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Abstract
Brain fog with compromised ability to concentrate has been the most frequent Long Covid (LC) complaint. This is due 
to an increased TGF beta/IFN gamma with consequently increased bradykinin (BKN), especially in Caucasian females. 
Brain and lung blood vessels “leak.” This same ratio is increased in Alzheimer’s disease (AD), but decreased in Parkin-
son’s disease (PD), because CD4+ and CD8+ T cells are differentially affected by the invading associated viruses, e.g., 
SARS CoV2, HIV, Varicella zoster (VZV).... In Covid-19 CD147 receptors on immune cells are critical in generating the 
increased TGF beta/IFN gamma and those on endothelial cells, platelets, and erythrocytes are critical to the abnormal 
microvascular blood flow. ACE2 receptors on pneumocytes and enterocytes enable pulmonary and GI entry, initiating 
gut dysbiosis. Epigenetics, methylation, magnesium, vitamin D, the B vitamins, and antioxidants suggest that these is-
sues can be surmounted. Biochemical, physiologic, and epidemiologic data are analyzed to answer these questions. An 
LC model is presented and discussed in the context of the most recent research. Suggestions to avoid these and other 
worrisome concerns are included. Other topics discussed include estrogen, the gut microbiome, type 2 diabetes (T2D), 
and homocysteine.
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Introduction
Long Covid (LC) has replaced Covid-19 as the topic du jour. 
Long term LC risks are unknown but have stoked growing con-
cern. The neurodegenerative and tumorigenic implications are 
at the top of this list. Unfortunately, the wide spectrum of LC 
symptoms has defied mechanistic attempts to link their patho-
genesis. There are clearly multiple factors involved, compli-
cating these attempts. The male dominated Covid-19 stands in 
stark contrast to the female dominated LC. “Evidence based” 
efforts investigating such issues have traditionally relied on Ran-
dom Clinical Trials (RCTs) and meta-analyses - the top down 
approach. Two inherent problems are loss of timeliness (RCTs) 
and diluted results (meta-analyses). A bottom up approach based 
on biochemistry, physiology, and epidemiology may be more 
advantageous, given the urgency of and universal interest in LC. 
This is an opinion piece aided by the deluge of recent research 
on this burgeoning problem.

LC Model
• CD147 receptors on T cells bind CD147 epitopes (the falci-
parum antigen) on the spike protein S (no ACE2 receptors on 
circulating immune cells or on erythrocytes) [1-5].

• Subsequently SARS CoV2 overwhelms and exhausts CD4+ 
and CD8+ T cells and Natural Killer cells (NKs)
• Persistent chronic lymphopenia after Covid-19 lowers secre-
tion of IFN gamma (type II IFN), produced only by T cells and 
NK cells, especially CD4+ T cells [6-8].

• Decreased secretion of IFN gamma implies less hepatic syn-

thesis of C1-INH [9]
.

• Uninhibited C1 triggers the Classic Complement Pathway 
(CCP) and crosstalk with the Kallikrein Kinin System (KKS) [10].

• The consequently increased bradykinin (BKN) is normally 
catabolized by angiotensin converting enzyme (ACE)
• Estrogen downregulates ACE and prolongs BKN half life. This 
makes estrogen an ACE inhibitor of sorts and increases the risk 
of some cancers [11,14].

• BKN enhances vascular permeability creating “leaks” primar-
ily in lungs15 and brain16 linking brain fog and dyspnea/post 
exertional malaise [15,16].

• IL-1beta, prominent in LC, potentiates the BKN induced mi-
crovascular leakage18 and brain fog primarily in Caucasian fe-
males [17,18].  
• The ACE DD genotype in African Americans, an evolutionary 
adaptation to falciparum malaria, downregulates this leakage 
(tighter endothelial junctions) and elevates the relative frequen-
cy of LC in Caucasian females 
• IFN gamma and TGF beta counterbalance each other and the 
loss of IFN gamma secreted by CD4+ and CD8+ T cells leaves 
an environment of unopposed TGF beta [19,20].

• Chronic low-grade IL-1beta and TNF alpha redirect pleiotro-
pic TGF beta from wound healing fibrosis to endothelial mesen-
chymal transition (End MT)/epithelial mesenchymal transition 
(EMT) and from tumor suppressor to tumor promoter [21-23].

• The switch of pleiotropic TGF beta from anti-inflammatory to 
proinflammatory appears to be more organ specific, e.g., neuro-
vascular pericytes [24].



Volume 1 | Issue 1 | 12J Path Lab Med, 2023

• Implications
• Long term LC may drive an increase in sporadic/late onset AD 
due to an elevated TGF beta/IFN beta [25-27].

• Late onset AD may appear earlier
• AD frequency in Caucasian females, especially in those also 
on HRT, may approach that in African American females [28, 29].

• Cancer risk/progression and fibrosis may also increase in Cau-
casian females
• CD147 is the primary receptor involved in the pathogenesis of 
ASCVD and LC long term may increase its incidence [30,31].

• The presence of CD147 receptors (but not those of ACE2) on 
platelets (and erythrocytes) creates platelet aggregates, further 
complicating the microcirculation (elevated mean platelet vol-
ume (MPV)) [32].

• The presence of the CD147 epitope on the spike protein S por-
tends dire consequences involving microvascular thrombosis in 

the short term for all exposed to the spike protein S.
• The incidence of PD in those with LC may increase, as LC 
increases risk for T2D, which predisposes to PD.

Discussion
To LC and Beyond
Viral load and TGF-β/IFN-γ ratio determine Covid-19 symptoms 
(or not). This ratio decreases notably from the control group, 
passing through asymptomatic, up to symptomatic SARS-CoV-2 
individuals [33]. But as IFN gamma secreting T cells are lost to the 
invading virus (see figure 1), this ratio inverts (increases). An 
depressed TGF beta/IFN gamma is affiliated with PD [34, 35]. An 
elevated ratio is affiliated with AD [25,26]. This bodes ill for those 
with LC with respect to fibrosis [36,37].

Figure 1: SARS CoV2 destroys IFN gamma producing cells [38].

Figure 2: Low levels of IFN gamma persist into the LC phase [39].
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The cytokines of LC provide insight to possible future compli-
cations. TGF beta and IFN gamma are pleiotropic LC linked cy-
tokines that can work in either direction, i.e., anti- to proinflam-
matory, suppressing to promoting EMT or tumor for TGF beta 
and anti- to proliferative, pro-apoptotic to necrotic, antitumor 
to tumor for IFN gamma. However, it appears that the deleteri-
ous effects of the switch are more significant for TGF beta. IFN 
gamma appears to retain a net positive effect [40]. TGF beta func-
tions initially as an anti-inflammatory, keeping the inflammatory 
response of IFN gamma under control. Under chronic inflamma-
tory conditions TNF alpha is elevated and can upregulate TGF 
beta, which opposes IFN gamma.
Chronic low doses of TGF beta when combined with chronic 
low doses of TNF alpha facilitate the switch of TGF beta from 
suppressing to promoting tumor23. This also appears to be the 
case for switching TGF-beta from wound healing fibrosis to en-
dothelial or epithelial mesenchymal transition (EndMT or effect 
[40]. Therefore, it seems reasonable to assume that TNF alpha 
(chronic inflammation) might redirect TGF beta from anti-in-
flammatory to pro-inflammatory and open the door to neurode-
generative disease. The constant stimulus to chronic inflamma-
tion posed by residual spike protein S could easily trigger this 
(see figure 3)

Figure 3: LC is characterized by persistence of the spike protein 
S [43].

AD, PD, and LBD
The three primary forms of accelerated pre-senile dementia are 
AD, PD, and LBD. AD, the predominant form of pre-senile de-
mentia, is more common in females while PD is more common 
in males. LBD is intermediate [44]. AD Is characterized by an ele-
vated TGF beta/IFN gamma Onset of PD in females is later and 
less severe than that in men and might be due to benefits from 
premenopausal estrogen or hormone replacement therapy [45, 46]. 
Although protective against PD, estrogen possesses ACE inhib-
itor properties that elevate BKN. Lung and brain BKN induced 
leakage contributes to LC and AD. African American females 
appear to be less affected by LC but suffer the highest incidence 
of AD (by gender or race). At first this seems contradictory for 
two reasons. First, in African American but not in Caucasian fe-
male’s estrogen levels decrease with increasing premenopausal 
age and BMI decreasing their risk of LC [47]. Secondly, the inci-

dence of the ACE DD genotype (tighter endothelial junctions) 
is higher, also decreasing their risk of LC. However, according 
to a recent NHANES survey the incidence of obesity in Afri-
can American females was 50% greater than that in Caucasian 
males, Caucasian females, or African-American males. This is 
presumed to be due to dietary factors, possibly monosodium glu-
tamate (MSG) [48].

Perhaps escalating dietary MSG, induced by obesity and diabe-
tes, overwhelms the protective properties of the ACE DD geno-
type, yielding more AD in African-American [49,50]. Obesity and 
diabetes also up regulate TGF beta, increasing the risk of AD 
[51]. Individuals with diabetes are up to four times more likely to 
develop LC [49, 51]

. Although homocysteine is elevated and con-
tributes to the development of AD, LBD, and PD, PD is differ-
ent. It is in some ways the opposite of AD, e.g., TGF beta/IFN 
gamma is depressed, not elevated. AD, LBD, and PD all feature 
extra cellular plaques - amyloid beta in AD, alpha-synuclein in 
LBD and PD. IFN gamma, elevated in PD, triggers microglial 
removal of amyloid [52,53]. PD also exhibits abnormal tryptophan 
metabolism due to increased IFN gamma and perhaps P5P defi-
ciency [54] (see figure 4).

Figure 4: IFN gamma shunts tryptophan away from serotonin 
synthesis and production of melatonin [55,56].

P5P is a required cofactor for aromatic amino acid decarboxylase 
(AADC), which produces dopamine and serotonin. Additionally, 
magnesium is a required cofactor for the synthesis of melatonin 
from serotonin. All three hormones are deficient in PD. CD4+ 
(superior producers of IFN gamma) and not CD4+ T cells ap-
pear to be responsible for the increased IFN gamma in PD [57,58]. 
SARS CoV2 preferentially attacks "HIV is tightly linked to hep-
atitis C virus (HCV) and hepatitis B virus (HBV). Viral hepatitis 
and alcohol induced hepatitis elicit elevated IFN-γ. On the other 
hand, SARS CoV2 and TGF-β have been linked to non-alcohol-
ic steatohepatitis (NASH) aka non-alcoholic fatty liver disease 
(NAFLD). Liver resident CD8+ T cells appear to be responsible 
for the elevated IFN-γ [57,58].

 CD8+ T cells produce the majority 
of IFN-γ [59]. CD8+ T cells increase in frequency in the aging 
brain and become a major source of IFNγ [60]. Loss of CD4+ T 
cells appears to potentiate CD8+ T cells [57]. IFN-γ causes blood-
brain barrier leakage 

[61] and connects chronic alcoholism, viral 
hepatitis, and HIV to PD (depressed brain TGF-β/IFN-γ). SARS 
CoV2 preferentially attacks CD8+ T cells [62] (no ACE2 recep-
tors [63) restricting IFN-γ  synthesis."	
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TGF and IFN
"HIV preferentially destroys CD4+ T cells 

[64], accentuating the 
IFN-γ response from cytopathic CD8+ T cells [57]. The HIV in-
duced IFN-γ then increases the risk of viral hepatitis, PD 

[65] and 
autoimmune disease [66]. T2D also increases the risk of PD [67,68]. 
IFN-γ induces loss of dopamine neurons and nigrostriatal de-
generation [69]. HIV increases the incidence of T2D [70]. The most 
recent research suggests that Parkinson’s is an autoimmune dis-
ease, which conforms to the well known linkage between IFN-γ 
and autoimmune disease. Abnormal tryptophan metabolism ex-
hibited in Parkinson’s disease, due to an IFN-γ imbalance, is also 
seen in T2D and HIV [71].

In summary brain TGF-β is a key player in AD; likewise for 
brain IFN-γ in PD. IFN-γ is directly linked to a “leaky brain” 
via angiotensin II type one receptors (ATR1s) blocked by lo-
sartan. TGF-β is indirectly linked through BKN and the KKS. 
TGF-β and IFN-γ are both pleiotropic and the direction of each 
appears to be determined by the chronic cytokine milieu, in-
cluding pleiotropic IL-1β, pleiotropic TNF-α, and IL-6. Perhaps 
chronic inflammation (post viral infection that targets CD4+ T 
cells, CD8+ T cells, hepatocytes, or pericytes [72]) in those with 
marginal onboard antioxidants are predisposed to AD and PD."

TGF-β/Smad signaling pathway in renal, hepatic, pulmonary 
and cardiac fibrosis has been well documented [73]. Recent stud-
ies show this to include the brain as well  [74-76]. Magnesium pos-
sesses the capacity to down regulate this SMAD pathway in the 
liver and the lungs [77,78]. IFN gamma also appears capable in this 
regard [79]. Exercise also helps by increasing IFN gamma [80]. This 
is because exercise upregulates angiotensin II and angiotensin II 
upregulates IFN gamma [81,82]. 

ACE and BKN
Angiotensin converting enzyme (ACE) produces angiotensin II 
and degrades BKN. Estrogen downregulates ACE, up regulat-
ing BKN. Bradykinin upregulates tyrosine hydroxylase, the rate 
limiting step in dopamine synthesis 

[83].
 This might help explain 

the protective effects of estrogen in avoiding PD. The frequency 
of the ACE II genotype in AD is 1.4x higher than that in con-
trols v 0.4x for the ACE DD genotype [84]. ACE levels are up to 
70% higher in the DD genotype [85]. Endothelial cell junctions are 
tighter and less permeable in the DD ACE genotype [86]. Howev-
er, after menopause tight junction permeability due to endothe-
lial dysfunction initiated by oxidative stress, microthrombosis 
(loss of RBC deformability), immune complexes (endothelial 
CD147 and perhaps ACE2 receptors linking to spike S epitopes), 
increases.  The ACE DD genotype is protective against AD not 
only due to tighter endothelial junctions but also to increased 
ACE and less BKN [87,88]. BKN induced endothelial permeabili-
ty not only produces perivascular angioedema but also leads to 
increased fibrosis [89]. Either mechanism may contribute to the 
brain fog, dyspnea, and post exertional malaise of LC.

Because ACE is higher and bradykinin levels are commensu-

rately lower in those with the ACE DD genotype, African Amer-
ican females should be less likely to develop LC versus their 
Caucasian counterparts. Furthermore, in African American but 
not in Caucasian females estrogen levels decreased with increas-
ing premenopausal age and BMI, theoretically minimizing their 
susceptibility to LC. Yet the incidence of AD is higher in African 
American females than that in African American men, Cauca-
sian men, or Caucasian females. A 2017-18 NHANES survey 
indicate that the incidence of obesity in African-American fe-
males was almost 50% greater than that in their Caucasian coun-
terparts.

Perhaps the AD inducing properties of postmenopausal obe-
sity (and diabetes) overwhelm the protective properties of the 
ACE DD genotype. Some studies purport to show a decreased 
incidence of cancer in those with Alzheimer’s disease. Howev-
er, African-American females [90]. are 40% more likely to die of 
breast cancer than Caucasian females. African-Americans have 
the highest death rate and shortest survival of any racial/ethnic 
group in the US for most cancers and have a greater incidence 
of Alzheimer’s disease than any other racial group in America 
[91].  On the other hand, overall cancer risk is lower in people 
with PD, compared to the general population. This difference 
in cancer risk between AD and PD speaks to further linkage be-
tween TGF beta in cancer causation and IFN gamma in cancer 
avoidance [92]. 

Estrogen and HRT for more than 10 years have been linked 
to a slight increase in cancer risk [93]. Estrogen downregulates 
ACE and is an ACE inhibitor of sorts. ACE inhibitors have been 
linked to an increase in lung cancer [94]. Not surprisingly, brady-
kinin has been linked to aggressive prostate cancer [95].

Homocysteine and B Vitamins
Homocysteine plays a prominent role in all forms of dementia 
[96]. Asians have a lower Ca:Mg diet and a lower incidence of 
AD [97]. P5P figures prominently in homocysteine recycling and 
is a required cofactor for aromatic amino acid decarboxylase 
(AADC)(see figure 5). PD patients are frequently B6 deficient 
[98]. and exhibit abnormalities in both dopamine and serotonin 
synthesis [99].

Dopamine synthesis shortfall in PD appears to be primarily driv-
en by IFN gamma and its effect on tryptophan metabolism (see 
figure 4).

Figure 5: AADC requires the cofactor P5P
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Figure 6: Vitamins B2, B3, B6, B9, and B12 are all heavily involved in both the folate cycle and the methionine cycle. B6 is also 
required as a cofactor to recycle homocysteine [100].

Homocysteine induces oxidative stress and is a marker for 
COVID-19 severity, LC, and demential [101-105]. As shown in fig-
ure 6, vitamins B2,3,6,9,12 are prominent cofactors in both the 
folate and methionine cycles, which are integral in the metab-
olism of homocysteine [106]. ATP and methylation both require 
Mg++. These B vitamin deficiencies are precisely those associ-
ated with cognitive impairment and AD [107].  B complex supple-
ments usually provide methylated B12, but pyridoxine (B6), and 
folate (B9) are not their active forms. Indeed, the active forms of 
B1,2,3,9,12 all require magnesium and some require activated 

B6 as a cofactor [100]. B1,3, and 6 must be phosphorylated (ATP 
and magnesium as chelate); B2,9,12 must be methylated mag-
nesium as cofactor 

[108]. The active form of B6 requires ATP and 
chelated Mg (phosphorylation) and its activated form (P-5-P) as 
a cofactor, creating a catch 22 situation. Most B6 supplements 
contain pyridoxine (PNP), which in excess can lead to periph-
eral neuropathy [109]. This can be avoided by substituting pyri-
doxal-5-phosphate. Rxn 2 (PNPO) in figure 7 mediated by P5P 
oxidase is the rate limiting step 
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Figure 7: Note the need for ATP (and Mg++) to convert pyridoxal (and PNP, PMP) to P5P. PNPO requires P-5-P as cofactor.

P-5-P is critical to its own synthesis, to that of the active forms of other B vitamins, and to the recycling of homocysteine to gluta-
thione (see figure 8). Its critical role in cognition is well known. Magnesium is also critical to the synthesis of all endogenous and 
most exogenous antioxidants [110-112].

Figure 8: Magnesium and P5P are required to recycle homocysteine.
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Vitamin B5 (pantothenate) deficiency is also associated with 
both AD band PD. In order for pantothenate to reach its active 
form, three phosphorylation’s must occur. Each requires ATP 
and magnesium  [113-115].

Vitamin D and Ca:Mg
An elevated Ca++ and a depressed Mg++ (high Ca:Mg) are linked 
to AD [16,17]. and PD [18,19]. A recent 2023 article reported that vi-
tamin D, folic acid and vitamin B12 could reverse the cognitive 
decline leading to AD. Total benefit exceeded that from any sin-
gle supplement [120]. Adding magnesium and P5P to this regimen 
would improve the results immeasurably. As Ca:Mg increases, 
Vitamin D loses its efficacy for colorectal cancer, prostate can-
cer, esophageal cancer, cardiovascular disease, metabolic syn-
drome, total mortality, and cognitive function [121]. The Western 
diet is high in processed foods with high monosodium glutamate 
(MSG)/calcium and low fiber/magnesium. The typical Asian 
diet offers more magnesium but less calcium. The target Ca:Mg 
for both is 2.0. A fiber rich diet that includes fermented vegeta-
bles is inversely proportional to Covid-19 mortality in Europe 
[122,123]. as demonstrated in Germany (sauerkraut) and South Ko-
rea ((kimchi) Ionized serum Ca:Mg and 25(OH)D3 are measures 
of general health that reflect CRP and HRV [124-126]. Serum mag-
nesium also reflects diversity of gut microbiota and gut health 
[127,128]. The correlation between the serum magnesium and de-
mentia depends on the Ca:Mg. On a Western diet the healthy 
upper limit is 2.6. On an Eastern diet the lower limit is 1.7 [129].

APOE and Methylation 
Reducing the Ca:Mg ratio reduces the risk of dementia  [130]. 
Methylation of DNA for stability retards the onset of both neu-
rodegenerative diseases, e.g., the APOE gene, and cancer, e.g., 
basigin (CD147) gene 

[131-133]. Hypomethylation increases with 
age and leads to an unstable genome, with activation of some 
tumor promoter genes [134,135]. Hypomethylation of CpG islands 
(cytosine-guanine pairs) promotes AD, LBD, and PD [136-139]. 
There are three alleles for APOE and APOE4 is the major risk 
factor for Alzheimer’s disease [140]. Hypomethylation of APOE4 
is a major determinant in this.

15% of the US population is heterozygous for this and 5% are 
homozygous. Chris Hemsworth recently announced a pullback 
in his schedule to spend more time with family. It was also re-
ported that while working on a nature film he learned that he was 
homozygous for APOE4. But as worrisome as that might seem, 
AD appears to be less genetic and more epigenetic. The native 
American Indian population presents plenty of APOE4 but very 
little Alzheimer’s disease [141]. The Paleolithic diet provides an 
excellent Ca:Mg balance. Dairy is not included (eggs 5.4, milk
10). Perhaps this dementia gene (APOE4) itself is not the prob-
lem but an elevated Ca:Mg, crowding out the Mg++. Ca++ and 
Mg++ share the same receptor - CaSR (Calcium sensing recep-
tor). DNA methylation occurs via SAMe and magnesium (see 
figure 8).

Treatment
1. Magnesium and vitamin D (50 ng/L target) are at the top 
of the list for both prevention and treatment. Magnesium is a 

critical mineral in the human body and is involved in ~80% of 
known metabolic functions [142]. Vitamin D possesses invaluable 
antioxidant and anti-inflammatory properties (see figure 9). Ap-
proximately 75% of human immune system functions depend 
on maintaining a healthy, physiological serum 25(OH)D con-
centration 

[143] 

Figure 9. Vitamin D provides anti-inflammatory protection up-
stream and downstream of the AT1R [144].

2. The target Ca:Mg is 2.0, but any ratio greater than 2.6 com-
promises the efficacy of vitamin D [121]. Covid-19 makes AD 
worse [145]. Ca++ dysregulation plays a prominent role in both 
AD and amyloid beta deposition [130]. 
3. Antioxidants are vital in the defense of COVID-19 infection. 
However, if the onboard supply is suboptimal, the vast numbers 
of ROS generated may overwhelm mitochondria and markedly 
compromise ATP production. Most endogenously produced and 
some exogenous antioxidants require ATP (and magnesium) to 
attain activated status. Vitamin C (water-soluble), vitamins A, 
D3, E, K (fat-soluble), Zn, D-ribose, selenium, and many others 
require no processing [112]. Furthermore, hydroxylation of C1 of 
25(OH)D in the synthesis of active vitamin D occurs in the mito-
chondria and is suppressed by calcium  [146]. Loss of mitochondria 
due to oxidative stress compromises vitamin D efficacy in addi-
tion to the elevated Ca:Mg.
4. P5P aka PLP is the active form of B6, which is required for 
activation of many of the B vitamins associated with homocys-
teine metabolism.
5. A sedentary lifestyle risks eventual obesity and diabetes. Ex-
ercise also facilitates a better IFN gamma:TGF beta balance by 
increasing IFN gamma levels [80]. 
6. Probiotics, especially after antibiotic therapy, improves the 
diversity of the gut microbiome [147-149].

7. Dehydration triggers the renal resorption of Na+ and water. 
This also means loss of Mg++ (and K+) to maintain electroneu-
trality. Also, the thirst reflex diminishes with age. What good is 
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increased dietary/supplemental Mg++ in the face of a magnesuric 
drain. Hydration maintenance, easily overlooked, potentially 
trumps all the other suggestions.

Conclusion
"The most recent research presented here suggests that AD, 
PD, LBD, and T2D might all be secondary to an imbalanced 
TGF-β/IFN-γ perhaps induced by some previous viral infection 
that preferentially targeted CD4+ and/or CD8+ T cells These T 
cells secrete IFN-γ with the lion’s share coming from CD8+ T 
cells. HIV preferentially attacks CD4+ T cells, leaving the heavy 
IFN-γ producing CD8+ T cells. HIV mimics PD in many ways, 
including susceptibility to de novo T2D. TGF-β/IFN-γ is elevat-
ed in AD (and VZV), at least in the brain, and depressed in PD, 
LBD, HIV, and T2D."

Estrogen protects against and delays PD, but predisposes to 
LC and postmenopausal AD, especially if on HRT. Increased 
BKN mediates LC and AD. The ACE DD genotype is protective 
against LC and AD. Estrogen down regulates ACE, causing an 
increase in BKN. Obesity and diabetes predispose to AD, LBD, 
and PD. Magnesium and P5P, the active form of vitamin B6, are 
deficient in most with AD, LBD, and PD.

CD147 and BKN in the proposed model play vital roles both in 
the development of LC and in its long-term consequences. But 
an imbalance between TGF beta and IFN gamma due to SARS 
CoV2 induced lymphopenia supercharges the roles of CD147 
and BKN. The implications of the proposed hypothesis with re-
spect to LC and its possible long-term consequences extend not 
only to the unvaccinated but also to the vaccinated, who might 
be even more susceptible to recurrent SARS CoV2 (see figure 
10), unless preventative measures are taken.

Figure 10: Recurrent COVID-19 is directly related to the number of boosters [150].

Vaccine efficacy or not is irrelevant. ACE2 receptors are not 
present on immune cells (CD4+, CD8+ T cells, NK cells), the 
primary combatants against SARS CoV2. The presence of the 
ACE2 receptor on endothelial cells is controversial  

[152].
 Indeed 

the pathogenesis of microvascular thrombosis, lymphopenia, 
and TGF beta predominance in Covid-19 cannot be explained 
without acknowledging the presence of the CD147 epitope on 
the spike protein S, first reported in a Chinese study [1]. This find-
ing was quickly challenged, but those challenges were later de-
bunked [2]. However, the worrisome implications of this model 
are not irreversible.

These preventative measures include serum Ca:Mg near 2.0, se-
rum 25(OH)D3 near 50 ng/L, and an abundance of micronutrient 
antioxidants, especially P-5-P [153]. The efficacy of vitamin D is 
compromised in the face of an elevated Ca:Mg [121]. But D3 may 
be even better for endothelial health [154]. Endothelial competence 
is not only at the center of LC, AD, LBD, PD, and many cancers 

but also in the progression of cardiovascular disease, arthritis, 
multiple sclerosis, and sepsis [154]. So, D3 may be of benefit even 
in those with an elevated Ca:Mg.

Vitamin D (1,25(OH)2D, the active form, is much more reliant 
on Mg++ for its efficacy. It requires Mg++ as a cofactor for three 
steps in its synthesis. Even parathormone synthesis requires 
Mg++. Ultimately exercise, diet including some supplementation, 
and hydration are the primary determinants of epigenetically de-
termined health over and above those associated with LC. HRV, 
the fifth vital sign, connects all the vital players - gut microbi-
ome diversity155, dietary micronutrients, e.g., magnesium156, 
balanced Ca:Mg125, balanced TGF-beta157 and TNF-α158, 
and D3125. It’s all about balance[125,155-158].
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