test for the difference of means (Welch t-test). Since many ani-
mals are common to  both  groups  (AHV  vs  QE  for example) we 
cannot readily compare the significance of the difference. Instead, 
we compare AHV with NON-AHV and AHV vs NO-TRT, since 
in this case, the set of animals in each group does not overlap. In 
both cases, the P-value is extremely small on the order of 1e – 46 
rendering the result highly significant.

We see that the groups AHV/QE have culling ages larger than the 

general population (CRV stats table 3) by an average of 0.71 years 
more. This can also be seen in other statistics such as median and 
80th percentiles.

The culling age of treated animals can be confounded by the age of 
the first treatment. This means that if animals are treated only late 
in their lives, their culling ages will be longer too.

The average age of AHV treatment is 5.53 years which indicates 
that animals are being treated with AHV products near their ex-
pected culling age. It is very complex to model longevity while 
adjusting to the treatment age. This is so because culling happens 
much later after treatment (on average after a year) which makes 
it hard to calculate the causal implications of the age of treatment. 
We discuss a possible solution to this problem in the next section. 
Similar work has been developed for cohort data to assess the ef-
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fect of agricultural policies on longevity [12].

In Figure 1 we look at the time-to-culling per age, this is how long 
an animal lives after receiving an AHV solution,  as a function of 
the age of treatment.   This provides more granularity on how time-
to-culling depends on the age of treatment.  To do this we build 
a KnearestNeighbor-Regressor with a Gaussian kernel that esti-

mates the time-to-culling as a function of the age of treatment. The 
KnearestNeighbors-Regressor algorithm calculates a prediction by 
averaging the target of data points that are closest to each other. We 
chose this model because it provides an easy-to-understand calcu-
lation of the estimated time-to-culling: it takes animals with very 
close age of first treatment and averages the time-to-culling times.
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Figure 1:  Estimated time-to-culling (in years) regression using KNearestNeighbors - dark line. 

The horizontal line is the average 6.42 −  5.53 = 0.89, and the dashed line represents the distribution 

of animals as a density (axis on the right). 

 
Figure 2:  Spearman-rank-correlation dendrogram (left) and heatmap (right). 

Figure 1:  Estimated time-to-culling (in years) regression using KNearestNeighbors - dark line. The horizontal line is the average 6.42 
− 5.53 = 0.89, and the dashed line represents the distribution of animals as a density (axis on the right).

From the distribution of the age of treatment (dashed line in Fig-
ure 1) we see that most of the animals are aged between 2.5 and 
9 years. For this range of ages, the model prediction is reliable 
due to the substantial number of animals involved. We see that the 
estimated time-to-culling tends to decrease as animals are treated 
later in their life. This is expected because the longer an animal 
stays on the farm, the higher is the chance of being culled, and 
hence smaller its time-to-culling. We also see that in this age range 
the expected time-to-culling is always larger than 0.6 years (219 
days) and has an average of approximately 0.89 years (325 days).

This seems to indicate that the age of treatment may have less 
influence on the culling age, as it would have if the difference be-
tween those values were higher.

3.2. Deconfounding the Age of Treatment
In the previous section, we saw that the group of animals that re-
ceived an AHV treatment had a higher culling age of, on average, 
0.73 years more than those that did not receive it. We have also 
pointed out that the age of treatment has a confounding effect if the 
age at treatment is large then also the culling age.  In this section, 

we focus on the confounding effect of the treatment.

To assess the causal effect of a treatment on longevity we would 
typically run a randomized control trial (RCT). This would con-
sist of randomly selecting two groups of animals and assigning an 
AHV treatment and a placebo to each group separately. At the end 
of the trial, when all animals have been culled, we would calcu-
late the average culling ages. For obvious reasons, we cannot cre-
ate such a trial; hence, the need to use data from non-randomized 
studies. This brings several difficulties related to selection bias 
and confounding, requiring sophisticated techniques and analysis 
[13]. In this work, we  use  counterfactual  models  to recreate 
the RCT- one model for the treated group and another one for the 
non-treated group. Each counterfactual model separately estimates 
the culling probability. To assess the treatment effect, we calculate 
the culling probabilities of each model on the same animal this 
provides an unbiased estimate of the effect.

We follow the approach to model the probabilities of culling for 
the treated and non treated animals separately: the two models, 
model-treated and model-non-treated, are used as counterfactuals.  
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Each counterfactual model influences the farmer's decision to cull 
or not, depending on whether the animal has been treated or not. 
We are interested in estimating the expected probability of culling 
on the treated animals if they were not treated, this removes the 
bias on the treatment age and adjusts for several features. 

The study of longevity is a typical example of a survival-analy-

sis problem: one is interested in culling events that only happen 
once for each animal. In this problem, the survival dataset contains 
time-varying features with left-truncated data. The left truncation 
comes from ignoring data before the age of the first treatment [12].

3.3. Features
We consider the following features for modeling in Table 4 below:

Feature Description Units
farm id farm number dummy

age age at the MPR recording years
days in milk days since calving days
milk yield milk of MPR Kg

isk ISK milk value Kg
scc somatic cell counts 1000 cells/ml
fat milk fat percentage %

fat/protein fat protein ratio –
protein milk protein percentage %
lactose milk lactose percentage %

urea urea mg/100g
Ketosis ind CRV ketosis prediction (false/true) 0/1

Ketosis events number of ketosis events until MPR dummy

Table 4: Features for Longevity Models. Here the feature ”Ketosis ind” is the CRV prediction for Ketosis, which is provided to 
the farmer in the MPR report.

Since many of these features are highly correlated with each other,  
it is appropriate to filter these out before building the model. This 
process removes redundancy in the feature space and enhances 
model feature selection. We do this filtering by keeping features 
that have low Spearman-rank correlation with each other. This can 
be done by clustering (dendrogram) the features according to their 

correlation coefficients. The dendrogram 2 clusters feature that are 
highly correlated with each other. We choose (visually) a thresh-
old of 0.5 in the distance space of the dendrogram (see Figure 2). 
From each selected cluster we further choose the features: milk 
yield, days in milk, SCC, fat, lactose, urea, age, ketosis index and 
farm id.
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Figure 2:  Spearman-rank-correlation dendrogram (left) and heatmap (right). 

Figure 2: Spearman-Rank-Correlation Dendrogram (Left) And Heatmap (Right)

3.4. Results Counterfactual Models 
Survival models are typically hard to build in the presence of 
time-varying features. In this work, we follow a different ap-
proach. The article shows how to recast a survival problem as a 
binary classification problem, making the analysis much easier 
[14]. Furthermore, we can use simpler classification models such 
as Logistic-Regression.

Typically, in a survival analysis, we have a cohort of subjects that 
is followed through time (calendar time). In our case, we cannot 

do this since data has been collected at different time points and at 
different farms. Instead, we use age as the time direction, meaning 
that the event time is identified by the animal’s age. In a way, we 
simulate a trial experiment where animals are born simultaneously 
and followed  till  culling.  This  is  depicted  in  Figure  3.  At  each  
event (red circle) we inspect which animals are not culled (green 
cross) and store the features of all animals at that event.  The final 
dataset then contains positively labeled events (the cullings) and 
negatively labeled events (the events where animals survived).
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Figure 3: Survival as classification. The dashed lines correspond to the time prior to the  first 

treatment which is truncated, meaning that it is not part of the modeling. The red circles 

correspond to culling events. At each event time, we label the culling events as y = 1 and non-

culling events (green x) as y = 0. 

Figure 3: Survival as classification. The dashed lines correspond to the time prior to the  first treatment which is truncated, meaning that 
it is not part of the modeling. The red circles correspond to culling events. At each event time, we label the culling events as y = 1 and 
non-culling events (green x) as y = 0.
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We train two classification models using the XGBoost algorithm. 
The first on a dataset Dtreated : {Xtreated, ytreated} corresponding to  
culled  animals  that  received  an  AHV  treatment and composed 
of MPRs that occurred after the treatment. The second model is 
trained on a dataset  Dnon-treated  :  {Xnon-treated, ynon-treated} corresponding 
to  culled  animals  that  didn’t receive any AHV treatment in their 
lifetime. For this model, we keep all the MPRs available. We have 
considered two models instead of one because the number of sam-
ples in the treated dataset is much smaller than in the non-treated. 
This way we allow the treated features to be learned by the model. 
In both cases, we keep MPR recordings after ”2015-01-01”, so 
both the treated and non-treated data span a similar period of time.  
Here X stands for the features determined in section , and y is the 
culling event: 1 if culled, 0 otherwise.

The datasets have a very imbalanced label distribution. For the 
Dtreated the ratio of positive to negative events is approximately 
10%, while for the non-treated dataset, this ratio is about 4. We 
introduce balance in training by adding weights to the positive la-
bels.

For training, we use the XGBoost model and GridSearchCV for 
hyperparameter search. Due to the high class imbalance, we use the 
average precision (AP) metric, the area under the Precision-Recall 
curve. The Precision-Recall curve shows the relationship between 
precision and recall for different probability thresholds ranging 
from zero to one. The results are shown in Figure 4.

27  

 
 
 

Figure 4:  Precision-Recall curve. 
 

 

Figure 5: Permutation feature importance for treated/non-treated models. Each value 

represents the average decrease in the overall average precision (0.27). 

Figure 4: Precision-Recall Curve

We see that the Modelnon-treated performs better than the Modeltreat-

ed when the threshold is high, meaning that it predicts less false 
positives. In contrast, the Modeltreated performs better for smaller 
thresholds.

We use permutation importance to determine the impact of the fea-
tures on model prediction [15]. Figure 5 details the impact of each 
feature in the average precision metric.  The four most important 
features for the model are milk yield, farm id, SCC and days in 

milk, while for the non-treated model, they are days in milk, age, 
milk yield and farm id, in descending order of importance. Age has 
a more deterministic effect on culling for the non-treated model 
than the treated one. This can be understood from the fact that 
in the non-treated dataset, we include all the data available with 
no age truncation.  While in the treated dataset we keep features 
measured only after the first AHV treatment. Recall that in the pre-
vious section, we saw that an animal takes on average 0.89 years 
to be culled after treatment.
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Figure 5: Permutation feature importance for treated/non-treated models. Each value represents the average decrease in the overall 
average precision (0.27).

We can also describe the behaviour of the culling probability as 
a function of the most important features. In Figures 6 and 7, we 
show partial dependence plots for the features milk yield, SCC, 

age and days in milk (DIM).  We have excluded farm id because 
it is a categorical feature with high cardinality which would make 
the plot difficult to interpret.
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Figure 6: Partial dependence plot for the treated model. Here age is in days. 

 

Figure 6: Partial dependence plot for the treated model. Here age is in day.
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Figure 7: Partial dependence plot for the non-treated model. Here age is in days. 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Partial dependence plot for the non-treated model. Here age is in days.

The average precision of the models is small, with a value of AP 
= 0.27 in both cases. We are not interested in making individual 
predictions. Instead, we want to determine whether the treated ani-
mals have on average a smaller culling chance than the non-treated 
ones.  For this purpose, we calculate the geometric average of the 

predicted culling probability from both the models on the treated 
dataset (test set). For this problem, the geometric average is more 
appropriate than the simple average because it preserves the likeli-
hood. We calculate the ratio:
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which could potentially affect milk production. Therefore, we focus on the treatments that fall 

under the AHV or non-AHV group and how these treatments are applied differently per farm. 

where g stands for the geometric average and Y1 is the probability 
of culling if treated, and Y0 is the counterfactual probability, that 
is, the probability of  being  culled  if  not  treated.  The  result (1) 
shows that the culling chance drops by 23% if treated.	

4. Milk Production
In the previous section, we investigated the longevity of cows and 
their probability of being culled. In this section, we examine the 
effect of various treatments on ISK. The ISK indicates the daily 
production of each individual cow in kilograms of milk on the day 
of sampling. The milk yield is converted to the production that the 
animal would have realized at 100 days in lactation, after calving 
in February or March at an age of 69 to 92 months. Correction 

for age, season of calving and stage of lactation makes the ISK of 
different samples comparable.

It is well established that cows in poor health yield less milk [16].  
As  a result, farmers may make treatment decisions based on the 
impact on milk production and therefore we limit our analysis to 
AHV and non-AHV treated animals.   Our data does not contain 
information about genetics, breeding, feeding practices, and en-
vironmental conditions which could potentially affect milk pro-
duction. Therefore, we focus on the treatments that fall under the 
AHV or non-AHV group and how these  treatments are applied 
differently per farm.
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We concentrate on the mostly sold products by AHV, specifically; 
Aspi, Extra, and Quick. The objectives in this chapter are to iden-
tify any correlations between milk production and these and these 
three products. This analysis is based on the hypothesis that the 
use of AHV products increases longevity, and in turn overall milk 
yield, contributing to the profitability of a dairy farm. Increasing 
longevity without milk production will be of no added value for a 
farmer. 

4.1. Spearman-Rank Relation Between SCC and ISK
The results of the analysis, presented in Figures 8a and 8b, show 
that there is a negative correlation between cell count and ISK. 
This means that as cell count increases, ISK decreases. The nega-

tive correlation is generally accepted (for review see for example 
(Hand et al.)) that higher cell counts correlate with a decrease in 
milk production [17].

To determine the significance of the relationship between cell count 
and ISK, we performed a Spearman-rank correlation coefficient 
test [18]. The results showed a statistically significant correlation 
with a p-value of less than 0.05. However, we observed also that 
the non- AHV group exhibited a stronger correlation between cell 
count and ISK, implying a greater effect on milk production. In 
contrast, the AHV group demonstrated a reduced decline in ISK as 
cell count increased, indicating a weaker association between cell 
count and milk production in this group.
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(a) ISK versus Cellcount (AHV and non-AHV) 
 
 

 
(b) ISK and cell count Spearman-rank correlations 

 
 

Figure 8: Negative Correlation Between Cell Count and ISK 
Figure 8: Negative Correlation Between Cell Count and ISK

4.2. Average ISK for (non)-AHV Products
The impact of treatments on ISK was analyzed by comparing the 
change in ISK for the top 3 AHV products to that of non-AHV 
products. The results, as depicted in Figure 9, indicate that the av-

erage ISK of the AHV group is higher than that of the non-AHV 
group. To further investigate these observations and control for 
management practices, the ISK values for the four largest compa-
nies (in terms of number of animals) were examined with respect 
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to the influence of AHV and non-AHV treatments during different 
lactations in table 6. By examining lactation, we aimed to control 

for the influence of age and provide a more comprehensive com-
parison of treatments within a single company.
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Figure 9: Average ISK values over time for different treatments 
Figure 9: Average ISK Values Over Time for Different Treatments

Farm
I II III IV

Lactation AHV NON-AHV AHV NON-AHV AHV NON-AHV AHV NON-AHV
1 46.6 45.3 50.8 50.3 40.2 40.1 55.8 45.1
2 48.8 45.9 51.2 50.0 42.1 41.3 46.6 45.3
3 49.5 46.2 51.2 50.0 42.1 41.3 46.6 45.3
4 50.1 46.2 50.5 49.7 42.9 41.1 45.3 45.8
5 50.8 44.6 53.3 50.1 41.9 41.6
6 53.6 51.4 42.5 41.0
7 52.7 50.9 42.3 40.6
8 51.2 50.0 42.1 40.6
9 50.9 49.9 41.9 39.4
10
Avg 3.6 1.5 1.2 0.1
diff

Table 6: Average Milk Production of Different Lactation’s for the Biggest 4 Farms (Out of the Selected 10 Farms), Grouped Per 
(Non)-AHV Treatment
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Table 6 displays the comparison of the ISK values for the AHV 
and non-AHV treatments per company basis. The data suggests 
that the AHV treatment leads to higher ISK values. To provide a 
more comprehensive view, Table 7 presents an overview of the 
top 10 farms and the lactation phases for both the AHV and non-
AHV treatments. For these top 10 farms, we have aggregated the 

data and averaged the non-AHV values per lactation. The analysis 
highlights a positive trend in favor of the AHV treatment.  The 
results suggest that, based on historical data, the use of the AHV 
treatment results in improved milk production in cows when com-
pared to the use of the non-AHV product.

Lactation AHV mean NON-AHV mean Difference Percentage difference
1 44,2 42,6 1,6 3,7%
2 43,7 43,0 0,8 1,7%
3 44,7 44,4 0,3 0,7%
4 45,0 44,7 0,3 0,7%
5 45,5 44,4 1,1 2,4%
6 44,7 44,3 0,3 0,8%
7 44,6 43,8 0,8 1,7%
8 44,2 43,6 0,5 1,2%
9 44,1 43,4 0,7 1,7%

Avg 44,5 43,8 0,7 1,6%
Table 7: Overview of Average of Top 10 Largest Companies in Terms of Number of Cows

5. ROI Model and Added Value Farmer
The  return  on  investment  (ROI)  is  a  crucial  metric  for  farm-
ers  to  measure  the  success  of their operations. AHVs model has 
revealed that the ROI for AHV treatment is significantly higher 
compared to traditional treatments. One of the reasons for this in-
creased ROI is the low milk loss associated with AHV treatment. 
Traditional treatments such as antibiotics and painkillers result in 
milk loss due to the mandatory (statutory) withholding periods for 
milk, which is not necessary after the use of AHV products. 

Table 5 shows that animals treated with AHV products have a high-

er culling age of on average 0.7 years compared to the non-treated 
ones. Before calculating the ROI, first the average number of days 
in milk and number of lactation’s is calculated. Leading to sub-
sequently 1470 and 4.1 for AHV QE and 1198 and 3.35 when no 
treatment is applied. The average milk yield per MPR for AHV QE 
is 29.85 kg and 29.41 kg when no treatment is applied.

In this model we used we used  a milk price; Milk Fat: EUR 300,- 
per 100 kg and Milk Protein EUR 595,- per 100 kg the revenue per 
cow for her whole life is calculated in Table 8 [19].

Produced Milk (kg) Milk Protein Milk Fat Total Revenue per day of life
AHV 42.212 €     9.124,- €     5.620,- €     14.744,- €     6,29

AHV QE 43.881 €     9.485,- €     5.829,- €     15.314,- €     6,37
No Treatment 35.228 €     7.615,- €     4.690,- €     12.305,- €     5,87

Table 8: ROI Per Treatment for Average Milk Price

This results in a cow that is treated with the AHV QE earned per 
day of life EUR 0.50, leading to EUR 3.009,- more profit over the 
cow’s whole life. Based on historical data a cow is treated maxi-
mum 3 times with AHV QE during its whole life.  Taking the cur-
rent price EUR 81,- of AHV QE, result in a maximum treatment 
cost of EUR 243,- per cow’s life. However, on  average a cow 
requires only 2.1 treatments during  in its life cycle which even 
increases the ROI.

In addition, a higher culling age leads to a lower replacement per-
centage.  On average,

raising a heifer costs a farmer per heifer EUR 1,790 in Europe. 
Also, heifers produce less milk in the first lactation than mature 
cows.

It’s important to note that the exact benefits of AHV treatment may 
vary depending on milking hygiene and infectious pressure on an 
individual farm, requiring targeted treatment with antibiotics.

6. Conclusion
Making use of a large database identifying animal numbers and 
production data of dairy cows in the Netherlands, and using dif-
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ferent statistical models, it was demonstrated that dairy cows that 
received one or more  AHV products on average lived 0.7 years 
longer than cows that were not treated with AHV products. 

Furthermore, comparing ISK data, it could be demonstrated that 
animals that received AHV treatment had not have a reduced im-
pact of somatic cell count on milk production than those that did 
not receive AHV treatment. This contributes to the overall milk 
production rate, as high SCCs are generally associated with lower 
milk yield. Applying the ROI model with common costs to raise 
heifers and milk prices in The Netherlands,  a higher milk rev-
enue was calculated when comparing  AHV treated animals vs 
non-treated animals. In addition, the  higher culling age leads to 
a lower replacement percentage contributing to the overall ROI of 
AHV treated cows.  Selecting the top 10 largest dairy companies, 
the use of AHV products resulted in an average increase in milk 
yield per lactation of 1.6% when compared to non-AHV treated 
animals. Further studies will aim to substantiate these findings by 
analyzing the prevalence of diseases on a farm which generally re-
sult in early culling such as chronic mastitis, metabolic disturbanc-
es related to rumen disfunction and the prevalence of lameness and 
impaired claw heath [20].

6.1. Future Work
We first reviewed the ISK and the longevity, the data sources, 
precursors and machine learning model outcomes. A model was 
derived to predict culling probability for each cow using the XG-
Boost method. To further evaluate the usefulness of this prediction 
tool for farmers, we will conduct a feasibility study where we an-
alyze how it can be used in their decision-making and planning to 
ensure the efficiency of farm operations.  We aim to create an algo-
rithm that informs the farmer of the possible outcomes of an AHV 
treatment including milk production enhancement and longevity.
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