
      Volume 6 | Issue 1 | 68

Kinetic Nonequilibrium Signatures in the Distribution Function of Earth-Escaping 
Hydrogen Atoms

Research  Article

Argelander Institut für Astronomie, Universität Bonn, Auf 
dem Huegel 71, 53121 Bonn (Germany)

Hans J. Fahr
*Corresponding author:
Hans J.Fahr, Argelander Institute for Astronomy, University of Bonn, Auf 
dem Huegel 71, 53121 Bonn Germany.

Submitted: 17 Feb 2023; Accepted: 25 Feb 2023; Published: 08  Mar 2023

Adv Theo Comp Phy, 2023

Citation: Fahr, H. J. (2023). Kinetic Nonequilibrium Signatures in the Distribution Function of Earth-Escaping Hydrogen Atoms. 
Adv Theo Comp Phy, 6(1), 68-76.

Abstract
The lightest atmospheric gas constituents, like H- and He- atoms, are known to escape from planetary gravitational fields 
to open space. Hereby it counts that not only the uppermost atmospheric layer, the so-called exobase, contributes to this 
planetary gas escape, but the layers below do contribute as well, especially since from below a nonthermal character of 
the final particle outflow is induced.We consider the outflow of H - atoms from lower levels of a planetary oxygen-domi-
nated upper atmosphere, stratified by the planet‘s gravitational field - as given in case of the Earth. The terrestrial H-atom 
outflow is locally modified by elastic collisions of upwards flying H-atoms with the heavy major atmospheric background 
constituent. This causes a collision–induced velocity-modulation of the upwards directed H-atom flow and induces non-
thermal kinetic signatures of the local H ˗ atom distribution function. An important, hitherto unrespected point hereby is 
that angle-integrated elastic O ˗ H- collision cross sections are velocity-dependent, falling off with increasing velocity v 
like (1/v). Consequently this modulation influences low velocity H-atoms stronger than high-velocity ones, which changes 
the kinetic profile of the escaping H-atoms and causes deviations from the classic Jeans escape. Deeply down in the lower 
thermosphere the local H-atoms, like as well the O-atoms, indeed are in a thermodynamical equilibrium characterized by 
Maxwell distributions with a common temperature TH = TO. Nevertheless, at the upper exobase border of the atmosphere 
the resulting H-atom escape flow turns out to be a, non-equilibrium flow with non-thermal escape-relevant properties. 
Here we describe this collisional modification of the H-escape flow and quantify the upcome of kinetic non-equilibrium 
features like power laws in the wings of the H-distribution function. This collisional modulation via velocity-dependent 
collision cross-sections acts as a typical process to convert equilibrium distributions into non-equilibrium kappa-like dis-
tribution functions. On the basis of this theoretical approach and stabilizing the upper atmosphere by the type of so-called 
"iso-baric Kappa functions" which all represent the same H ˗ atom- pressure we can calculate the effective escape flux of 
H- atoms to open space and can quantify its difference with respect to the classical Jeans escape value. While finding again 
that the classical Jeans formula slightly overestimates the actual escape flux, we now for the first time taking into account 
the nonthermal influence of collisional modulations can show that the actual escape with respect to the actual Jeans value 
is even enhanced by factors 2 to 3.
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Thermospheric Deviations from Thermal Equilibrium
Here in this paper we shall start from a physically well-posed 
problem connected with a planetary atmosphere stratified by the 
action of the planet´s gravitational field and connected with lo-
cally thermal equilibrium distribution functions of the various 
gas components. We will demonstrate that the collision-modu-
lated escape flow – coming from far down in the thermosphere 
and arriving at its top level, i.e. the exobase, does show clear-
ly pronounced signatures of a non-thermal kinetic distribution 
function though at the lower levels of the atmosphere one usu-
ally expects to have all atmospheric atoms under thermodynam-
ic equilibrium conditions with local Maxwellians as prevailing 
distribution functions. That this concept of a local thermody-
namic equilibrium is a bit too idealistic and needs to be cor-
rected was already clear very early in the past [1]. The evident 

reason for perturbations in the thermodynamic equilibrium con-
ditions comes up with the phenomenon of the H -atom escape 
from exobase levels, since all the upwards moving atoms with 
over-escape velocities (v ≥ vesc) are practically lost from the at-
mosphere and can not immediately be replaced in the downward 
branch of the distribution function. This means that the exobase 
must be a region of anisotropic, non-Maxwellian velocity distri-
butions (i..e: Non-LTE condition!, see) [2-7].

With this preamble we are furthermore interested to describe 
the particle outflow from the top of the atmosphere, taken as 
one-dimensionally stratified by the earth´s gravity field between 
coordinates x = x0 (thermosbase) and x = x1 (exobase). Below 
the top layer x1 the gas, especially the heavy component, i.e. the 
mono-atomic O-atom gas, is well enough kept under thermody-



namical equilibrium conditions with a common local tempera-
ture T(x) as function of x. The particle distribution functions of 
the atomic gases can be assumed to be isotropic, local Maxwel-
lians f(v, x) = Max(v, T(x)). From below the level x1 particles 
like H- atoms, distributed according to such a local Maxwellian, 
are emitted towards the top layer, but before arriving there, they 
will undergo elastic collisions with other heavier gas particles, 
like, in case of the earth, especially the locally most abundant 
O- atoms, in view of their dominant number densities in this 
region. What comes out under such conditions is a "sheath-mod-
ified"- H - atom outflow with a collisionally modified, kineti-
cally transformed, non-Maxwellian distribution function. This 
latter function finally determines the effective H-escape from the 
atmosphere to open space, and it is just the collision-modified 
kinetics of this escape function which we are aiming at in the 
article that follows.

The H-atom emissivity
Taking a 1d-structured atmosphere with an H/O - gas densi-
ty distribution given by barometric densities nH,O = nH,O(x) = 
nH.O(x0) exp[-(x - x0)/SH,O], with a height-coordinate x, and with 
the atmospheric scale heights SH,O = kT(x)/(g ∙ mH,O) specific for 
H- and O- atoms, where g denotes the gravitational acceleration 
within this layer, one obtains a local hydrogen emissivity           	
into a direction ϑ of

Now one must pay attention to the fact that the upward flux   
	        of H-atoms around a space angle             originating 
at a coordinate x, is reduced on its way up before it reaches the 
top layer at x = x1, due to elastic collisions with the dominant 
background gas constituent. In case of the Earth‘s atmosphere, 
these are the mono-atomic O-atoms. This resulting reduction can 
be described by a transmission function Tr(x, v), assuming that 
the colliding, low-mass H-atoms by H ˗ O - collisions are com-
pletely redistributed to other directions   	     i.e. representing 
in essence a loss for H- atoms in the original flow 		   
which come along the upward direction  	   from below, and 
hence one obtains an effective transmission given by:

Hereby σO(v) denotes the angle-averaged elastic collision cross 
section between O-and H- atoms at a relative velocity  

This cross section σO (v) must be described as a type of a polar-
ization cross section with a central interaction potential VH,O(r) ~ 
r.-4 (i.e. Maxwell model!) between the collision partners H and O 
(i.e. polarized atomic shell) , effectively leading to the following 
velocity-dependence σO(v) = σO(v0) • (v/v0)-1. In case of H - O – 
atom collisions a reference cross section of  				 
	          or σO = 8•10-17cm2 can be used or, when averaged 
over the scattering angle, of σO =10-15cm2 [8-11]. Taking these 
facts together we obtain for velocities v ≥ v0 the following hydro-
gen transmission function:
 

One may remind that the general validity with respect of the 
zenith inclination angle 	      can only be taken as a valid ap-
proximation within a small range of inclination values, say   		
	   since the one-dimensional atmospheric approach used 
here naturally requires limitations in view of the actual spherici-
ty of the real planetary atmosphere. With these precautions, and 
taking advantage of the very large scale height of hydrogen (i.e. 
practically constant H-density!), we are lead to the following to-
tal H-atom emissivty JH(v, ϑ) upwards from the top layer at x = 
x1, i.e. the exobase:

The above expression can be simplified introducing   

where  			                                  denoting the 
exobasic value of the H - escape velocity, and then leads to the 
following expression:
 

which finally with w = v/v0 and 	            can be presented in 
the following form:

Reference conditions for the terrestrial atmosphere
For the following investigations we take as a standard atmo-
sphere the one at 14.00 h day time for medium solar irradiance 
conditions, i.e. for a solar radio flux of F10.7 = 150.

According to CIRA, we then have to use the following input 
numbers [12]:

Oxygen scale height: So = 50km
The gas temperature between 200 km and 500 km:
 

With
T0= 700K
and
T1=1400K
Yielding:
ΔT= 700K
and
Δx=300km
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The H-atom emissivity
Taking a 1d-structured atmosphere with an H/O  gas density distribution given by

barometric densities nH,O  nH,Ox  nH.Ox0expx  x0/SH,O, with a height-coordinate
x, and with the atmospheric scale heights SH,O  kTx/g  mH,O specific for H- and O-
atoms, where g denotes the gravitational acceleration within this layer, one obtains a
local hydrogen emissivity JH into a direction  of

JHv,dvd  nHxv   mH
kTx 3/2 exp mHv

2

kTx v2dvcosd   #   

Now one must pay attention to the fact that the upward flux JHv,  0 of H-atoms
around a space angle   0o originating at a coordinate x, is reduced on its way up
before it reaches the top layer at x  x1 , due to elastic collisions with the dominant
background gas constituent. In case of the Earth‘s atmosphere, these are the
mono-atomic O-atoms. This resulting reduction can be described by a transmission
function Trx,v, assuming that the colliding, low-mass H-atoms by H  O - collisions are
completely redistributed to other directions ´   , i.e. representing in essence a loss
for H- atoms in the original flow JHv,  0o which come along the upward direction
  0 from below, and hence one obtains an effective transmission given by:

Trx,v,  expOv 
x

x1
nOz dz

cos 

Hereby Ov denotes the angle-averaged elastic collision cross section between O-
and H- atoms at a relative velocity vrel  vH  v.

This cross section Ov must be described as a type of a polarization cross section
with a central interaction potential VH,Or  r4 (i.e. Maxwell model!) between the
collision partners H and O (i.e. polarized atomic shell) , effectively leading to the
following velocity-dependence Ov  Ov0  v/v01. In case of H  O - atom
collisions a reference cross section of Ov0  kT0/mH   3  1017cm2 or
O  8  1017cm2 can be used (see Schäfer and Trefftz ,1970, or Massey, 1968), or,
when averaged over the scattering angle, of O  1015cm2 (see Gao et al., 1989,
Swazyna et al., 2021). Taking these facts together we obtain for velocities v  v0 the
following hydrogen transmission function:

Trx,v  expO   v0v nOx 
x

x1
exp z  z0

SO
 dz
cos  

expO   v0v nOxSOexp x
SO cos

  exp x1
SO cos



  #   

One may remind that the general validity with respect of the zenith inclination angle
  0o can only be taken as a valid approximation within a small range of inclination
values, say   c  30, since the one-dimensional atmospheric approach used here
naturally requires limitations in view of the actual sphericity of the real planetary
atmosphere.

With these precautions, and taking advantage of the very large scale height of
hydrogen (i.e. practically constant H-density!), we are lead to the following total H-atom
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For the following investigations we take as a standard atmosphere the one at 14. 00h
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The collision-modulated H-emissivity at the exobase

With these above standard atmospheric input numbers one obtains the following
expression for the modulated H-emissivity:
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This is then numerically expressed, using the cross section value given by Massey
(1968) with O  8  1017cm2 and introducing the quantity   T/T0x, by the following
expression:

JHw,dwd  v0nHw3dwd 1
x1  x0 x0
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Introducing now the normalized integration variable by z  x/SO, one finally obtains the
following expression:

JHw,  v0nH0 SO
x1  x0 w
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Hereby the quantity  evaluates to the following expression:
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The collision-modulated H-emissivity at the exobase
With these above standard atmospheric input numbers one obtains the following expression for the modulated H-emissivity:

This is then numerically expressed, using the cross section value given by Massey with σO= 8 • 10-17cm2 and introducing the quantity 
Δ = ΔT/T0Δx, by the following expression [9]:

Introducing now the normalized integration variable by z = x/So, one finally obtains the following expression:

Hereby the quantity Δ evaluates to the following expression:

First Results
According to the expression above derived for the upward hydrogen flux	   at the exobase x = x1 = 500km one obtains the 
flux values JH (x1, w, ϑ = 0) shown in Figure 1 where we have plotted the logarithms of these fluxes, i.e. Log[JH(w, x)], because this 
type of plot more clearly manifests the non thermal characteristics of the function JH (x1, w, ϑ = 0), since w - power law characteris-
tics then show clearly up as straight-line regions, i.e. see the linear dependences on w. As one can see, beyond the velocity w = 2. 5 
this kind of power law characteristic of the velocity spectrum becomes visible in the expression for Log(JH (x1, w, ϑ = 0)) which is 
shown in Figure 1.
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Hereby the quantity  evaluates to the following expression:
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First results:

According to the expression above derived for the upward hydrogen flux JHw, at the
exobase x  x1  500km one obtains the flux values JHx1,w,  0 shown in Figure 1
where we have plotted the logarithms of these fluxes, i.e. LogJHw,x, because this
type of plot more clearly manifests the nonthermal characteristics of the function
JHx1,w,  0, since w  power law characteristics then show clearly up as straight-line
regions, i.e. see the linear dependences on w. As one can see, beyond the velocity
w  2.5 this kind of power law characteristic of the velocity spectrum becomes visible in
the expression for LogJHx1,w,  0 which is shown in Figure 1.
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Figure 1: The logarithm of upward hydrogen flux JHw,  0 at x  x1 (exobase)
as function of the normalized velocity w  v/v0 for the standard CIRA (1965)
atmosphere

One can see that beyond velocities w  v/v0  2.5 the function JHw, turns into a
power-law behaviour. The critical occurence point of this turn is dependent on the
magnitude of the responsible collision cross section. Since there exist substantial
differences in the recommended values of the relevant collision cross sections,
expressed in the quantity of the reference cross-section o  ovo that are given either
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One can see that beyond velocities w = v/v0 = 2. 5 the func-
tion JH (w, ϑ) turns into a power-law behaviour. The critical oc-
curence point of this turn is dependent on the magnitude of the 
responsible collision cross section. Since there exist substantial 
differences in the recommended values of the relevant colli-
sion cross sections, expressed in the quantity of the reference 

cross-section σo = σo (vo) that are given either by the quantity σo 
(vo) = σ(1)=10-17cm2 (Schäfer and Trefftz,1970) or by the quantity 
σo(vo) = σ(2)=10-15cm2. In Figure 2 we show the differences that 
are solely due to these cross section differences concerning the 
upcoming results for Log[JH(esc, w] as function of w = v/v(o).
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by the quantity ovo  1  1017cm2(Schäfer and Trefftz,1970) or by the quantity
ovo  2  1015cm2. In Figure 2 we show the differences that are solely due to
these cross section differences concerning the upcoming results for LogJHesc,w as
function of w  v/vo.
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.Figure 2: LogJHx1,w is shown as function of w  v/vo for two different cross
section values : sigma1  10.^(-17)cm^2 and sigma210.^(-15) cm^2.

Modelling of the non-equilibrium features
In the aforegoing sections we have shown that hydrogen atoms ascending from far

below the exobase, while moving up to the exobase, do undergo collisions with the most
numerous gas component, i.e. the mono-atomic oxygen. Treating this
velocity-dependned, collisional modulation effect kinetically we have shown in the
sections before that due to these collisions the distribution function fHv,x of ascending
hydrogen atoms does systematically change its character from an LTE - Maxwellian to a
non-LTE function with an increasingly higher statistical weight for the higher velocity H 
atoms at increasing heights x.

While this phenomenon has physical relevance and has to be respected, it must,
however, in addition be taken care of the atmospheric stability of the hydrogen
quasi-isodensity structure with height x , otherwise the H-atmosphere would be
substantially disbalanced into a new H density profile. To guarantee the stable
isodensity structure of the H  atmosphere between thermobase and exobase we thus
also have to fullfill the condition of "isobaricity" of the H  atmosphere, namely the fact
that the region between thermobase and exobase (x0 up to x1 should be characterized

Figure 2: Log [JH(x1, w)] is shown as function of w = v/v(o) for two different cross section values: sigma1 =10.^(-17)cm^2 and 
sigma2=10.^(-15) cm^2.

Modelling of the Non-Equilibrium features
In the aforegoing sections we have shown that hydrogen atoms 
ascending from far below the exobase, while moving up to the 
exobase, do undergo collisions with the most numerous gas 
component, i.e. the mono-atomic oxygen. Treating this veloci-
ty-dependned, collisional modulation effect kinetically we have 
shown in the sections before that due to these collisions the dis-
tribution function fH(v, x) of ascending hydrogen atoms does sys-
tematically change its character from an LTE - Maxwellian to a 
non-LTE function with an increasingly higher statistical weight 
for the higher velocity H - atoms at increasing heights x.

While this phenomenon has physical relevance and has to be 
respected, it must, however, in addition be taken care of the at-
mospheric stability of the hydrogen quasi-isodensity structure 
with height x, otherwise the H-atmosphere would be substan-
tially disbalanced into a new H-density profile. To guarantee the 
stable isodensity structure of the H-atmosphere between ther-
mobase and exobase we thus also have to fullfill the condition 
of "isobaricity" of the H-atmosphere, namely the fact that the 
region between thermobase and exobase (x0 up to x1) should be 
characterized by about the same hydrogen pressure Ph ≃ const, 
though we have seen the evident tendency of H - atoms to in-
crease with height x the statistical weight of higher-velocity par-
ticles. Thus the outstanding problem now is, how to model this 
unusual situation? 

Here one first could spontaneously think of using non-Maxwel-
lian, kappa-like forms of velocity distribution functions which 
perhaps would best cover these needs. But to simply think of ap-
plying non-LTE functions in the form of general kappa functions 
fH = fκ(v) given by [13]:

where n denotes the density, Ґ(ζ) is the Gamma function of the 
argument ζ, and κ and Θ are two independent kappa-function 
parameters, is as easily evident not yet the adequate help for 
our needs here. This is because normal kappa functions typically 

have two independent parameters Θ and κ, and due to this fact 
they represent different pressures P = P(Θ, κ) for each set of 
these parameters. This, however, means they would change the 
H - pressure with height z, and would hence dissolve the stability 
of the atmospheric H-density stratification.

The adequate remedy here can, however, be found in so-called 
"isobaric kappa-functions       recently introduced by Fahr and 
Fichtner [14]. These functions are found by first producing the 
kappa-function pressure Pκ as the corresponding velocity mo-
ment of the above kappa-function and thus consequently obtain-
ing:

This result is then, however, expressing the interesting fact that 
those kappa-functions are all "isobaric", i.e. belonging to the 
same pressure Pκ, which have two coupled parameters of the 
function fκ (v, κ, Θ), namely related to each other by the follow-
ing relation:

where Θκ,M is the thermal spread of the associated Maxwellian 
(i.e. for κ → ∞) given by:

Introducing now this upper interrelation of the two parameters κ, 
and Θ into the upper expression for the general kappa function 
will then evidently lead to the following family of "isobaric kap-
pa functions  	     given by:

In the next Figure 3 we show how such isobaric kappa-functions 
look as velocity-space distributions, and one can clearly see that 
with smaller kappa indices the wings of the distribution function 
are systematically lifted up:
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where n denotes the density ,  is the Gamma function of the argument  , and 
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would change the H  pressure with height z , and would hence dissolve the stability of
the atmospheric H-density stratification.

The adequate remedy here can, however, be found in so-called "isobaric
kappa-functions fP" recently introduced by Fahr and Fichtner (2022). These functions are
found by first producing the kappa-function pressure P as the corresponding velocity
moment of the above kappa-function and thus consequently obtaining:
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This result is then, however, expressing the interesting fact that those kappa-functions
are all "isobaric", i.e. belonging to the same pressure P, which have two coupled
parameters of the function fv,, , namely related to eachother by the following
relation:
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where ,M is the thermal spread of the associated Maxwellian (i.e. for   ) given
by:
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Introducing now this upper interrelation of the two parameters  and  into the upper
expression for the general kappa function will then evidently lead to the following family
of "isobaric kappa functions fMv" given by:
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In the next Figure 3 we show how such isobaric kappa-functions look as
velocity-space distributions, and one can clearly see that with smaller kappa indices the
wings of the distribution function are systematically lifted up:
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particles. Thus the outstanding problem now is, how to model this unusual situation?

Here one first could spontaneously think of using non-Maxwellian, kappa-like forms of
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Figure 4: The entropy of isobaric kappa-functions for different kappa-function parameters as function of the upper velocity inte-
gration border

which we have visualized by numerical integrations shown in the plots of Figure 4.
Hereby the value of the associated Maxwellian temperature is taken as
TM  PM/3nmk/2  1400K.
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As evident in Figure 4 all the expressions for the different entropies sM for values
  1.6 up to   10 lead to the same entropy value. That expresses the astonishing fact
that isobaric kappa-functions fMv not only lead to the same density and pressure, they
also describe thermodynamical states with identical entropies, i.e. with identical
statistical probabilities. This means that such systems can freely communicate with
eachother without exchanging informations and changing its states. This is the situation
illustrated in Figure 5 below, namely the lower atmosphere being at thermodynamic
equilibrium with Maxwellian distributions of the gas particles (hydrogen) and with
non-equilibrium, isobaric Kappa-functions in the upper atmosphere. Since no information
transport takes place between these two systems, the state of the two systems, i.e. the
Upper and lower one!) is stable, even if a free particle exchange between the lower and
the upper atmosphere is allowed to take place. To guarantee this persistence of this
state the half-side, hemispheric main momentum fluxes (upward, and respectively
downward fluxes) of mass, momentum end energy need to cancel eachother.
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As evident from the fact that for general kappa-functions the left 
sides contain only two free parameters, nd and ud, while the right 
sides contain three, nup, κ and Θ, no unique, definite solution 
of the system of equations for general kappa functions is possi-
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which allows for the unique solution of an appropriate isobaric 
kappa-function given by:

and describing the nonthermal escape function of hydrogen at 
and from the exobase.

The Collision-Modulated Planetary Escape Flux
At the end of this article, the important question must be put how 
these effects of a collision-induced transformation of the H-atom 
distribution function into an exobasic, non-equilibrium function 
do finally influence the hydrogen escape flow from the earth´s 
exobase to space. This escape flow namely determines the to-

tal hydrogen loss of the Earth´s atmosphere per time to space. 
This escape flow must be quantified now under the new auspices 
treated in the sections above. 

Conventually, for the purpose to determine this escape flux, the 
classical Jeans approach is used leading to the result that this 
flux Jjeans is given by [15- 17];
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the thermal exobase hydrogen distribution function given at a 
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which leads to the well known result [1]:

where λH is the escape energy parameter given by:

where M and rexo = re + 500km here denote the mass of the earth 
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Now, in comparison to that classical result from Jeans, we 
here in this article have found the following first result for the 
collision-modified escape flux JH,esc using the modified colli-
sion-modulated H-emissivity [15]:
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The collision-modulated planetary escape flux

At the end of this article, the important question must be put how these effects of a
collision-induced transformation of the H-atom distribution function into an exobasic,
non-equilibrium function do finally influence the hydrogen escape flow from the earth´s
exobase to space. This escape flow namely determines the total hydrogen loss of the
Earth´s atmosphere per time to space. This escape flow must be quantified now under
the new auspices treated in the sections above.

Conventually, for the purpose to determine this escape flux, the classical Jeans
approach is used (Jeans, 1923, Jones, 1923, Spitzer, 1952) leading to the result that this
flux Jjeans is given by;
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where M and rexo  re  500km here denote the mass of the earth and the central
exobase radius.
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Let us remember that we have used as normalization of the H-atom velocity:
kTx/mH  v02  T0/Tx, with the normalizing velocity
v0  kT0/mH  5.8km/s  0.5vesc,H. This means that the lower border in the upper
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concretes) we find as a relative surprise that the present value Jesc  3.8  103nH0
obtained for a thermally structured atmosphere with a lower temperature T0x0  700K
and an upper temperature of T1x1  1400K not only, as expectable, is larger than the
Jeans flux for the lower temperature, i.e. JjeansT0  700K  80nH0 , but, less expectable,
is slightly smaller than the Jeans flux for the higher temperature, namely
JjeansT1  1400K  7000nH0. Therefore one can say that the classical Jeans formula so
far in our investigations does lead to a slight overestimation of the actual hydrogen
escape flow from the earth. (Fahr and Heyl, 2022).

This result also came already out from several earlier studies following different
aspects of the escape problem like those considered by Brinkmann (1970), Fahr (1976),
Fahr and Weidner (1977), Lindenfeld and Shizgal (1979), Shizgal and Blackmore (1986)
or Pierrard (2003). In Fahr (1976) it was considered that the H-population at exobase
heights in its upward velocity branch contains particles that escape from the earth‘s
gravity field, i.e particles that do not return to the exobase from above, meaning that this
part of the population in the downward velocity branch is permanently missing at
exobase heights, i.e. it thus does not appear in the downward branch of the distribution
function and somehow needs to be replaced via collisions. This loss of escaping
particles can be expressed as a permanent loss of thermal energy from the exobasic
H population cooling down the exobasic hydrogen gas by about 80K relative to oxygen
(Fahr, 1976) and thereby reducing the Jeans escape rate by about a factor of 0.5.

A similar reduction of the Jeans flux values is elaborated in a study by Fahr and
Weidner (1977) determining the influence on the H-escape rate in the sub-exobasic
atmospheric layers due to collisions with O-atoms, however, treated in this case as
hard-core elastic collisions with velocity-independent cross sections. For the atmospheric
exobasic temperature of 1400 K the authors find a similar reduction of the Jeans escape
value by a factor of 0.35.

Putting things so far together, it would turn out that this present study is not the first
one demonstrating that classical Jeans escape rates are undermined by present day
more realistic results, if collisional effects in the thermosphere of the Earth are taken into
account paying attention to velocity-dependences of these collision cross sections.
However, the present study now shows for the first time that the effect of elastic
collisions of escaping H-atoms with O-atoms leads to a transformation of the original
thermal Maxwell distribution into a non-thermal kappa-like distribution with power-law
characteristics at larger velocities of v  2v0  2 kT0/mH .

As we now have shown in the section ahead this change in the H-distribution function
only leads an atmospherically stable stratification, if the conversion of the lower
atmospheric Maxwellian towards a Kappa-like nonthermal distribution at greater heights
occurs along the line of isobaric, isentropic kappa distributions fPv which have the
property to always represent the same pressure P which latter fact just can guarantee
the H-atmospheric stability. Calculating , however, the Jeans- escape flow now with the
help of isobaric kappa-functions fPv then consequently leads to the following more
complicated, but also much better justified expression:
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the H-atmospheric stability. Calculating , however, the Jeans- escape flow now with the
help of isobaric kappa-functions fPv then consequently leads to the following more
complicated, but also much better justified expression:
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In the figures 6/7 below we thus do show how the kappa-function-induced H-atom
emissivity J,jeansP at the exobase under such nonthermal conditions does look like, and
how, on the basis of this nonthermal emmissivity, then finally this brings up the escape
flux values which now are evidently greater than the Jeans escape value by factors of
between jj  1.0 and jj  2.7. With our favourite value for the exobasic Kappa value of
  1.6 we in fact come to a most probable value of jj  2.7. One should , however,
keep in mind that this factor is dependend on the exobasic H  temperature TH via the
connection     1.6  ,M/4 where ,M is given by the exobasic H-temperature
through: 3/2mH,M

2  kTH. This finally means that the enhancement factor jj is
dependent on the value of the exobase hydrogen temperature which latter is variable
according to CIRA (1965) with day time and solar activity time and is given by the
reference atmosphere CIRA-1965.
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H - temperature TH via the connection Θ = Θ(κ=1.6) =Θκ,M/4 
where Θκ,M is given by the exobasic H temperature through: (3/2) 
mHΘ2

κ,M = kTH. This finally means that the enhancement factor jj 
is dependent on the value of the exobase hydrogen temperature 

which latter is variable according to CIRA with day time and so-
lar activity time and is given by the reference atmosphere CIRA-
1965 [12].

Lower part: The hydrogen escape flux from the exobase as func-
tion of the upper integration border calculated on the basis of 
isobaric kappa functions for the parameters kappa = 20, 3, 2, 
and 1,6.

Conclusions
We have shown in the sections ahead that close to the thermobase 
(200km) indeed the hydrogen atmosphere can be expected to be 
presented by H - atoms under local equilibrium conditions with 
local Maxwellian distribution function and a local temperature 
TH equal to the local O-temperature TO. However, those H-at-
oms ascending from thermobase levels to larger heights thereby 
are subject to local collisions with ambient O-atoms. The cross 
sections for such elastic O˗H- collisions are velocity-dependent 
according to ~ (1/v), meaning that hydrogen atoms with high-
er velocity v when ascending to larger heights are less affected 
by such elastic collisions compared to slower ones. These ve-
locity-dependent collision-modulations as we do show lead to 
non-equilibrium features occuring in the hydrogen distribution 
function which can best be described by so-called Kappa-func-
tions with a central Maxwellian core and power-law wings. 
Since the H-atmosphere between thermobase and exobase levels 
is practically an iso-pressure atmosphere, the upcoming H- kap-
pa-functions, in order to keep the atmosphere stable, however, 
have to be of the type of "so-called isobaric and isentropic kappa 
functions" [12, 14]. Starting therefore from the assumption that 
the resulting exobase H-distribution is such a well-fitting, iso-
baric and isentropic kappa function will then give us a new basis 
of calculating the final excape flow from exobase levels to space, 
- and as it turns out from the results presented here (see Figure 
6), one can expect to arrive at exobasic H-escape flows that turn 
out to be greater than the classical Jeans escape limit by factors 
2 to 3 [15, 20-22].
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