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Abstract
Kervaire conjecture that the weight of the free product of every non-trivial group and the infinite cyclic group is not one 
is affirmatively confirmed by confirming affirmatively Conjecture Z on the knot exterior introduced by Gonzàlez Acuna 
and Ramırez as a conjecture equivalent to Kervaire conjecture.
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1. Introduction 
A weight system of a group G is a system of elements wi, (i = 1, 2, 
. . . , n) of G such that the normal closure N (w1, w2, . . . , wn) of wi, 
(i = 1, 2, . . . , n) in G (=: the smallest normal subgroup generated 
by wi, (i = 1, 2, . . . , n) in G) is equal to G. The weight of a group 
G is the least cardinal number w(G) of a weight system of G. 
By convention, w(G) = 0 if and only if G is the trivial group. 
The rank of G is the least cardinal number r(G) of generators of 
G. The difference r(G) − w(G) is non- negative and in general 
taken sufficiently large. For example, let G = π1(S3 \ k, x) be the 
fundamental group of a polygonal knot k in S3. Then G = Z and 
r(G) = 1 for the trivial knot k, r(G) = 2 for the trefoil knot k = 31, 
and r(G) = n for the n − 1(≥ 2)-fold connected sum k = #n−131 of 
the trefoil knot 31. On the other hand, w(G) = 1 for every knot k, 
because G/N (m(k)) = {1} for a meridian element m(k) of k. Let 
G ∗ Z denote the free product of a group G and the infinite cyclic 
group Z. Kervaire’s conjecture on the weight of a group is the 
following conjecture (see Kervaire, Magnus-Karrass-Solitar) 
[1,2].

Kervaire Conjecture
w(G ∗ Z) > 1 for every non-trivial group G.

   Some partial affirmative confirmations of this conjecture are 
known. For example, the following result of Klyachko is used in 
this paper [3].

Theorem (Klyachko)
w(G ∗ Z) > 1 for every non-trivial torsion-free group G.

     A knot exterior is a compact 3-manifold E = cl(S3 \ N (k)) 
for a tubular neighborhood N (k) of a polygonal knot k in the 

3-sphere S3. Let F be a compact connected orientable non-
separating proper surface of E where the boundary ∂F of F 
may be disconnected. Let E(F) = cl(E \ F × I) be the compact 
piecewise-linear 3-manifold for a normal line bundle F × I of F 
in E(F) where I = [−1, 1]. Let E(F)+ be the 3-complex obtained 
from E(F) by adding the cone Cone(v, F × ∂I) over the base F 
× ∂I with a vertex v disjoint from E, where ∂I = {1, −1}. The 
3-complex E(F)+ is also considered to be obtained from E by 
shrinking the normal line bundle F × I into the vertex v. The 
result of Conjecture Z due to Gonzàlez Acunã and Ramírez in is 
stated as follows [4].

Theorem (Gonzàlez Acunã-Ramírez)
Kervaire’s conjecture is equivalent to the following conjecture:

    Conjecture Z. The fundamental group π1(E(F)+,v) is 
isomorphic to Z for every knot exterior E and every compact 
connected orientable non-separating proper surface F in E.

There are knot theoretical investigations of this surface F 
and some partial confirmations [4-6]. In this paper, Kervaire 
conjecture is confirmed affirmatively by confirming Conjecture 
Z affirmatively.

Theorem 1
Conjecture Z is true.

     Gonzàlez Acunã-Ramírez theorem and Theorem 1 imply:

Corollary 2
Kervaire conjectureis true.
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      An outline of the proof of Theorem 1 is explained as follows.

Outline of the Proof of Theorem 1
Let E(F )++ = E(F ) ∪ Cone(v+, F × 1) ∪ Cone(v−, F × (−1))
be a 3-complex for distinct vertexes v+ and v− disjoint from 
E. Then the 3-complex E(F)+ is homotopy equivalent to the 
bouquet E(F)++ ∨ S1. Hence the fundamental group π1(E(F)+, 
v) is isomorphic to the free product π1(E(F)++, v) ∗ Z. Thus, 
π1(E(F)+,v) = Z if and only if π1(E(F)++, v) = {1} and Conjecture Z 
is equivalent to the claim that π1(E(F)++, v) = {1}. The following 
observation is used.

Lemma 3
w(π1(E(F)+, v)) = w(π1(E(F)++, v) ∗ Z) = 1.

Proof of Lemma 3
Because the fundamental group π1(E(F)+,v) is a non-trivial 
quotient group of π1(E,v) and w(π1(E,v)) = 1, the desired result is 
obtained. This completes the proof of Lemma 3.  

     The following lemma is proved in Section 2.

Lemma 4
The fundamental group π1(E(F)+, v) is a torsion-free group.

    By assuming Lemma 4, the proof of Theorem 1 is completed 
as follows:

Proof of Theorem 1 
Klyachko Theorem says that if G is a torsion-free group and w(G 
∗ Z) = 1, then G = {1}. Hence by this theorem and Lemmas 3, 4, 
π1(E(F)++,v) = {1} and π1(E(F)+,v) = Z.  This completes the proof 
of Theorem 1.

       In the first draft of this research, the author tried to show that 
every finitely presented group G with w(G ∗ Z) = 1 is torsion-
free. This trial succeeds for a group G of deficiency 0, but 
failed for a group G of negative deficiency. The main point of 
this failure is the attempt to construct a finitely presented group 
of deficiency 0 from the group of negative deficiency, which 
forced the author to show that G is a torsion-free group while the 
deficiency remains negative. Fortunately, the fundamental group 
π1(E(F)+,v) of the 3-complex E(F)+ was an excellent object to 
this consideration, so it could be done.

2. Proof of Lemma 4
The proof of Lemma 4 is done as follows by using the concept 
of collapse in [7].

Proof of Lemma 4
Collapse F into a triangulated graph γ by using that F is a bounded 
surface. Enlarge the fiber I of a normal line bundle F × I of F in 
E into a fiber J of a normal line bundle F × J of F in E so that I ⊂ 
J \ ∂J. Let Jc = cl(J \ I). Let E(F)− = cl(E \ F × J). Collapse F × Jc 
into γ × Jc. Triangulate γ × Jc without introducing new vertexes. 
The 3-complex E(F)+ is collapsed into a finite 3-complex

E(F)− ∪γ × Jc ∪ Cone(v, γ × ∂I) 

and thus collapsed into a finite 2-complex

P = P−∪γ× Jc ∪ Cone (v, γ × ∂I)

obtained by taking any 2-complex P− collapsed from E(F)−. This 
2-complex P is a subcomplex of a 3-complex

Q = Cone (v, P− ∪γ × Jc).

Since every 2-complex of γ × Jc contains at most one 1-simplex 
of γ × ∂I, every 3-simplex of Cone (v, γ ×Jc) contains at most 
one 2-simplex of Cone(v, γ ×∂I). Collapse every 3-simplex of 
Cone(v, γ × Jc) from a 2-face containing v and not belonging to 
Cone(v, γ × ∂I). Then collapse every 3-simplex of Cone(v,P−) 
from any 2-face containing the vertex v. Thus, the 3-complex Q 
is collapsed to a finite 2-complex C containing the 2-complex 
P as a subcomplex. Since Q is collapsed to the vertex v, C is a 
finite contractible 2-complex. It is shown that every connected 
subcomplex of a finite contractible 2-complex is aspherical [8,9]. 
Since the fundamental group of a connected aspherical complex 
is a torsion-free group, the group π1(P,v) is a torsion-free group. 
Note that this torsion-freeness comes from the torsion-freeness 
of the fundamental group of a ribbon S2-link in the 4-sphere S4, 
as it is discussed in [8], where the free product of π1(P,v) and a 
free group is shown to be  isomorphic to the fundamental group 
π of a ribbon S2-link in S4 and then the group π is shown to be 
a torsion-free group. Since π1(E(F)+,v) is isomorphic to π1(P,v), 
the group π1(E(F)+,v) is a torsion-free group. This completes the 
proof of Lemma 4. 
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