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Abstract
Alzheimer’s disease (AD) is the most common dementia type, accounting on its own for almost 70% of all dementia cases. 
Behavioral and psychological symptoms of dementia (BPSD) afflict most patients with dementia, especially those with 
Alzheimer’s disease (AD). Treatment options for BPSD include pharmacological and nonpharmacological approaches. 
However, behavioral symptoms are not always controllable with non-pharmacological intervention, and the psychotropic 
class of medication more frequently prescribed for behavioral symptoms are atypical antipsychotics. Antipsychotic drugs are 
often used for the treatment of BPSD. They are prescribed alone or in conjunction with anti-dementia. However, antipsychotic 
therapy is not free from several, and often serious, adverse events. For instance, it is well known that antipsychotic drugs 
commonly cause serious extrapyramidal side effects (EPS). It is imperative for clinicians to understand that 5-HT1A 
receptors or blockade of 5-HT2, 5-HT3 and 5-HT6 receptors can alleviate EPS induction by antipsychotics agent. It is 
therefore important to understand that appropriate drug choice and combination strategy are important in the treatment 
of BPSD. I point out that antipsychotic drugs can have extrapyramidal side effects, including parkinsonian symptoms, also 
when used in AD, and argument drug choice and combination strategies as cholinesterase inhibitors and antipsychotic 
drugs. Additionally, the advantages and limitation of antipsychotic drugs have been evaluated.
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Introduction
Alzheimer’s disease (AD) is a chronic devastating irreversible 
neurodegenerative disease, that affects the central nervous system, 
leading to dementia [1]. Several mechanisms have been proposed 
to account for the pathology of AD. The most widely accepted dis-
ease models are the amyloid cascade hypothesis, the tau hypoth-
esis, the cholinergic hypothesis, and the excitotoxicity hypothesis 
[2]. The absence of any effective treatment may explain the in-
crease in the worldwide prevalence of AD expected over the next 
few years [3]. Recent epidemiological data indicate that the num-
ber of people with AD worldwide will grow from the current 46.8 
million to 131.5 million by 2050 [4]. AD is often seen as funda-
mentally a disorder of memory and cognition, but there are many 
important behavioral symptoms associated, each potentially regu-
lated by separate neural networks. Indeed, the main consequences 
of AD include progressive deterioration of cognitive functions, 
such as judgment, language, memory, attention, and visuospatial 
ability, and behavioral and psychological symptoms of dementia 
(BPSD). Alterations in motor behavior (i.e., wandering), sleep, 

and nighttime behavior may also be present [5]. According to the 
definition of the International Psychogeriatric Association, BPSD 
are “symptoms of disturbed perception, thought content, mood, 
and behavior frequently occurring in patients with dementia” [6]. 
A meta-analysis suggests a prevalence of approximately 50% for 
the most common BPSD symptoms [7]. Cholinesterase inhibitors 
(ChEI) or anticholinesterase are typically used to improve cog-
nition and, antipsychotic drugs are commonly prescribed to treat 
BPSD in patients with major neurocognitive disorders [8]. In the 
present research topic, I review side-effects of AChEIs ad antipsy-
chotic drugs, especially those related to extrapyramidal side effects 
(EPS), and I provide some new ideas for treating BPSD.

Current Pharmacological Treatment of Cognitive Im-
pairment in Alzheimer’s Disease
Inasmuch as its exact mechanism is not known, therapy for AD has 
still not been found. As known, in the brain, acetylcholine (ACh) 
is regarded as one of the major neurotransmitters [9]. The loss of 
cholinergic neurons, results in a profound reduction in the neu-
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rotransmitter ACh, which affects learning and memory neuronal 
circuitry. Currently, there are only these two types of drugs ap-
proved for the treatment of AD: cholinesterase inhibitors (ChEIs) 
and the NMDA-receptor antagonist memantine which are effective 
only in treating the symptoms of AD, but do not cure or prevent 
the disease. The deficiency in cholinergic neurotransmission, has 
led to the development of cholinesterase inhibitors as the first-
line treatment for symptoms of this disease. Acetylcholinester-
ase (AchE), its main activity is the catalysis of ACh hydrolysis, 
thus yielding choline and acetate ions. Two cholinesterase en-
zymes are present in the body, acetylcholinesterase (AChE) and 
butyrylcholinesterase (BchE), and galantamine and donepezil are 
AChE inhibitors, and rivastigmine inhibits both AChE and buty-
rylcholinesterase (BchE) [10]. The acetylcholinesterase inhibitors 
(ChEIs) acts on the nervous system maximizing the availability 
of endogenous acetylcholine in the brain [11]. The best-known 
classes, ChEIs as donepezil, rivastigmine and galantamine and 
the NMDA-receptor antagonist memantine are until now the 
only specific pharmacological treatments approved for AD, the 
most common cause of dementia [12]. Donepezil is a reversible 
non-competitive ChEIs shown to affect cognitive function, as well 
as improves cerebral blood flow (CBF) [13]. Benefits for the 10 
mg dose appear marginally larger than for the 5 mg dose. A higher 
23-mg dose form is available, but benefits on 23 mg/day were no 
greater than on 10 mg/day [14]. Rivastigmine is a brain-selective 
inhibitor of “pseudo-irreversible” AChE and BuChE that acts by 
binding to two active sites of AChE (anionic and estearic sites), 
which results in preventing ACh metabolism [15]. The oral form 
of rivastigmine, approved for the treatment of mild to moderate 
AD, is associated with a higher incidence of gastrointestinal side 
effects. The transdermal form is more tolerable for many patients, 
although it can cause dermatologic reactions. Galantamine a newly 
available cholinergic drug that counteracts AD by specifically and 
reversibly inhibiting AchE, should be considered for treatment of 
cognitive and functional decline in patients with mild to moderate 
AD [16-17]. NMDA receptor antagonist, memantine is also used 
to alleviate the cognitive impairment. Memantine, 20 mg per day 
should be considered for treatment of cognitive and functional de-
cline in patients with moderate to severe AD [18-19]. Excitatory 
glutamatergic neurotransmission via N-methyl-d-aspartate recep-
tor (NMDAR) is critical for synaptic plasticity and survival of 
neurons. Memantine, a low-affinity NMDA receptor antagonist, 
modulates NMDA receptors to reduce glutamate-induced exci-
totoxicity and is thought to palliate cognitive decline associated 
with AD in this way [20]. However, evidence shows that done-
pezil, rivastigmine, and galantamine yields modest improvements 
in cognitive and clinical function in patients with mild to moder-
ate AD in the short and long term and have side effects [21]. The 
N-methyl-D-aspartate (NMDA) receptor antagonist, memantine, 
which has shown limited beneficial effects in clinical trials [21-
22]. Galantamine is effective in treating all aspects of AD and is 
the first choice for the treatment of AD, however, data is limited 
[21].

Current Pharmacological Treatment for The Behavioral 
and Psychological Symptoms of Alzheimer’s Disease
BPSD are a group of behavior, mood, perception, or thought dis-
turbances manifesting with anxiety, agitation, delusions, and hal-

lucination [23]. BPSD are non-cognitive symptoms common in 
the AD, associated with poorer cognitive, functional, and quality 
of life outcomes, and accelerated progression to severe dementia 
[24]. In the clinical setting, patients with BPSD most often present 
with clusters of symptoms commonly co-occur and can, thus, be 
grouped into behavioral domains that may ultimately be the re-
sult of disruptions in overarching neural circuits. Canevelli et al. 
identified three clusters of symptoms: 1“psychotic” cluster (“delu-
sions” and/or “hallucinations” items); 2“emotional” cluster (“agi-
tation/aggression” and/or “depression/dysphoria” and/or “anxiety” 
and/or “irritability” items); and 3“behavioral” cluster (“euphoria/
elation” and/or “apathy” and/or “disinhibition” and/or “aberrant 
motor behavior” items) [25]. One major BPSD domain routine-
ly identified across patients with AD is the hyperactivity–impul-
sivity–irritability–disinhibition–aggression–agitation (HIDA) 
domain [26]. The global frequency of BPSD increases with the 
severity of dement, especially agitation and aggression [27]. Any-
how, occurrence of BPSD has been documented in most types of 
dementias as vascular dementia (VaD), dementia in Parkinson’s 
disease, frontotemporal dementia (FTD), and in mild cognitive 
impairment [28]. The first-line treatment of BPSD are nonphar-
macological treatments including environmental and social tech-
niques; however, the quality of evidence for such interventions is 
low [29]. Usually, nonpharmacological management is sufficient 
to control symptoms, but sometimes, the severity of the disorder, 
makes using drugs, including antipsychotics, necessary to control 
symptoms [30]. These compounds generally can be classified as 
“typical” and “atypical” antipsychotics based upon both pattern of 
clinical effects and mechanism of action. The typical antipsychot-
ic drugs, represented by haloperidol and chlorpromazine, are also 
called the first-generation antipsychotics (FGA) or neuroleptics. 
The atypical antipsychotics, including clozapine and risperidone, 
are considered as the second-generation antipsychotics (SGA). 
Serotonin 5-HT2A receptor antagonism in combination with D2 
receptor antagonism is thought to be the hallmark pharmacology 
of the SGAs [31]. In the specific case, typical antipsychotics are 
the classic standard drugs as phenothiazines (chlorpromazine and 
fluphenazine), butyrophenones (haloperidol), benzamides (sulpir-
ide and tiapride) and frequently cause serious extrapyramidal 
side effects (EPS), since they bind predominantly to D2 receptors 
throughout the brain as powerful, long-lasting antagonists, as well 
as to a broad range of other receptors, including D1, 5-HT2, his-
tamine H1 and α2 adrenergic receptors [32]. On the other hand, 
atypical drugs (including clozapine, risperidone, olanzapine, arip-
iprazole, quetiapine, etc.) are favored over typical due to less EPS. 
They encompass serotonin and dopamine antagonists (SDAs) as 
risperidone, perospirone, lurasidone; multiple-acting receptor tar-
geted antipsychotics (MARTAs) as clozapine, olanzapine, queti-
apine; and dopamine D2 partial agonists aripiprazole [33]. In ad-
dition to the antagonistic effect on dopamine D2, they also have a 
simultaneous antagonist effect on 5-HT receptors, particularly on 
the 5-HT2A; this results in increased blockage efficacy on the me-
solimbic pathways, but not on the nigrostriatal one [32]. Further, 
atypical antipsychotics into a group with modest affinity for D2, 
5-HT2A and other receptors such as H1 and muscarinic receptors 
M1 (clozapine, olanzapine and quetiapine) and those with potent 
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antagonist action on D2 and 5-HT2A, high affinity for α1, 5-HT2c 
and H1 and minimally affinity for M1 receptors (risperidone, pal-
iperidone, lurasidone) [32]. Except for haloperidol and risperi-
done, none of the antipsychotics are approved for the treatment of 
BPSD; therefore, these drugs are generally prescribed as off-label 
[34]. It is known that D2 receptor blockade by antipsychotics in 
the cortico-limbic regions (e.g., nucleus accumbens) contributes 
to antipsychotic activities, which alleviates psychosis (e.g., hallu-
cinations and delusions) and behavioral excitation (e.g., agitation, 
aggression, and hyperactivity) [34]. Second-generation antipsy-
chotics (primarily risperidone, olanzapine, quetiapine, and aripip-
razole) are the mainstay of treatment for agitation and aggression, 
although, in a systematic review of 16 meta-analyses of random-
ized, controlled trials of these agents, the effect sizes (differenc-
es between treatment and placebo) were typically quite small for 
risperidone, olanzapine, and aripiprazole, ranging between 0.15 to 
0.30 in most studies, and quetiapine generally did not differ from 
placebo [35]. In general, both typical and atypical antipsychotics 
should be avoided in patients with known cardiac disease due to 
pro-arrhythmogenic effects (e.g., QT interval prolongation) [36].

Dopamine (DA) And Acetylcholine (ACH) Signaling Sys-
tems Must Be in Dynamic Balance In The Striatum For 
Optimal Movement Control
The basal ganglia (BG) are a group of subcortical nuclei involved 
in a diversity of functions including motor control. The BG con-
sist of four prominent nuclei, which are interposed between the 
cerebral cortex and the lower centers of the brain stem and spinal 
cord. These nuclei include the: striatum (caudate, putamen, ventral 
striatum including nucleus accumbens), the globus pallidus (inter-
nal and external parts), the subthalamic nucleus, and the substantia 
nigra pars compacta (SNpc) and pars reticulata (SNpr). They form 
an important center in the complex extrapyramidal motor system, 
as opposed to the pyramidal motor system represented by the 
corticobulbar and corticospinal pathways and have been defined 
anatomically and functionally. Most of the inputs and outputs of 
the basal ganglia arise from or go to the cortex either directly or 
indirectly through the thalamus. Pathology within different basal 
ganglia circuits predictably leads to either hypokinetic or hyper-
kinetic movement disorders. A detailed discussion of the principal 
input, intrinsic, and output connections of the mammalian BG is 
beyond the scope of this review. However, for brevity we will limit 
this review to striatum, that involved in planning and executing 
voluntary movements as well as in cognitive processes. The stri-
atum is one of the main components of the basal ganglia which 
is involved in processes related to voluntary motor control. Here, 
I attempt to review its participation in a variety of processes, es-
pecially, motor functions. The striatum is traditionally subdivided 
into a dorsal striatum, which includes caudate and putamen, and a 
ventral striatum, which includes the nucleus accumbens that are 
separated by the internal capsule, a white matter tract between 
brain cortex and brainstem. The striatal microstructure compris-
es two neurochemically defined compartments, the striosome and 
the matrix. Histopathological studies consistently demonstrate 
that the striosome occupies 10–15% of the entire striatal volume 
[37]. Indeed, the striatum is a nonlaminar, highly heterogeneous 

structure with projection neurons (spiny projection neurons, SPNs, 
also called medium spiny neurons, MSNs) interspersed among a 
diverse range of interneuron. Most striatal neurons (~95%) are the 
GABA-ergic medium spiny neurons (MSNs), also referred to as 
spiny projection neurons, which are the principal output cell type, 
and in addition to the MSNs approximately 4% of striatal neurons 
are GABA-ergic interneurons. The MSNs that express dopamine 
(DA) D1 receptors project to and inhibit cells in the internal cap-
sule of the globus pallidus as well as the substantia nigra pars re-
ticulata. These projections are referred to as the direct pathway, 
or the GO pathway, and activation of this class of cells leads to 
enhanced locomotion. Another MSN population that expresses 
dopamine (DA) D2 receptors, and these projections inhibit cells 
in the external capsule of the globus pallidus. This is the indirect, 
or the NO-GO pathway, and activation of this pathway decreas-
es locomotion [38-39]. Approximately 6% of MSNs in the dorsal 
striatum express both D1 and D2 receptors. Furthermore, stria-
tal MSNs projecting through the indirect pathway are known to 
contain the neuropeptide enkephalin, whereas the neuropeptides 
substance P and dynorphin are expressed in those MSNs project-
ing directly to the GPi and SNr [39]. In addition to the MSNs, 
the remaining cells are the large, aspiny cholinergic interneurons 
(ChIs), constitute only 1%-3% of the total neuronal population in 
the striatum, but have richly arborizing axons with large termi-
nal fields [40]. The striatum receives inputs from different areas 
of the cerebral cortex, including association cortical areas far on 
in the hierarchy of cortical information processing as well as the 
sensori-motor cortex, and has connections via the globus pallidus 
and substantia nigra to the thalamus and thence to premotor and 
prefrontal cortical areas [41]. In essence, the striatum has two main 
efferent pathways. According direct, and indirect pathway model, 
cortical inputs enter the striatum and proceed to the output nuclei 
of internal globus pallidus (GPi) and the substantia nigra pars re-
ticulata (SNr)] via two distinct pathways, on the way to the thala-
mus which projects back to the cerebral cortex. The direct-pathway 
(striatonigral) MSNs, that express high levels of both D1dopamine 
(DA) receptors and M4 muscarinic receptors and project directly 
to the internal globus pallidus (GPi in primates, GPm in rodents) 
and SNr, leading to the activation of the thalamus that, in turn, 
stimulate the cortex. Through these connections, the direct path-
way intensifies the motor plan prepared by the cortex. The indirect 
pathway, that involves relays in the external globus pallidus (GPe) 
and the subthalamic nucleus (STN), call also striatopallidal MSNs 
(D2-MSN) highly express D2 dopamine receptors and adenosine 
A2A receptors and project to the external globus pallidus (GPe in 
primates, GP in rodents), convert stimulatory corticostriatal glu-
tamatergic input into inhibitory signals to the thalamus [42]. The 
MSNs of the direct pathway promote the initiation of appropriate 
movements whereas the MSNs of the indirect pathway provide a 
no-go signal that suppresses competing movements [43]. Overall, 
direct, and indirect pathways act in opposition to one another to 
control movement. Thus, balanced regulation of the direct and in-
direct pathways is important for motor control. As noted, striatal 
cholinergic interneurons (ChIs), constitute the largest cells of the 
striatum that are recognized for their key regulatory roles of stri-
atal and basal ganglia function in normal and diseased state [44]. 
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CHIs provide the striatum with a high cholinergic tone through ex-
tensive arborization and tonic firing [45]. Moreover, either MSNs 
and interneurons of the striatum receive afferents from the ventral 
midbrain (substantia nigra pars compacta, SNc; ventral tegmental 
area, VTA), and these projections are mostly dopaminergic [46]. 
In the striatum, dopamine inhibits CHIs via D2 receptors and loss 
of striatal dopamine is thought to elevate striatal cholinergic tone 
[47]. Briefly, the striatum, has intrinsic and extrinsic cholinergic 
innervation. Intrinsic cholinergic innervation is predominant and 
consists of cholinergic interneurons that, despite their low number, 
have been proposed to provide the striatum with one of the high-
est cholinergic concentrations in the brain; an extrinsic source of 
acetylcholine is from the pedunculopontine nucleus (PPN) [48]. 
Of note, ChIs acting via multiple receptor subtypes in postsyn-
aptic and presynaptic targets, exerts a complex modulatory func-
tion in the striatum; it contributes to the regulation of the dura-
tion, strength, and spatial pattern of MSNs activity and exerts 
a dual effect on plasticity of the corticostriatal synapse [49]. In 
conclusion, most striatal neurons are GABAergic medium spiny 
neurons, which receive excitatory inputs from the cortico-striatal 
glutamatergic neurons and from cholinergic interneurons within 
the striatum, and activities of striatal medium spiny neurons and 
cholinergic interneurons are tonically regulated by dopaminergic 
neurons derived from the substantia nigra pars compacta (SNc). It 
is well documented that blockade of dopamine D2 receptor in the 
striatum and activate the medium spiny neurons and acetylcholin-
ergic interneurons in the striatum, eliciting various EPS symptoms 
[50]. The clinical benefit of anti-muscarinic cholinergic drugs on 
symptoms of tremor and rigidity was explained by a model of stri-
atal imbalance between loss of dopamine and hypothesized upreg-
ulation of cholinergic neurotransmission, at least in patients with 
early-stage disease [51-52].

Extrapyramidal Disorders Can Be Caused by Anti-De-
mentia and Antipsychotic Drugs
ChEIs are typically used to improve cognition and, antipsychot-
ic drugs are commonly prescribed to treat BPSD in patients with 
major neurocognitive disorders [53]. Recent studies showed that 
ChEIs, licensed drugs for cognitive impairment due to AD, po-
tentiate extrapyramidal side effects (EPS) induction with antipsy-
chotic treatments [54]. The AChEIs are relatively safe, however, as 
they are used in vulnerable populations, it is even more important 
to consider potential side effects. ChEIs are a class of drugs that 
may disrupt the dopaminergic-cholinergic balance through their 
effect on cholinergic neurotransmission [55]. Association between 
cholinesterase inhibitors Pisa syndrome (PS) and cervical dystonia 
(CD) has been described. PS, a relatively rare truncal dystonia, 
originally described by Ekbom and co-workers in 1972 (56) and 
initially it was considered a subtype of dystonia in patients taking 
antipsychotic agents. It has been suggested that cholinergic-dopa-
minergic balance in the direction of cholinergic dominance is the 
main cause of PS [57]. CD, is a painful condition in which neck 
muscles contract involuntarily, causing head to twist or turn to one 
side. Evidence for the role of acetylcholine in dystonia includes 
decreased putaminal cholinergic tracer uptake in single photon 
emission computed tomography (SPECT) in patients with CD, re-

sponse to anticholinergic medications, and cases of CD provoked 
by ChEIs [58]. PS also known as pleurothotonus, is a posture ab-
normality characterized by lateral flexion of the trunk appearing or 
worsening while standing or walking and improving with passive 
mobilization and supine positioning, and the patient resemble the 
leaning the ancient Pisa tower, which resolves with passive mo-
bilization or supine positioning, and a lateral flexion at least 10°, 
has been suggested as a diagnostic criterion for PS, although there 
is no consensus [59]. Among PS, subsequently an association be-
tween ChEIs and PS has been described. Considering that cholin-
ergic nuclei are involved in regulating the axial posture tone [60], 
and disruption of the cholinergic-dopaminergic balance could 
result in an asymmetric axial muscle tone activation, this is the 
hypothesized pathogenic mechanism underlying the development 
of drug-induced PS. The frequency of ChEI-induced EPS remains 
unclear. To date, there are no randomized clinical trials investigat-
ing the long-term adverse reactions of ChEIs. Over the past few 
decades, there have been several reports of PS and CD in patients 
taking ACEIs, therefore AChEIs induced PS is limited to case re-
ports and case series. According to post-marketing surveillance, 
PS has been reported in patients receiving AChEIs (donepezil, ri-
vastigmine and galantamine), though causality is not confirmed 
[61]. This large pharmacovigilance study reports 52 cases of PS, 
among them 21 were due to donepezil, 14 were due to rivastig-
mine and 17 were due to galantamine. This is believed to result 
from a dopaminergic-cholinergic imbalance. The study by Sobow 
and Kloszewska showed consequent motor dysfunction termed as 
extrapyramidal symptoms in 2 patients under the donepezil (5–
10 mg/day) group and 3 patients under the rivastigmine (6–12 mg/
day) group [62]. There has been a report of three PS cases in an 
Italian cohort study of 7,395 of AD patients treated with use of 
the reversible ChEIs commonly prescribed for dementia, including 
donepezil, rivastigmine, and galantamine, suggesting a pathophys-
iological role of cholinergic-dopaminergic imbalance in the regu-
lation of axial muscle tone, with an estimated incidence of two per 
10,000 patient per year, which is fewer than with antipsychotics 
[63]. Kwak et al. [64], reported two patients who developed PS 
after treatment with ChEIs (donepezil and rivastigmine). PS in AD 
can also be drug-induced (donepezil, rivastigmine, and galantam-
ine) [65-66]. In the case described by Panagiotis et al. [67], patient 
developed acute a sustained dystonia of the trunk and head to one 
side after the first dose of donepezil. Rivastigmine-induced dysto-
nia was reported with rivastigmine patch, and dystonia occurred 
when rivastigmine patch was augmented, but which abated on dis-
continuation, and reemerged on the same dose patch application 
[68-69]. PS was reported in a 57-year-old female, after continuous 
use of rivastigmine (9 mg/d) for nearly 2 years, however, PS disap-
peared when the drug dose was decreased [70]. From a movement 
disorder perspective, many cases of trunk dystonia in the form of 
PS have been reported with the use of AChEIs [71-79]. Within 
this context, has been accounted a clinical case of PS induced by 
as witching of a ChEIs treatment from donezepil to galantamine, 
despite a previous long-term use of donepezil for 5 years without 
complications [80]. The present case suggests that treatment with 
galantamine is associated with a higher risk of development of PS 
than that with other ChEIs. It is interesting that the development 
of dystonia in a patient using the rivastigmine also supports a rela-
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tionship between increased cholinergic transmission and dystonia 
[81]. Overall, it has been emphasized the importance of the pe-
dunculopontine nucleus (PPN), which is one of the main cholin-
ergic nuclei involved in the regulation of postural tone [60-82]. 
Therefore, PS manifesting as a side effect of ChEIs may improve 
after contralateral or ipsilateral stimulation of the PPN [83-84], 
suggesting a pathophysiological role of cholinergic-dopaminergic 
imbalance in the regulation of axial muscle tone. Based upon their 
potency as dopamine D2 receptor antagonists and their actions on 
serotonin 5-HT2A receptors antipsychotics are commonly classed 
as either typical or atypical [31]. Clinicians ought to refer to their 
country’s legislation before introducing an antipsychotic drug to 
treat BPSD. Antipsychotic medication use is frequently associated 
with unfavorable adverse effects such as EPS. These adverse ef-
fects also called drug-induced movement disorders include a wide 
variety of movement disorders and can be classified into acute and 
tardive symptoms, such as parkinsonism, dystonia, akathisia, and 
tardive dyskinesia (TD). The latter movement disorders have been 
proposed to be caused by a relative cholinergic deficiency second-
ary to super-sensitivity of dopamine receptors in the striatum. This 
side effects can cause patients’ subjective distress, both of which 
are disincentives to continue to take medication. Research-based 
evidence reported that the prevalence of antipsychotic-induced 
movement disorders among patients on long-term treatment with 
FGAs was around to be 50 to 75% [85]. Nevertheless, even with 
these newer agents SGAs, movement disorders are seen in a sig-
nificant proportion of patients [86]. In a systematic review and 
meta-analysis aimed at determining the magnitude of antipsychot-
ic-induced EPSEs the prevalence of antipsychotic-induced EPSEs 
was considerably high. One in five and more than one in ten pa-
tients experienced parkinsonism and akathisia, respectively [87]. 

Appropriate Drug Choice and Therapy-Tailoring: Com-
bination Strategy Is Important in The Treatment of 
BPSD in AD in Alleviating EPS
A wide range of comorbid diseases is associated with AD and are 
treated with a variety of comedications not only to address cogni-
tive impairment but also other comorbidities, along with agitation, 
aggression, or sleep disturbances for which pharmacotherapy may 
appear like therapeutic effect. On the other that antipsychotics are 
often used in conjunction with anti-Alzheimer drugs to treat the 
BPSD. To address comorbidities such as behavioral disorders, 
40% on antidepressants and 20% on antipsychotics are estimated 
[88]. The target symptoms of antipsychotic drugs include inappro-
priate behaviors, agitation, aggression, and psychosis. Regrettably, 
the management of BPSD is complicated and challenging. The pri-
mary concern regarding the adverse reactions of antipsychotics is 
induction of EPS. There is a serious difficulty in establishing the 
best approach to the drug treatment of BPSD, especially regarding 
the safety profile and the occurrence of EPS. Among the available 
treatments, different pharmacological approaches, and new op-
tions for the treatment of behavioral symptoms have been evaluat-
ed. In the framework of an effective pharmacological approach, 
treatment with a combination of drugs possessing different mech-
anisms of action may be more beneficial over monotherapy. There-
fore, many combination therapies (CT) have been tested in clinical 

trials [89], focused on mitigating side effects of drugs. Any CT 
which decreases BPSD, signify a relief for the caregivers as well 
as providing help in the maintenance of patients’ independence 
and their adhesion to treatment. Indeed, it has been observed that 
CT with memantine and donepezil leads to a marked decrease, in 
the deterioration of BPSD compared to patients that were only re-
ceiving donepezil [90]. Interestingly, it is well known that many 
combination therapies have been tested in other clinical trials [91], 
and the data have revealed that memantine has been demonstrated 
to ease or improve behavioral and cognitive manifestations of 
these forms of dementia, various behavioral disturbances (irritabil-
ity, agitation, aggression, and difficulty eating). In addition, data 
suggests that memantine may have a favorable safety and tolera-
bility profile compared with AChEIs [92]. The galantamine and 
memantine combination has also proved to be more effective in 
AD than the donepezil-memantine combination [93]. The combi-
nation of these two pharmacological agents, have proved to be ef-
ficacious in the management of AD due to their combined actions 
on α7nAChR and NMDA receptors [94]. As evidence suggests, 
galantamine and memantine are well known for their effectiveness 
in various neuropsychiatric disorders [95]. Patients who were 
treated with donepezil and choline alphoscerate showed significant 
improvement in certain BPSD symptoms [96]. Notably, elderly 
patients, particularly those with dementia, are more sensitive than 
are younger patients to medication side effects such as EPSs. It 
should be borne in mind that, on the one hand, aging indicates a 
reduction in the number of cholinergic and dopaminergic neurons 
and dopamine D2 receptors [97]. As described previously, I point 
out that antipsychotic drugs can have EPSs even when used in old-
er adults with dementia. But we should pay more attention to man-
age the EPSs, discussing drug choice and combination strategies. 
In addition to the EPS, the antipsychotics also cause agitation, psy-
chosis, aggression, and inappropriate behaviors [98]. It is common 
knowledge that monoamine 5-hydroxytryptamine (5-HT) or sero-
tonin, is one of the most important neurotransmitters, and is in-
volved in multiple physiological and behavioral processes [99-
100]. The pharmacological studies evidenced that the serotonergic 
system plays a crucial role in regulating various physiological 
functions including extrapyramidal motor disorders, through mul-
tiple serotonin (5-hydroxytryptamine; 5-HT) receptors [101]. Se-
rotonin (5‐HT) neurons are in the raphe nuclei and project axons to 
various brain regions including the cerebral cortex, limbic areas, 
basal ganglia, diencephalons, and the spinal cord. It is highly pos-
sible that the co-clustering of BPSD into domains depends on the 
circuit- and 5-HTR subunit-specific alterations that occur with AD 
pathogenesis and further interact with a person’s innate neural ar-
chitecture. Furthermore, several studies also revealed that seroto-
nergic nervous system is closely involved in the pathogenesis and 
treatment of EPSs and can provide therapeutic benefits. However, 
before discussing drug choice and combination strategies, we must 
keep in mind how motor activities are regulated by the serotoner-
gic neurotransmission system [102-103], in other words, under-
stand the physiological mechanism of the serotonergic modulation 
of antipsychotic-induced EPS. I summarize the evidence for spe-
cific serotonergic system alterations across some of the well-de-
fined behavioral and psychological symptoms in AD. 5-HT recep-
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tors behaves as both a neurotransmitter and neuromodulator, acting 
in both central and peripheral systems. It is thereby clearly estab-
lished that serotonergic neurotransmission is mediated by multiple 
5-HT receptors consisting of at least 14 subtypes, and classifica-
tion and molecular mechanism of the biological activity of sero-
tonin receptors are discussed in [103]. Approaches such as recep-
tor autoradiography, in situ hybridization and 
immunocytochemistry were used to reveal the distribution of 5-HT 
receptor binding sites and mRNA expression in the brain [104]. 
Presynaptic serotonin (5HT) receptors include 5HT1A, 5HT1B/D, 
and 5HT2B, all of which act as autoreceptors, and their purpose is 
to regulate the presynaptic serotonin neuron directly, especially its 
firing and how it releases and stores its own serotonin. There are 
also numerous postsynaptic serotonin receptors, which regulate 
other neurotransmitters in downstream circuits. It turns out that 
5-HT1A, 5-HT2, 5-HT3 and 5-HT6 receptors play an important 
role in modulating extrapyramidal motor disorders (103). Advanc-
es in research on 5‐HT receptors have led to the discovery of vari-
ous therapeutic agents. The serotonin 5-HT1A receptor is the most 
extensively studied of the serotonin receptors. New insights indi-
cate that 5-HT1A receptors are predominantly expressed in the 
limbic areas and the raphe nuclei, and moderate to low concentra-
tion of 5-HT1A receptors are also expressed in the cerebral cortex, 
thalamus, hypothalamus, and striatum [105-107]. Regarding 
5-HT2 receptors can be classified into three subtypes, 5-HT2A, 
5-HT2B and 5-HT2C receptors, which are cognate in terms of 
their molecular structure, pharmacology, and signal transduction 
pathways. 5-HT2A and 5-HT2C receptors are highly expressed in 
the brain [108]. Especially, 5-HT2C receptors are also widely ex-
pressed in the cortex (olfactory nucleus, pyriform, cingulate and 
retrosplenial), limbic structures (nucleus accumbens, hippocam-
pus, amygdala), and the basal ganglia (caudate nucleus, substantia 
nigra) [109-110]. The central nervous system distribution of 
5-HT2A receptor has been mapped extensively, particularly corti-
cal areas (neocortex, entorhinal and pyriform cortex, claustrum), 
caudate nucleus, nucleus accumbens, olfactory tubercle and hippo-
campus, of all species studied [111]. 5HT2A receptors can both 
promote and inhibit the release of other neurotransmitters. It is 
well documented that several 5-HT receptor subtypes, including 
5-HT1A, 5-HT2, 5-HT3 and 5-HT6 receptors, are involved in reg-
ulation of EPS induction associated with antipsychotic treatment 
[112-113]. 5-HT1A receptors can be found in the brain as presyn-
aptic autoreceptors on serotonergic cell bodies in the raphe nuclei, 
and postsynaptic heteroreceptors in postsynaptic regions [114], 
which inhibits neural activities through activating G-protein-gated 
inwardly rectifying K+ channels. It has become clear that these 
receptors can be a useful target in the management of various neu-
ropsychiatric disorders. For instance, AD aggression has been as-
sociated with reduction in 5-HTR1A in the medial temporal cor-
tex, and within the 5-HTR1 subtype, agonists acting on the 
5-HTR1B have more selective anti-aggressive effects in mice than 
those acting on 5-HTR1A [115]. Further, activation of 5-HT 1A 
receptors causes reduction of antipsychotic-induced EPS and mo-
tor disturbances in animal models [116-117]. Therefore, evidence 
have revealed that activation of 5-HT1A receptors reduces anti-
psychotic-induced EPS by inhibiting neural activity in the striatum 

and motor cortex [103]. As known, in the recent past “biased” 
5-HT1A agonists with functional preference for presynaptic auto-
receptors in dorsal raphe nucleus versus postsynaptic 5-HT1A het-
eroreceptors in medial prefrontal cortex have been developed, and 
it was observed that presynaptic 5-HT1A autoreceptors are also 
involved to reduce EPS [118-119]. In addition, studies suggest that 
blockade of 5-HT2A/2C receptors with antagonistic agents attenu-
ates antipsychotic-induced extrapyramidal side effects (EPS) tone 
down 5-HT2A/2C receptor-mediated inhibition of nigral dopami-
nergic neuron activity and striatal dopamine release [113]. Name-
ly, blockade of 5-HT2 receptors determines the increase in the re-
lease of acetylcholine (ACh) and accelerates the metabolic 
turnover rate of dopamine, contrary to the responses of striatal 
neurons to the action of antipsychotic agents that block D2 recep-
tors [120], thus suggesting that the blockage of 5-HT2 receptors 
may counteract the D2 (and/or D1) blocking activities of antipsy-
chotics in the striatum to reduce EPS. It is well known that rela-
tively high levels of 5-HT3 receptor recognition sites have been 
located within the caudate nucleus and putamen whereas relatively 
low levels are detected within cortical regions [121]. As a result, 
and according with previous studies, some 5 HT3 receptor interac-
tions like blockade of 5 HT3 receptor had been reported to be ef-
fective in decreasing EPS [122-124], possibly via acting in the 
striatum. In fact, blockade of 5-HT3 receptors reduced haloperi-
dol-induced EPS [125-126]. Given that, based on the mechanisms 
underlying serotonergic modulation of antipsychotic-induced 
EPS, a series of atypical antipsychotics, been developed. As noted, 
to reduce EPS new so-called ‘atypical’, antipsychotics have been 
recently introduced. Dissimilar the typical antipsychotics, which 
preferentially block dopamine D2 receptors, the second-genera-
tion antipsychotic drugs not only reduce dopamine neurotransmis-
sion, but also act on serotonin receptors, especially 5-HT2A recep-
tors and typically as antagonists [127]. The term “atypical” refers 
to an antipsychotic agent that produces minimal EPS at clinically 
effective antipsychotic doses [128], and the newer agents are also 
potent antagonists of serotonin receptors (5-HT2A), this results in 
increased blockage efficacy on the mesolimbic pathways, but not 
on the nigrostriatal one [129]. It must be noted, however, that sev-
eral studies have not demonstrated a clear and significant differ-
ence between second- and first-generation antipsychotics, at least 
for schizophrenia, their better safety profile, particularly for extra-
pyramidal symptoms (EPS), would grant them some actual advan-
tage [130]. However, atypical antipsychotics mark a wider range 
of receptors with different affinities. Therapeutically, we should 
pay more attention to individual pharmacological characteristics 
of the atypical drug, especially their interactions with 5-HT recep-
tor subtypes. However, based on a different affinity potency these 
agents divide into a group of drugs with modest affinity for D2, 
5-HT 2A and other receptors such as H 1 and M 1 such as clozap-
ine, olanzapine, and quetiapine, and those with potent antagonist 
action on D2 and 5-HT2A, high affinity for α1, 5-HT2c and H1 
and minimally affinity for M1 receptors such as risperidone, pali-
peridone, lurasidone [131]. It is thereby clearly established the de-
cisive roles of 5-HT receptors, especially 5-HT1A, 5-HT2, 5-HT3, 
and 5-HT6 receptors, in modulating antipsychotic-induced EPS 
were revealed. Considering the actions of atypical antipsychotics 
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with 5-HT receptor subtypes can reduce EPS caused by combined 
treatment of antipsychotics with anti-Alzheimer’s disease drugs, 
they could be a favorable BPSD treatment in terms of EPS man-
agement. We fear in mind that atypical antipsychotics block sero-
tonin 5-HT2 receptors and when the ratio of 5-HT2 to D2 receptor 
blocking is greater than 1, atypical antipsychotic action such as 
therapeutic effects on negative symptoms and few EPS are noted 
[132]. Atypical drug as SDAs, MARTAs, and D2 partial agonists 
are nowadays the first line drug to treat psychosis and inappropri-
ate behaviors in patients with dementia. Clozapine, which acts on 
many different receptor types, has been proven to be the clinically 
most effective drug with the least EPS. Clozapine is the prototype 
of the new neuroleptics with its high affinity for the 5-HT2 recep-
tor, combined with its low affinity for the dopamine D2 receptor 
and has a low incidence of Parkinsonism and tardive dyskinesia; 
due to its favorable receptor profile [131]. Clozapine has served as 
a template for the development of the next generation of “atypical” 
antipsychotics. Risperidone was the second atypical antipsychotic 
developed following clozapine. This antipsychotic drug bocks 
5-HT2 receptors with a higher affinity than D2 receptors and has 
shown good efficacy in treating positive symptoms and increased 
dopaminergic neurotransmission in the nigrostriatal pathway with 
reduced EPS [133]. The exact mechanisms by which 5-HT2 block-
ing improves negative symptoms and induces fewer EPS are un-
clear. In this regard it is common knowledge that positive symp-
toms are associated with a hyperdopaminergic state in the limbic 
lobe, which is rich in dopaminergic innervation. Serotonin inhibits 
DA release, and in the limbic lobe, with high 5-HT2 and low D2 
receptor density, D2 receptor blocking action prevails and positive 
symptoms are controlled. About the negative symptoms are asso-
ciated with a hypodopaminergic state in the frontal lobe, which is 
rich of 5-HT2 and sparse distribution of D2 receptors, therefore 
serotonin inhibits DA release and the hypodopaminergic state of 
the frontal lobe becomes normal, thereby improving negative 
symptoms [132-134]. Olanzapine is chemically like clozapine and 
shares several aspects of clozapine’s in vitro pharmacological pro-
file (stronger affinities for the 5-HT2, muscarinic, and histaminic 
receptors than for the dopamine D2 receptor). Indeed, Olanzapine 
antagonizes multiple neuronal receptors including dopamine (D1, 
D2, D4), serotonin (5HT2A, 5HT2C, 5HT3), histamine (H1) al-
pha1-adrenergic receptors; acetylcholine at muscarinic M1, M2, 
M3, and M4 receptors, therefore very important are its high affini-
ties for 5-HT 3 and 5-HT 6 receptors and acts as an antagonist, 
additionally clozapie like olanzapine, two of the most effective 
antipsychotics is a potent 5-HT3 receptor antagonist [135]. These 
pharmacological characteristics translate into clozapine-like clini-
cal benefits, as substantially reduced extrapyramidal side effects, 
less effect on prolactin, and probably a direct effect on ameliorat-
ing negative symptoms. A further improvement in their mecha-
nism of action led to the development of a third generation of anti-
psychotics. These agents are named dopamine system stabilizers 
(DSSs) are a potential new class of antipsychotic agents without 
motor side effects. Aripiprazole may be considered representative 
of DDSs, with its reduced association with extrapyramidal side 
effects and its efficacy against both positive and negative symp-
toms of schizophrenia. Aripiprazole shows a unique pharmacolog-
ical profile. This antipsychotic agent that contains a carbostyril 

skeleton and acts as a partial agonist at dopamine D2 receptors 
[136]. It is well known that aripiprazole is a dopamine D2 agonist, 
a 5-HT receptor 1A receptor agonist, and a 5-HT2A antagonist, 
acting as DSSs. This antipsychotic drug possesses moderate 5-HT2 
blocking activities, it primarily acts as a dopamine D2 partial ago-
nist and, differs from the other atypical antipsychotics in that it is a 
partial agonist at D2 as 5-HT1A receptors, and has antagonistic 
activity at 5-HT2A and 5-HT2C receptors [137]. Aripiprazole can 
be considered representative of the group third generation of anti-
psychotics, with its reduced association with extrapyramidal side 
effects and its efficacy against both positive and negative symp-
toms of schizophrenia. In the presence of dopamine, aripiprazole 
decreased dopamine D2 receptor‐mediated transmission but did 
not result in full blockade. In the absence of dopamine, aripipra-
zole produced small increases in dopamine D2 receptor‐mediated 
transmission consistent with its intrinsic activity [138]. Meta-ana-
lytical evidence best supports aripiprazole and risperidone, with 
substantially less evidence for quetiapine and olanzapine [139]. 
Moreover, a network meta-analysis, which addressed the treat-
ment of BPSD and not of psychosis specifically, suggested that 
aripiprazole was the most effective and safe atypical antipsychotic, 
with olanzapine providing the least benefit overall [133]. Howev-
er, these atypical antipsychotics target a broader range of receptors 
with different affinity. It must be noted, the higher affinity for dif-
ferent target receptors justifies the possible different or added de-
sired or adverse effects of the different drugs. We should pay more 
attention that unlike the typical antipsychotics, which preferential-
ly block dopamine D2 receptors, these antipsychotics also have 
additional properties such as 5-HT2A antagonism and 5-HT1A 
agonism. Finally, consistent with these observations, even though 
atypical antipsychotics have a better safety profile, they may pres-
ent with several adverse events, as weight gain, lipid disturbance, 
and glucose dysregulation, thereby contributing to the develop-
ment of metabolic syndrome [140]. For instance, strong binding to 
5-HT2C, α1 and H1 is responsible for the side effects, such as 
weight gain, sedation, orthostatic hypotension [31].

Conclusions
BPSD represent a group of affective, psychotic, and behavioral 
symptoms that occur in most patients with dementia, especially 
those with AD, causing great suffering and increasing the care-
givers’ burden. Nonetheless, pharmacological treatments with 
antipsychotics drugs are necessary to treat BPSD. Antipsychotic 
agents are the first choice to reduce psychosis and behavioral dis-
turbances despite their frequent side effects. Since AD accompa-
nies the loss of ACh neurons ChEIs which can increase the ACh 
level by inhibiting cholinesterase, are widely used to treat the 
cognitive impairment. However, these drugs have a propensity to 
potentiate EPS associated with antipsychotic treatment in a syner-
gistic manner. But we should pay more attention to the interactions 
between anti-Alzheimer’s disease drugs and antipsychotics in in-
duction of EPS. Serotonergic circuitry has been tied to cognitive 
decline and implicated in several basal and higher brain functions 
that are perturbed in BPSD. Moreover, serotoninergic system 
plays crucial roles in modulating EPS associated with antipsychot-
ic treatment. The fundamental role of 5-HT receptors is known, 
especially of 5-HT1A, 5-HT2, 5-HT3 and 5-HT6 receptors, in 
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the modulation of EPS induced by antipsychotics. Furthermore, 
antipsychotics which have 5-HT1A agonistic actions or 5-HT2, 
5-HT3, and 5-HT6 antagonistic actions appear to be useful for ad-
junctive BPSD treatment. Therefore, it is imperative for clinicians 
to understand how activation of 5-HT1A receptors or blockade 
of 5-HT2, 5-HT3 and 5-HT6 receptors can relieve EPS induction 
both by antipsychotics alone and by combined antipsychotic treat-
ments with ChEIs.
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