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Abstract
The study focuses on revealing the typical patterns of COVID-19 spread. The identification of regularities is based 
on conceptual processing data, in which a sample is approximated by model functions expressing a specific phenom-
enological concept of the process in question. The reconstruction of desired parameters is hindered by insufficient 
information on the growth features, the limited volume of the required experimental data, and incomplete elucidation 
of the phenomenological properties of the objects required to formulate complex models. The investigation addresses 
these limitations using the Verhulst equation, which expresses the general factors of object growth and adequately 
describes the growth dynamics in the context of significant theoretical uncertainties regarding an object under study. 
The need for identifiability and numerical stability of the model parameter estimates is also addressed, and a special 
regularization approach is applied to obtain an adequate and stable picture of the virus’s evolutionary dynamics in 
the context of significant uncertainties. The results demonstrate that the growth of the viral population can be inte-
grally described by two variable parameters of the Verhulst equation. Interpreting the reconstructed functions indi-
cates the existence of the typical pattern of seven stages of COVID-19 spread. The possibility of radically managing 
the number of infected persons is established. The proposed processing of coronavirus cases is of practical value for 
the preclinical diagnosis and control of virus spread in any geographic area, such as a district, city, local region, or 
country.
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Introduction
Identifying the evolutionary patterns of COVID-19 is an urgent 
challenge for mathematical techniques and computational mathe-
matics. Investigations of COVID-19 spread can be considered at 
different description levels, ranging from microbiological mech-
anisms of infection to the social consequences of the disease’s 
spread. All of these types of studies are now becoming widespread. 
In particular, a comparative molecular dynamics simulation was 
conducted in to understand the possibility of inhibition at the 
atomic level; the viral genomic RNA extraction from culture lysate 
and clinical specimen was described in protease inhibitors under 
bioactive molecules were studied in a real-time PCR detection as-
say on the basis of the genome sequences was developed in the 
incubation period of COVID-19 and its public health implications 
were described in a detailed virological analysis of virus trans-
mission and its replication in tissues of the upper respiratory tract 
were reported in the immune responses induced by SARS-CoV-2 
infection were considered in a virus spread and transmissibility 
investigation using epidemiologic data on incubation periods and 
serial intervals between cases in transmission chains were stud-

ied in the pathogen, clinical features, diagnosis, and treatment of 
COVID-19, including epidemiology and pathology aspects based 
on current evidence, were reviewed in the conditions of COVID-19 
transmission were described in organizational resilience during the 
COVID-19 pandemic was discussed in and a policies package for 
achieving measurable health outcomes was considered in [1-12]. A 
detailed review of publications on this topic is given in [13]. 

Recognizing the undoubted importance of developing a theory of 
COVID-19 propagation mechanisms, we also point out the need to 
identify the phenomenological features of the process in question 
through the direct processing of observations rather than theoret-
ical simulation. Therefore, a crucial question is “What is the life 
cycle of the COVID-19 progression in a given geographical re-
gion?”. The COVID-19 life cycle, which reflects all scenarios of 
the virus activity in a given geographic region, has not yet received 
attention.

The answer can be obtained by the model-based (not statistical) 
processing of real observational data on COVID-19 cases. Note 
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that the theoretical simulation of virus spread through mathemat-
ical modeling with predetermined spread scenarios provides im-
portant information. However, the theoretical simulation cannot 
capture the full diversity of COVID-19 adaptation in the real en-
vironment. Processing real data is required to exclude the postula-
tion of the principal properties (for example, constant or variable 
properties) of the object in question. The results of an approxi-
mation of the observations are a critical source of new informa-
tion regarding the characteristics of COVID-19 spread. Processing 
becomes more powerful if a certain phenomenological concept 
and its mathematical model are involved in approximating a given 
sample [14]. Special regularization methods should be applied to 
take into account the peculiarities of processing discrete samples 
with a very high level of uncertainty about the original information 
[15]. All the necessary theoretical background for numerical regu-
larization is described in [16].

Materials and an Object Under Study
The characteristics of COVID-19 progression are revealed based 
on coronavirus cases that have been presented as public data [17]. 
Four countries – Germany, Sweden, Switzerland and Brazil – are 
considered and their COVID-19 cases are processed. These coun-
tries are selected because they reflect the most characteristic and, 
at the same time, different strategies for protecting the public from 
COVID-19 and different methods to obtain, accumulate, and pub-
lish information. Of course, the number of existing combinations 
far exceeds this choice, and these will receive attention in the fu-
ture. The first step in this direction is to evaluate the common and 
private sides of the spread of COVID-19 in substantially different 
countries and whether the spread of COVID-19 can be managed at 
all if the goal is to limit the number of infected persons.

The different dynamics of the disease in regions reflect the various 
conditions that are known to exist for the virus spread. Neverthe-
less, this does not preclude the existence of general patterns of 
infection evolution, despite different conditions. The confirmed 
number of infected persons and the rate of the disease spread re-
flect the evolutionary process that can be used to estimate the virus 
activity. This can be done by treating the observations with func-
tions that express the law of population change over time.

Processing should take into account that both understanding the 
nature of the infestation and obtaining the necessary quantitative 
information on the spread of the infection are subject to consid-
erable uncertainty. Therefore, the above-mentioned observations 
should be processed by means of a mathematical model that re-
flects the most significant properties of the object. The energy re-
distribution equation of the object can serve as such a fundamental 
model. From this point of view, many physics objects are very re-
vealing. For example, consider an airplane that accelerates on the 
runway and gains altitude. An airplane is a very complex system 
that, during acceleration, must provide the kinetic energy needed 
to perform the lifting work. In other words, it must increase its 
potential energy. In this case, the system goal (airplane control) as 

a whole is to achieve the required takeoff speed and to manage its 
technical components (the thrust level, flap positions, etc.) during 
the lift when external conditions (the flight aerodynamics) change. 
Concurrently, a special part of the system (the pilot) decides how 
the system components should respond to ensure stable altitude 
gain under any changes in pressure, temperature, density, and oth-
er similar atmospheric properties. The trajectory of an airplane 
is a typical S-shaped curve, and the logistic curve is the optimal 
trajectory that satisfies the minimum principle of the system’s en-
ergy expenditure [18]. A deviation from the optimal trajectory is 
evidence of a change in external conditions, and a corresponding 
reaction of the system (by its relevant technical components) to 
these changes. To calculate the trajectory, of course, the speed and 
driving directions are needed. However, if we consider the inverse 
problem, setting a trajectory allows us to determine many import-
ant factors, for instance, the initial conditions of the mission.

As is known, the S-shaped curve is a solution to the Verhulst equa-
tion [19]. Accordingly, the logistic model essentially expresses the 
balance between the energy received by an object at a lower energy 
level and its state, after moving to a higher energy level [18]. From 
a biological point of view, it is a balance between individuals that 
appeared and disappeared [19]. In this case, population changes 
contain important information about the dynamics of the evolution 
in the form of an “environmental impact-object reaction” protocol.

Viewing the virus spread as a transition of a population from one 
state to another, changes in the S-shaped curve can be interpreted 
as the population response and adaptation to current impacts of the 
external environment. As a result, we have a source of information 
on whether the population has gained/lost enough energy to de-
velop/decay. Consequently, the S-shaped curve holds information 
on all stages of activity/decay of the current virus modification. 
This information is presented as a finite sequence of strictly de-
fined forms of increasing or decreasing parameters of the Verhulst 
equation, which determine the growth potential. The number of 
stages, of course, cannot be singular, but the processing should 
show that the population evolution under different conditions is 
either essentially individual, or that there is a finite set of typical 
evolutionary stages. 

Thus, the objective of the study in this paper is to identify patterns 
in the dynamics of deviation from the classical S-shaped curve 
due to environmental exposure and the adaptation of the virus to 
it. Determining all the virus stages of activity/decline allows for 
further meaningful detailing of the mathematical model of viral 
progression, since the processing reveals factors affecting the vi-
rus evolution potential. Applying the model functions that reflect 
a certain conceptual framework in data processing provides an an-
swer to the question “What should be done because?” (for exam-
ple, sharp changes in the values of the factor in question mean that 
the processes occurring in a certain vicinity require further model 
detailing) as opposed to theoretical simulation that answers the tra-
ditional question “What happens if?” (that is, the parameters, input 
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variables, or modules of the simulation model are changed).

Model and Methods
Let us process the public data by approximating the discrete sam-
ple with solutions to the Verhulst equation with variable parame-
ters:

where y0 is an initial state, the function a1 (t) denotes the renewal 
factor of growth that in the general case should be time-dependent, 
and a2 (t) expresses the decline factor that is also time-dependent. 

Model (1) reflects the main regularities of object adaptation in a 
given environment without introducing any environmental model 
based on a general balance within the framework of the ''expended 
-reached" formulation. It should be noted that there are numerous 
phenomenological growth models reflecting the variety of factors 
that can act on the virus spread. More complex simulation of viral 
evolution is based on different kinetic schemes [19]. The introduc-
tion of additional factors into the mathematical model, which ex-
press the so-called susceptible-infected-recovered-dead schemes, 
will undoubtedly improve the simulation. For example, a model 
with thirteen factors was proposed to estimate the effectiveness of 
mask introduction [20]. However, their application requires pos-
tulating a number of properties and mechanisms of the object in 
question, which in the case of COVID-19 are still uncertain. From 
this viewpoint, the approximation of observed data by the model 
functions satisfied (1) adequately reflects changes in the number 
of infections under conditions of weak formalization of both the 
infection source and the viral habitat.

Despite the simplicity of the model, the Verhulst equation ade-
quately reflects the behavior of the object as a whole because of its 
generalized character. Importantly, it takes into account two main 
factors, birth and death. Owing to them, the viral state – growth 
or degradation – is defined as the difference between the number 
of disappearance and appearance individuals. Accordingly, it is 
possible to introduce a characteristic such as a growth potential, 

which would reflect the current capacity of the viral population to 
change. The dynamics of change in potential show the directions 
of the object evolution toward growth or degradation. 

It is important to note that the SIR-model transformations after 
linearizing the resulting nonlinear equation, reduce the SIR-model 
to the Verhulst equation [21, 22]. This emphasizes that the Verhulst 
equation provides an adequate and accurate simulation of the virus 
epidemic. Furthermore, considering the difficulties of simulation 
of habitats with social factors [23, 24], it can be claimed that the 
Verhulst equation, which integrally expresses the growth of any 
object in an external environment, can provide a productive inter-
pretation of the action of any external factors. As a result, we can 
obtain a general protocol “impact – reaction” when basic regulari-
ties are revealed under significant modeling uncertainties.

Since the proposed approximation belongs to the class of ill-posed 
problems, its numerical implementation requires special measures 
[15]. For this purpose it is applied The approach [16]. It propos-
es identifying various representations of unknown parameters by 
regularizing the global and local numerical instabilities and does 
so in a series to ensure the stable reconstruction of a large approx-
imating basis. Sequential solutions to inverse problems ensure 
the identifiability of desired parameters that belong to an invari-
ant family. The locally sequential refinement restricts local spikes 
in addition to the general regularization under a scheme of sepa-
rate matching with observations. In total, relaxation of a solution 
eliminates disturbances at individual points during a complicated 
function approximation. The desired parameters are reconstructed 
in the absence of information about their functional type and the 
presence of a sample whose size is smaller than the number of 
unknowns. 
The desired parameters a1,2 of model (1) are approximated by the 
piecewise linear functions4 
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𝑎𝑎1,2 =
𝜒𝜒𝑖𝑖+1
(1,2)−𝜒𝜒𝑖𝑖

(1.2)

𝜏𝜏𝑖𝑖+1−𝜏𝜏𝑖𝑖
+ 𝜏𝜏𝑖𝑖+1𝜒𝜒𝑖𝑖

(1,2)−𝜏𝜏𝑖𝑖𝜒𝜒𝑖𝑖+1
(1,2)

𝜏𝜏𝑖𝑖+1−𝜏𝜏𝑖𝑖
𝑡𝑡, 𝜏𝜏𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝜏𝜏𝑖𝑖+1, 𝑖𝑖 = 1,𝑁𝑁1,2 − 1, 

where {𝜏𝜏𝑖𝑖}𝑖𝑖=1,𝑁𝑁1.2 is the approximation grid, 𝛸𝛸 = {𝜒𝜒𝑖𝑖
(1,2)}

𝑖𝑖=1,𝑁𝑁1.2̅̅ ̅̅ ̅̅ ̅̅
 denotes the nodes of the sought 

(2)

where {τi }i=1,…,N1,2 is the approximation grid, Χ={χi
(1,2) }i=1,…,N1,2

 

denotes the nodes of the sought functions a1,2 (t) and N1,2 is the 
number of nodes. Consequently, the approximation basis is 
defined as {τi ,χi

(1,2)}i=1,…,N     . The use of piecewise linear functions 

facilitates reconstructing very complex and beforehand unknown 
dependencies due to their high parametrization in terms of the 
number of nodes to be identified.
The required regularization of the functions a1,2 (t) reconstruction 
is conducted in two separate schemes. The first is as follows:5 
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(𝛿𝛿)]

2𝑛𝑛
𝑖𝑖=1 ≤ 𝛿𝛿1 , 

∫ | 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑|

𝑎𝑎1,2
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where 𝑦𝑦(𝛿𝛿) is a sample, y denotes the model function with the current values of the desired 

parameters 𝑎𝑎1,2, 𝑦̃𝑦 is a spline approximation, T is the final time of the observations, 𝛿𝛿1,2 denotes 

a consistency corridor that is determined by the regularization of a given sample, 𝑊𝑊1−5 denotes 

the weight coefficients. Note, the matching is performed both on the sample and on its derivative, 

which is obtained using a smoothing spline [24]. The sole parameter, 𝑎𝑎2 or 𝑎𝑎1, is reconstructed 

with another fixed parameter, 𝑎𝑎1 or 𝑎𝑎2. 

4. Results 

Processing on coronavirus cases based on model functions satisfied the Verhulst equation and 

the reconstruction of its two variable parameters demonstrate the high informativeness of the 

results obtained. The nature of the model parameters directly reflects the processes involved in 

the spread of COVID-19 and characterizes the viral dynamics. These parameters cover all the 

processes during the adaptation of the virus to the environment in the form of functions that 

summarize the transport mechanisms and interaction of the virus. 

The first parameter a1 can be defined as a renewal factor of viral population growth. This 

parameter determines the viral properties that are necessary to increase its population. The second 

parameter a2 reflects the difference between the number of deaths and the number of births of 

the virus at any moment. This parameter can be defined as a decline parameter of viral population 
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∑ [𝑦𝑦(𝑡𝑡𝑖𝑖)|𝑎𝑎1,2 − 𝑦𝑦𝑖𝑖
(𝛿𝛿)]

2𝑛𝑛
𝑖𝑖=1 ≤ 𝛿𝛿1 , 
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with another fixed parameter, 𝑎𝑎1 or 𝑎𝑎2. 

4. Results 

Processing on coronavirus cases based on model functions satisfied the Verhulst equation and 

the reconstruction of its two variable parameters demonstrate the high informativeness of the 

results obtained. The nature of the model parameters directly reflects the processes involved in 

the spread of COVID-19 and characterizes the viral dynamics. These parameters cover all the 

processes during the adaptation of the virus to the environment in the form of functions that 

summarize the transport mechanisms and interaction of the virus. 

The first parameter a1 can be defined as a renewal factor of viral population growth. This 

parameter determines the viral properties that are necessary to increase its population. The second 

parameter a2 reflects the difference between the number of deaths and the number of births of 

the virus at any moment. This parameter can be defined as a decline parameter of viral population 

(3)

and the second one is as follows:

(4)

where y(δ) is a sample, y denotes the model function with the cur-
rent values of the desired parameters a1,2, y ̃ is a spline approxi-
mation of the sample, T is the final time of the observations, δ̆

1,2 
denotes a consistency corridor that is determined by regularization 
of a given sample, W1-6 denotes the weight coefficients. 

The stabilizers in formulas (3) and (4) are presented for cases with 
a sufficient number of differentiable sought functions. In these, 
the first derivatives characterize the rate of change and the sec-
ond derivatives reflect the smoothing degree of the functions being 
sought. The stabilizer minimum is a condition to exclude numeri-
cal oscillations [15]. Turning to discrete forms in problems (3) and 
(4), the sought function and its first derivative are approximated by 
the linear-polygonal function (2), and the second derivative is esti-
mated by a finite-difference over three neighboring points. Due to 
this, the necessary account of the reconstructed function complex-
ity in terms of its curvature, which should tend to a linear form, is 
accomplished. The minimization of such a discrete analogue in (3) 
and (4) reduces the accuracy requirements for the approximation 
of the second derivative. To restore essentially nonlinear depen-
dences, the most critical requirement is to extinguish both global 
and local numerical oscillations. From this point of view, the use 
of a three-point finite-difference approximation is acceptable. The 
selection of the best stabilizers was considered in [25, 26].

Note that the matching with observations is performed on both the 
sample and its derivative. The latter is obtained by a smoothing 
spline [27]. The sole parameter, a2 or a1, is reconstructed with an-
other fixed parameter, a1 or a2. The model function y is determined 
from Equation (1) numerically by the Kutta-Merson method for 

the current parameters a1,2. The solutions to the variational prob-
lems (3) and (4) are sought by the penalty function method and the 
coordinate descent algorithm. 

Results
The processing on coronavirus cases that is based on model func-
tions satisfied the Verhulst equation and the reconstruction of its 
two variable parameters demonstrate the high informativeness of 
the results obtained. The nature of the model parameters integrally 
reflects the processes involved in the spread of COVID-19 and 
characterizes the viral dynamics within the framework of the “im-
pact – reaction” protocol. As generalized functions, these param-
eters encompass all the processes that occur during the adaptation 
of the virus to the environment and summarize the interaction and 
transport mechanisms.

The first parameter a1 can be defined as a renewal factor of viral 
population growth. This parameter determines the viral properties 
that are necessary to increase its population. The second parameter 
a2 reflects the difference between the number of deaths and the 
number of births of the virus at any moment. This parameter can 
be defined as a decline parameter of viral population growth. It 
reflects the restrictions of growth throughout viral life and demon-
strates how the factors of viral decline prevail and dominate over 
the factors of its appearance. Figures 1–5 show the typical patterns 
of the desired model parameters. Countries with different protec-
tion strategies against COVID-19 were considered. They reflect 
radically different dynamics of COVID-19 spread. However, gen-
eral patterns can be revealed.

6 
 

functions 𝑎𝑎1,2(𝑡𝑡) (the approximation basis), and 𝑁𝑁1,2 is the number of nodes. 

The regularization is conducted in two separate schemes. The first is as follows: 

 𝑎𝑎2
(𝛿𝛿) = 𝐴𝐴𝐴𝐴𝐴𝐴 inf {𝑊𝑊3 ∫ 𝑎𝑎2

2𝑑𝑑𝑑𝑑𝑇𝑇
0 + 𝑊𝑊4 ∫ (𝑑𝑑𝑎𝑎2

𝑑𝑑𝑑𝑑 )
2

𝑑𝑑𝑑𝑑 + 𝑊𝑊5 ∫ (𝑑𝑑2𝑎𝑎2
𝑑𝑑𝑡𝑡2 )

2
𝑑𝑑𝑑𝑑𝑇𝑇

0
𝑇𝑇

0 }, 

∑ [𝑦𝑦(𝑡𝑡𝑖𝑖)|𝑎𝑎1,2 − 𝑦𝑦𝑖𝑖
(𝛿𝛿)]

2𝑛𝑛
𝑖𝑖=1 ≤ 𝛿𝛿1 , 

∫ | 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑|

𝑎𝑎1,2
− 𝑑𝑑𝑦̃𝑦

𝑑𝑑𝑑𝑑  | 𝑑𝑑𝑑𝑑𝑇𝑇
0 ≤ 𝛿𝛿2 , 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≥ 0, 

and the second one is as follows: 

𝑎𝑎1
(𝛿𝛿) = 𝐴𝐴𝐴𝐴𝐴𝐴 inf

𝑎𝑎1>0
{𝑊𝑊1 ∫ 𝑎𝑎1

2𝑑𝑑𝑑𝑑𝑇𝑇
0 + 𝑊𝑊2 ∫ (𝑑𝑑𝑎𝑎1

𝑑𝑑𝑑𝑑 )
2

𝑑𝑑𝑑𝑑𝑇𝑇
0 }, 

∑ [𝑦𝑦(𝑡𝑡𝑖𝑖)|𝑎𝑎1,2 − 𝑦𝑦𝑖𝑖
(𝛿𝛿)]

2𝑛𝑛
𝑖𝑖=1 ≤ 𝛿𝛿1 , 

∫ | 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑|

𝑎𝑎1,2
− 𝑑𝑑𝑦̃𝑦

𝑑𝑑𝑑𝑑  | 𝑑𝑑𝑑𝑑𝑇𝑇
0 ≤ 𝛿𝛿2 , 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≥ 0, 
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a consistency corridor that is determined by the regularization of a given sample, 𝑊𝑊1−5 denotes 

the weight coefficients. Note, the matching is performed both on the sample and on its derivative, 

which is obtained using a smoothing spline [24]. The sole parameter, 𝑎𝑎2 or 𝑎𝑎1, is reconstructed 

with another fixed parameter, 𝑎𝑎1 or 𝑎𝑎2. 
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the reconstruction of its two variable parameters demonstrate the high informativeness of the 

results obtained. The nature of the model parameters directly reflects the processes involved in 

the spread of COVID-19 and characterizes the viral dynamics. These parameters cover all the 

processes during the adaptation of the virus to the environment in the form of functions that 

summarize the transport mechanisms and interaction of the virus. 

The first parameter a1 can be defined as a renewal factor of viral population growth. This 

parameter determines the viral properties that are necessary to increase its population. The second 

parameter a2 reflects the difference between the number of deaths and the number of births of 
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𝑑𝑑𝑑𝑑|
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0 + 𝑊𝑊2 ∫ (𝑑𝑑𝑎𝑎1

𝑑𝑑𝑑𝑑 )
2

𝑑𝑑𝑑𝑑𝑇𝑇
0 }, 
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where 𝑦𝑦(𝛿𝛿) is a sample, y denotes the model function with the current values of the desired 

parameters 𝑎𝑎1,2, 𝑦̃𝑦 is a spline approximation, T is the final time of the observations, 𝛿𝛿1,2 denotes 

a consistency corridor that is determined by the regularization of a given sample, 𝑊𝑊1−5 denotes 

the weight coefficients. Note, the matching is performed both on the sample and on its derivative, 

which is obtained using a smoothing spline [24]. The sole parameter, 𝑎𝑎2 or 𝑎𝑎1, is reconstructed 

with another fixed parameter, 𝑎𝑎1 or 𝑎𝑎2. 

4. Results 

Processing on coronavirus cases based on model functions satisfied the Verhulst equation and 

the reconstruction of its two variable parameters demonstrate the high informativeness of the 

results obtained. The nature of the model parameters directly reflects the processes involved in 

the spread of COVID-19 and characterizes the viral dynamics. These parameters cover all the 

processes during the adaptation of the virus to the environment in the form of functions that 

summarize the transport mechanisms and interaction of the virus. 

The first parameter a1 can be defined as a renewal factor of viral population growth. This 

parameter determines the viral properties that are necessary to increase its population. The second 

parameter a2 reflects the difference between the number of deaths and the number of births of 

the virus at any moment. This parameter can be defined as a decline parameter of viral population 
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functions 𝑎𝑎1,2(𝑡𝑡) (the approximation basis), and 𝑁𝑁1,2 is the number of nodes. 

The regularization is conducted in two separate schemes. The first is as follows: 
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∑ [𝑦𝑦(𝑡𝑡𝑖𝑖)|𝑎𝑎1,2 − 𝑦𝑦𝑖𝑖
(𝛿𝛿)]

2𝑛𝑛
𝑖𝑖=1 ≤ 𝛿𝛿1 , 

∫ | 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑|

𝑎𝑎1,2
− 𝑑𝑑𝑦̃𝑦

𝑑𝑑𝑑𝑑  | 𝑑𝑑𝑑𝑑𝑇𝑇
0 ≤ 𝛿𝛿2 , 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≥ 0, 

and the second one is as follows: 

𝑎𝑎1
(𝛿𝛿) = 𝐴𝐴𝐴𝐴𝐴𝐴 inf
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4. Results 

Processing on coronavirus cases based on model functions satisfied the Verhulst equation and 
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the spread of COVID-19 and characterizes the viral dynamics. These parameters cover all the 

processes during the adaptation of the virus to the environment in the form of functions that 

summarize the transport mechanisms and interaction of the virus. 
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Generally, for COVID-19 spread, the character of its renewal fac-
tor a1 after the initial stage can be defined as a piecewise con-
stant function. At the initial stage, the renewal parameter has a 
completely pulsatile character (Figure 1). The decline parameter 
a2 demonstrates its oscillatory nature in the general and local sense 
around a certain curve (Figures 2–5). This parameter takes both 
negative and positive values. Negative values mean that the num-
ber of newborns dominates the number of deceased individuals. 
The most active stage of growth occurs when the number of ap-
pearing individuals exceeds the number of disappearing individ-
uals, that is, when the value of the decline parameter is negative. 
Significantly, these stages were revealed in geographical regions 
with widely varying spread conditions and fundamentally different 
tactics for protecting the population.

The processing of coronavirus cases based on the conceptual model 
of virus spread shows the existence of seven stages of COVID-19 
spread (see Figures 2–5). They constitute the life cycle of the vi-
rus spread. Each stage has its own morphology, which expresses 
a difference in the tendency to grow. These stages are completely 
repeated in the following waves of virus spread. 

The first stage expresses the generation of a viral population. A 
characteristic feature of the stage is the existence of the highest 
renewal potential (the difference between the nearest maximum 
and minimum values). A vast area with negative values shows the 
initial renewal potential of the emerging population. This period 
corresponds to the most significant changes in the parameters of 
viral dynamics (see Figure 2a). At the same time, the increment 
of infected persons remains at a low level. Protective mechanisms 
against infection spread serve as a barrier function because the 
potential for disease growth remains significant, which manifests 
itself in the following stages. The first stage can be determined as 
the generation of a viral population.

The second stage reflects the period in which the growth rate of 
infected persons begins to increase. Here, the amplitude of the de-
cline parameter increases sharply, having mainly negative values 
(see Figure 2b). The changes in the domination between the ap-
pearance–disappearance factors they have considerable frequency. 
This means that all the mechanisms of population growth have 
already been set in operation but have not yet enough power. It 
could be said that this is the most sensitive stage of growth be-
cause it shows whether or not the population can overcome the 
protective barrier of the environment. Here, the distinctive feature 
is a sequential decrease in the amplitude of oscillations to a specif-
ic value that weakly changes during the next period. The second 
stage can be determined as a speed-up of growth.

The third stage indicates the beginning of increased growth after 
the previous weak increment in the number of infected persons. A 
distinctive feature is the stable but slowly changing amplitude of 
the oscillations around a certain value. This means that the poten-
tial for the growth of the viral population demonstrates its contin-

ued presence for renewed infection (see Figure 2c). The numerical 
simulation of the second and third stages demonstrates their most 
instability of the calculations. This fact reflects a very active stage 
of virus adaptation to the environment. From the viewpoint of the 
rate growth of the coronavirus cases, this stage can be determined 
as a moderate increment of growth.

The fourth stage reflects the complete transition to exponential 
growth and defines the achievement of a local peak for the increase 
in coronavirus cases (see Figure 2c). A characteristic feature of this 
phase is the contraction of the oscillations of the decline parameter 
to the vicinity of the small value (see Figure 2d). This is an indica-
tion of how the decline parameter diminishes during the transition 
from negative to positive values. The shift to the positive region 
means that protective mechanisms against infection spread begin 
to manifest themselves fully and are transformed from a barrier 
function to a suppression one. The stage can be determined as an 
abrupt growth.

The fifth stage denotes the period of COVID-19 spread, in which 
the growth and decline factors begin to decrease and tend to a spe-
cific small value (see Figure 2d). The amplitude of the changes 
in the decline parameter is large locally. This means that the po-
tential for viral population growth remains significant despite its 
decrease. The stage can be defined as a resistant renewal.

The sixth stage means the period when the variability of the de-
cline factor is systematically reduced (see Figure 2d). The recur-
rent cases of coronavirus have steadily dropped, and the oscilla-
tions of the decline parameter tend to have a smaller amplitude. 
This fact suggests that factors of disappearance of individuals are 
beginning to play a major role. The stage can be determined as a 
regression of the renewal potential. 

The seventh stage expresses the period of COVID-19 spread, in 
which the variability of the decline parameter is tiny, and its value 
tends to be constant. Zeroing the renewal potential means com-
plete termination of the renewal and transition to a stable equilib-
rium "virus – environment''. Latter is associated with a plateau on 
the S-shaped curve. Data processing shows the existence of two 
variants of growth potential reduction: from the area of positive 
values (Figures 2d and 4d) and from the area of negative values 
of the decline parameter (Figures 3c and 5d). This stage can be 
determined as attenuation of the renewal potential. The absence of 
a trend to zero in the behavior of the decline parameter means that 
there is a potential for the formation of a new wave of infection 
(Figure 2d).

The stages described above are repeated in four countries with 
different dynamics of COVID-19 prevalence and are presented in 
Figures 3–5. The results reflect that the infection after its outbreak 
evolves in a strictly defined sequence. Their duration and forms of 
manifestation appear to be individual, depending on the protective 
measures taken, but in all the cases considered, the morphology 
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of viral evolution, that is, the periods of growth and decline of the 
spread, includes seven stages. Data processing shows that it is im-
possible to completely exclude the occurrence of any of the stages 
defined above from the full life cycle of COVID-19. 

The results also indicate that all technologies that limit the virus 
spread can be divided into two general groups. The first group, for 
which the parameter a1 is responsible, is the blockage of virus re-
newal conditions, namely, everything that involves the evolution of 
the virus infection at its microscopic and mesoscopic levels. These 
levels are not responsible for the interaction with the environment 
and form the potential for renewal. The second group, for which 
the parameter a2 is responsible, is the generalized representation of 
COVID-19 adaptation under medicinal, physiotherapeutic, orga-
nizational, and other similar means that lead to the suppression of 
the viral spread. This group takes into account actions at the level 
of the external protection contour of the virus. Its overcoming is 
reflected in an increase of the parameter a2.

From this point of view, mathematical modeling of the influence 
of these groups on the ability or inability to restrict the virus 
spread is of undoubted interest. An analysis of the properties of 
the solution to Equation (1) shows that at any point in time there is 
a possibility to decline the growth of the S-shaped curve down to 
a zero-infected person. Managing the number of infected persons 
is achieved through protective measures, as described above, fall 
into two groups. However, the implementation of such measures 
requires the fulfillment of radical conditions. First of all, Equation 
(1) shows that the condition a1→0 must be satisfied in order to 
meet the requirement of zero-infected persons. If a1 remains at a 
level different from 0, then starting from some threshold value the 
total number of infected will increase again. The second condi-
tion to decrease the number of infected persons is to strengthen 
the suppression of virus development at all levels. To do this, two 
conditions must be met: (i) the decline parameter a2 should have 
an abrupt change, and (ii) its subsequent tendency towards neg-
ative values must be majorized by the value of a1. Data process-
ing demonstrates (Figures 2d and 4c) that a similar managing by 
COVID-19 spread is acceptable. However, if the level reached by 
the decline parameter a2 after its transformation (i) and recovery 
according to requirement (ii) becomes significantly lower than a1, 
even in the positive values range, then the number of newly infect-
ed persons increases again. Figures 2d and 4c indicate just such 
cases. Note, however, that China’s protective measures against 
the spread of COVID-19 are implemented in such a way that the 
number of new infections stabilizes at a low level. This confirms 
that conditions (i) and (ii) can be met successfully in practice. 
The qualitative analysis presented above of the properties of the 
solutions to the Verhulst equation requires quantitative criteria for 
the effectiveness of limiting the spread of viruses. These criteria 
should be further investigated theoretically.

Since the present study is based on the processing of reported 
COVID-19 cases rather than on the analysis of theoretical evo-

lutionary models, the degree of generality of the results obtained 
does not cover all possible variants. Nevertheless, the processing 
of observations provides key information for the development 
of theoretical models. And in this regard, the typical stages of 
COVID-19 spread and conditions of infection control found are 
essential modeling directions. The obtained results signify the im-
portance of further research of the spread dynamics of COVID-19 
to generalize outcomes. 

The practical use of the results obtained can be aimed at assessing 
the effectiveness of the measures taken to protect against infection 
and to diagnose the current state of the virus spread according to 
its life cycle.

Conclusions
Mathematical simulation of COVID-19 spread by solutions to the 
Verhulst equation with variable parameters provides practical and 
significant information on the current state of the disease and its 
potential for further spread. The morphology of viral evolution, 
the potentials for COVID-19 spread, as well as the features of viral 
progression are expressed by the reconstructed renewal and de-
cline factors.  The essence of these factors is established by the 
volumes of appearing and disappearing individuals.   

Data processing and interpretation of the obtained results indicate 
the existence of the typical pattern of seven stages of COVID-19 
spread. This number persists despite the significantly different con-
ditions that exist and defense tactics that have been used against 
virus propagation in the four countries examined. The stages con-
stitute the life cycle of COVID-19. Knowing this life cycle facil-
itates the recognition of the actual state of the pandemic and is 
valuable in diagnosing its stage of progression.

It was determined the possibility of managing the number of in-
fected persons down to a zero-infected number through specific 
protective measures at each stage of the COVID-19 life cycle.
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Figure 1. The reconstruction of the renewal factor of the COVID-19 spread:  

a) and b) – Germany, c) – Switzerland. 
Figure 1: Reconstruction of the renewal factor of COVID-19 spread: a) and b) – Germany, c) – Switzerland.
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Figure 2. The reconstruction of the decline factor of COVID-19 spread in Germany  Figure 2: Reconstruction of the decline factor of COVID-19 spread in Germany

J Math Techniques Comput Math, 2022



  Volume 1 | Issue 2 | 66

14 
 

 

Figure 3. Reconstruction of the decline factor of COVID-19 spread in Switzerland 

Figure 3: Reconstruction of the decline factor of COVID-19 spread in Switzerland

Figure 4: Reconstruction of the decline factor of COVID-19 spread in Sweden
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Figure 5. Reconstruction of the decline factor of the COVID-19 spread in Brazil Figure 5: Reconstruction of the decline factor of COVID-19 spread in Brazil
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