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Abstract
This paper deals with the analysis of the relationship between the infant mortality rates and the GDP per capita in Kenya 
using fractional integration and cointegration techniques. The results show that the two series are highly persistent, with 
the effects of the shocks persisting forever. However, the multivariate work reveals that the two series are fractionally 
counteracted, showing a long run equilibrium relationship that tends to persist and disappear slowly in the long run. 
This relationship is important for public policy implying a synergy of development outcomes since it suggests that the 
current emphasis in Kenya’s Vision 2030 on raising per capita income is likely to have positive and long-term effects on 
the vital health outcome of infant mortality. Our analysis therefore provides additional support for the growth approach to 
reducing infant mortality. It reinforces the view that growth in per capita income is considered as necessary for sustaining 
infant mortality improvements although not necessarily sufficient.
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Introduction
High infant mortality rates have presented a major challenge in de-
veloping countries especially in Africa over the last five decades. 
Kenya has, however, made notable progress especially in the last 
decade in reducing infant mortality and communicable diseases 
[1]. Kenya's infant mortality rate has fallen by 7.6 percent per year, 
the fastest rate of decline among the 20 countries in the region 
for which recent Demographic and Health Survey data is avail-
able [2]. However, health challenges still remain and the poor are 
particularly vulnerable to health shocks. According to the World 
Bank, 33.6% of the population in Kenya live on less than the in-
ternational poverty line of US$ 1.90 per day [3]. In Kenya, like 
in many other Sub-Saharan African countries, child deaths mostly 
revolve around child birth and new born deaths contribute to two-
thirds of infant mortality. It is interesting to, however, analyse the 
persistence of infant mortality time series so as to establish wheth-
er any changes to infant mortality are transitory or permanent. This 
will help to establish whether these gains are likely to be sustained 
and provide an indicator on the degree of policy intervention re-
quired. Kenya has also become considerably more prosperous over 
the last few decades. Kenya’s per capita income has risen from 
US$ 97.62 in 1960 to US$ 1594.83 in 2017 [4]. It would be in-
teresting to determine if this improvement in prosperity has had a 
long term relationship with infant mortality rates. No study has yet 

specifically focused on these issues in the Kenyan context, which 
is reflective of the reality in many lower middle income developing 
countries. Following the rebasing of its Gross Domestic Product in 
September 2014, Kenya joined the ranks of lower middle-income 
countries according to the World Bank classification [5].

In this paper we look at the relationship between the GDP per cap-
ita and the infant mortality rate in Kenya for the time period from 
1960 to 2014 using techniques based on fractional integration and 
cointegration, which generalizes the standard stationary / nonsta-
tionary (unit root) literature by allowing for a greater degree of 
flexibility in the dynamic specification of the models. The struc-
ture of the paper is as follows: Section 2 contains a short literature 
review about the infant mortality in Africa and more in particular, 
in Kenya. Section 3 describes the methodology to be used in the 
paper; Section 4 is devoted to the empirical work showing the re-
sults on the relationship between infant mortality rates and GDP 
per capita in Kenya. Finally, Section 5 contains some concluding 
remarks.

Literature Review on Infant Mortality in Kenya and Africa
Mutunga focus on the determinants of infant and child mortality 
in Kenya. He specifically examines how infant and child mortality 
is related to the household’s environmental and socio-economic 
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characteristics such as the mother’s education, source of drink-
ing water, sanitation facility, type of cooking fuels and access to 
electricity. He uses a hazard rate framework to analyse the deter-
minants of child mortality [6]. He contends that duration models 
are easily applicable to child mortality since this class of models 
accounts for problems such as right-censoring, structural modeling 
and time varying covariates, which are more difficult for tradition-
al econometric models to handle. A household’s environmental 
and socio-economic characteristics are found to have a significant 
effect on child mortality. Mutunga contends that policies aimed at 
achieving the goal of reduced child mortality should be directed to 
improving the household’s environmental or socio-economic sta-
tus if this goal is to be realized [7].

Mustafa and Odimwegwu examine the relative importance of fun-
damental biosocial, demographic and economic factors associat-
ed with infant mortality in Kenya [8]. They utilize an analytical 
cross-sectional design through secondary data analysis of the 2003 
Kenyan Demographic and Health Survey (KDHS) data set for 
children. They fit a series of logistic regression models to select 
the significant factors affecting infant mortality in both urban and 
rural areas. The magnitude of each selected variable was tested us-
ing Wald’s test, and hence the factors were rank ordered according 
to their overall p-value. They find that the significant determinants 
for infant mortality are breastfeeding, ethnicity and sex of the child 
while birth order and intervals are significant variables in the rural 
areas.

Demombynes and Trommlerova analyse what has driven the de-
cline of infant mortality rates in Kenya [2]. Substantial declines 
in infant and under-5 mortalities have taken place in recent years 
in many countries in Sub-Saharan Africa. They contend that Ken-
ya's rate of post-neonatal deaths per 1,000 live births fell by more 
than half over a five-year period, dropping from 47 to 22, as mea-
sured using data from the 2003 and 2008-09 Demographic and 
Health Surveys. Among the possible causes of the decline are var-
ious targeted new public health initiatives and improved access 
to water and sanitation. An Oaxaca-Blinder decomposition using 
Demographic and Health Survey data shows that the increased 
ownership of insecticide-treated bednets in endemic malaria zones 
explains 39 percent of the decline in post-neonatal mortality and 
58 percent of the decline in infant mortality. Changes in other ob-
servable candidate factors do not explain substantial portions of 
the decline. The unexplained portion of the decline may be asso-
ciated with generalized trends such as the overall improvement 
in living standards that has taken place with economic growth. 
The widespread ownership of insecticide-treated bednets in areas 
of Kenya where malaria is rare suggests that better targeting of 
insecticide-treated bednet provision programs could improve the 
cost-effectiveness of such programs.

Kimani-Murage et. al examine trends in child infant mortality in 
Kenya by focusing on urban-rural and intra-urban differentials. 
They use data from the Kenya Demographic and Health Surveys 
(KDHS) collected between 1993 and 2008 and the Nairobi Urban 
Health and Demographic Surveillance System (NUHDSS) collect-
ed in two Nairobi slums between 2003 and 2010, to estimate infant 
mortality rate (IMR), child mortality rate (CMR) and under-five 
mortality rate (U5MR) [9]. They find that between 1993 and 2008, 

there was a downward trend in IMR, CMR and U5MR in both rural 
and urban areas. The decline was more rapid and statistically sig-
nificant in rural areas but not in urban areas, hence the narrowing 
of the gap in urban–rural differentials over time. There was also a 
downward trend in childhood mortality in the slums between 2003 
and 2010 from 83 to 57 for IMR, 33 to 24 for CMR, and 113 to 79 
for U5MR, although the rates remained higher compared to those 
for rural and non-slum urban areas in Kenya.

 Some studies have been carried out in the African context on the 
links between economic growth and child health in Sub-Saharan 
Africa, for example, by O’Hare et. al but none using the more 
general techniques of fractional integration. Hanmer et. Alm, in a 
broad developing country study consider whether development is 
best achieved by focusing on growth, or whether specific attention 
needs to be paid to directly improving human welfare [10, 11].  In 
contrast to the Human Development Report approach of the Unit-
ed Nations Development Programme, the World Bank has stressed 
the growth approach. A vital implication of the growth approach 
is that health expenditure is extremely ineffective in reducing in-
fant or child mortality, which is mainly explained by a country's 
income per capita. Their paper tests the robustness of the deter-
minants of infant and child mortality arguing that, while income 
per capita is a robust determinant of infant and child mortality, so 
are indicators of health, education and gender inequality. Some 
health spending, such as immunisation, is therefore shown to be a 
cost effective way of saving lives. Their results are consistent with 
the view that much health spending in developing countries may 
be poorly targeted or otherwise ineffective, but do not support the 
position that public health strategies should not be given too great 
a role in pursuing improvements in human welfare. Another broad 
study was carried out by O’Hare et. al to incorporate developing 
countries outside Africa [12]. 

They conduct a systematic literature search of studies that exam-
ined the relationship between income and child mortality and me-
ta-analysed their findings. They find that income is an important 
determinant of child survival. Asiedu et. al. examine the impact 
of income per capita on broader health outcomes in Africa includ-
ing adult life expectancy and mortality rates for children using an 
overlapping generations model [13].  However, fractional integra-
tion techniques were not used in any of these studies. No study in 
the Kenyan context or African context has yet done a univariate 
time series analysis of infant mortality trends using fractional inte-
gration techniques and neither has any study specifically examined 
the long run relationship between infant mortality and GDP per 
capita using fractional cointegration techniques. These are there-
fore, the two main contributions of the work.

Methodology
We present in this section the modelling approach. For the univar-
iate analysis we use techniques based on the concept of fractional 
integration that means that we take potential fractional degrees of 
differentiation on the series to render it stationary I (0). By I (0) 
we mean a process that is covariance stationary and where the in-
finite sum of the autocovariances is finite, that is, it may be a white 
noise, but also a (weakly) autocorrelated process of the ARMA 
form. Having said this, we say that a process {xt, t= 0, ±1, …} is 
integrated of order d, and denoted by I(d) if it can be represented as
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with xt = 0, t ≤ 0, L is the lag operator (i.e., Lxt = xt-1), and where 
ut is I (0). Fractional integration takes place when d is a fractional 
value. Note that the polynomial on the left-hand-side of equation 
(1) can be expanded, for all real d, as

implying that xt in (1) can be written as:

Thus, if d is a fractional value, the actual value of x (xt) depends 
on all its past history, and the higher the d is, the higher the level 
of dependence is between the observations. Processes with d > 
0 in (1) display the property of “long memory” or “long range 
dependence”, because of the strong association between observa-
tions that are far distant in time. This type of processes provides 
a much richer degree of flexibility in the dynamic specification of 
the series than the standard models based on integer degrees of 
differentiation (stationarity I (0) and nonstationarity I (1)), widely 
employed in the time series literature. Moreover, they have been 
widely employed in recent years in modelling time series in many 
different disciplines including economics etc [14-28]. 

In the empirical application carried out in the following section 
we employ first two parametric approaches based on the Whittle 
estimate of the differencing parameter d along with several semi-
parametric methods [29-34].

In the multivariate case, we use techniques based on fractional 
cointegration. In a broad sense, given two real numbers d, b, the 
components of the vector zt are said to be cointegrated of order d, 
b, and denoted zt ~ CI(d, b) if:
i.	  all the components of zt are I(d),
ii.	 there exists a vector α ≠ 0 such that st = α’zt ~ I(γ) = I (d – b), 

b > 0.

Here, α and st are called the cointegrating vector and error respec-
tively. In the paper we conduct the following strategy: We first es-
timate individually the orders of integration of the two series using 
the semiparametric approach of Robinson [31]. Next we test the 
homogeneity of the orders of integration in the bivariate systems 
(i.e., Ho: dx = dy), where dx and dy are now the orders of integration 
of the two individual series, by using an adaptation of Robinson 
and Yajima statistic to log-periodogram estimation, in addition to 
another method [ 31, 35, 36]. The functional form of the test sta-
tistics can be found in Gil-Alana and Hualde [37]. In the final step, 
we perform the Hausman test for no cointegration of Marinucci 
and Robinson comparing the estimate dx of dx with the more effi-
cient bivariate one of Robinson, which uses the information that dx 
= dy = d* [31, 38].

Data and Results
The data used in the paper are the following: they are annual data 
obtained from World Bank Kenya Country Meta database for the 

period 1960 to 2014. The GDP per capita data are in current US 
dollars. The infant mortality rate is expressed per 1000 live births. 

IMR

GDP per capita 

Figure 1 displays the time series plots along with their logged and 
logistic transformations. We observe that the IMR data have been 
reducing across the sample period with a sudden increase around 
the mid 80s until the late 90s, and then decreasing again till the 
end of the sample. For the GDP per capita, the values increased at 
the beginning of the sample, stabilizing during the crisis, and then 
starting to increase again since the mid/late 90s. In general, the two 
series have an appearance of nonstationary, with a very persistent 
pattern.

Across Table 1 we display the estimated values of the fractional 
differencing parameter, d, in the model given by
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where yt refer to each of the two observed time series (IMR and 
GDP per capita); β0 and β1 are the coefficients corresponding re-
spectively to the intercept and a linear time trend, and xt is sup-
posed to be I(d) adopting different forms such as white noise and 
autocorrelated throughout the model of Bloomfield, which is a 

non-parametric approach of modeling I (0) errors and that produc-
es autocorrelations decaying exponentially as in the autoregressive 
case [39]. Table 1(Panel A) focuses on the original data; Panel B 
on the logged transformed values, and Panel C displays the results 
based on the logistic transformation of the IMR data.2

Table 1: Estimates of d and 95% intervals

Panel A
i)    GDP per capita

No regressors An intercept A linear time trend
White noise 1.39   (1.22,   1.65) 1.39   (1.21,   1.68) 1.40   (1.22,   1.68)
Autocorrelated 1.20   (0.92,   1.60) 1.18   (0.87,   1.57) 1.19   (0.87,   1.58)

ii)    Infant Mortality Rate
No regressors An intercept A linear time trend

White noise 0.90   (0.72,   1.15) 2.24   (2.00,   2.58) 2.23   (2.10,   2.39)
Autocorrelated 0.73   (0.37,   1.20) 1.74   (1.43,   2.22) 2.95   (2.35,   3.97)

Panel B
i)    GDP per capita (in logs)

No regressors An intercept A linear time trend
White noise 0.95   (0.78,   1.18) 1.24   (1.00,   1.56) 1.23   (1.00,   1.56)
Autocorrelated 0.85   (0.51,   1.27) 0.81   (0.38,   1.42) 0.87   (0.53,   1.41)

ii)    Infant Mortality Rate (in logs)
No regressors An intercept A linear time trend

White noise 0.92   (0.75,   1.16) 2.06   (1.91,   2.28) 2.03   (1.91,   2.17)
Autocorrelated 0.77   (0.42,   1.23) 2.10   (1.74,   1.23) 2.21  (2.74,   3.92)

Panel C
Infant Mortality Rate (logistic)

No regressors An intercept A linear time trend
White noise 0.92   (0.76,   1.16) 2.02   (1.88,   2.21) 2.00   (1.88,   2.14)
Autocorrelated 0.77   (0.42,   1.21) 2.09   (1.74,   2.64) 2.73   (2.21,   3.98)

Starting with the results for the original data we observe that the 
estimated value of d is significantly higher than 1 for GPD per cap-
ita under white noise disturbances though the unit root null (i.e. d = 
1) cannot be rejected with autocorrelated errors. This result seems 
to be robust for the three different cases of no deterministic terms, 
an intercept and an intercept with a linear time trend. However, 
for the IMR series, the results substantially change depending or 
not on the incorporation of deterministic terms. If these terms are 
included, the estimated value of d is much higher than 1 (in fact, 

even higher than 2 with a linear time trend) though the unit root 
null cannot be rejected in the context of no regressors. Very similar 
results are presented in Panel B for the logged transformed data. 
Thus, the unit root null cannot be rejected for the GPD per capita 
series; the same happens for the IMR data with no deterministic 
terms, but this hypothesis is decisively rejected in favour of much 
higher degrees of integration under deterministic terms. The same 
holds for the logistic IMR transformation as shown in Panel C.
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Table 2: Semiparametric estimates of d in the original data

Panel A (original data)
6 7 8 9 10 11 12

CAP 1.088 1.161 1.204 1-207 1.152 1.207 1.281
MR 2.500 2.500 2.362 2.286 2.229 2.193 2.191

Panel B (logged and logistic data)
6 7 8 9 10 11 12

LCAP 0.761 0.816 0.926 0.969 0.948 1.011 1.084
LMR 2.500 2.500 2.300 2.108 2.055 2.020 2.007

Logistic 2.500 2.500 2.349 2.181 2.105 2.053 2.019

Next we report the results about the estimated values of d using a 
semiparametric method for a selected number of bandwidth num-
bers (from m = 6 to 12).3 The results for the original data are dis-
played in Table 2 (Panel A), while Panel B refers to the logarithmic 
and logistic transformation [31]. Again the same type of conclu-
sions can be drawn from these tables. The fractional differencing 
parameters is close to 1 for the GPD per capita series but it is close 
to 2 for the IMR data.

Given the disparity in the degree of integration between the two 
series, the possibility of non-linear structures is also taken into ac-
count. In particular, we use here a non-linear approach proposed 
by Cuestas and Gil-Alana (2016), and based on the Chebyshev 
polynomials in time,

assuming again that ut is a white noise process and autocorrelated, 

throughout the model of Bloomfield (1973). The Chebyshev poly-
nomials Pi,T(t) in (6) are defined as:

(see Hamming and Smyth for a detailed description of these poly-
nomials) 40 [41, 42]. 

Bierens uses them in the context of unit root testing. According to 
Bierens and Tomasevic and Stanivuk, it is possible to approximate 
highly non-linear trends with rather low degree polynomials. If m 
= 0 in (6), the model contains an intercept, if m = 1 it also includes 
a linear trend, and if m > 1 it becomes non-linear - the higher m is 
the less linear the approximated deterministic component becomes 
[43, 44].

Table 3: Estimates of d and nonlinear Chebyshev coefficients

Panel A (original data)
i)    GDP per capita

d θ1 θ2 θ3 θ4

White noise 1.32
(1.11,   1.61)

293.99
(0.60)

-72.11
(-0.23)

36.71
(0.33)

-102.25
(-1.59)

Bloomfield 0.88
(0.24,   1.39)

505.06
(3.70)

-253.94
(-3.26)

94.83
(2.12)

-132.51
(-4.23)

ii)    Infant Mortality Rate
d θ1 θ2 θ3 θ4

White noise 2.19
(1.89,   2.58)

141.28
(2.53)

-18.88
(-0.49)

-0.12
(-0.01)

4.59
(1.24)

Bloomfield 1.45
(1.07,   1.68)

94.90
(8.11)

8.50
(1.71)

3.24
(1.73)

6.36
(4.69)

Panel B  (logged data)
i)    GDP per capita

D θ1 θ2 θ3 θ4
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Table 2: Semiparametric estimates of d in the original data

Panel A (original data)
6 7 8 9 10 11 12

CAP 1.088 1.161 1.204 1-207 1.152 1.207 1.281
MR 2.500 2.500 2.362 2.286 2.229 2.193 2.191

Panel B (logged and logistic data)
6 7 8 9 10 11 12

LCAP 0.761 0.816 0.926 0.969 0.948 1.011 1.084
LMR 2.500 2.500 2.300 2.108 2.055 2.020 2.007

Logistic 2.500 2.500 2.349 2.181 2.105 2.053 2.019

Next we report the results about the estimated values of d using a 
semiparametric method for a selected number of bandwidth num-
bers (from m = 6 to 12).3 The results for the original data are dis-
played in Table 2 (Panel A), while Panel B refers to the logarithmic 
and logistic transformation [31]. Again the same type of conclu-
sions can be drawn from these tables. The fractional differencing 
parameters is close to 1 for the GPD per capita series but it is close 
to 2 for the IMR data.

Given the disparity in the degree of integration between the two 
series, the possibility of non-linear structures is also taken into ac-
count. In particular, we use here a non-linear approach proposed 
by Cuestas and Gil-Alana (2016), and based on the Chebyshev 
polynomials in time,

assuming again that ut is a white noise process and autocorrelated, 

throughout the model of Bloomfield (1973). The Chebyshev poly-
nomials Pi,T(t) in (6) are defined as:

(see Hamming and Smyth for a detailed description of these poly-
nomials) 40 [41, 42]. 

Bierens uses them in the context of unit root testing. According to 
Bierens and Tomasevic and Stanivuk, it is possible to approximate 
highly non-linear trends with rather low degree polynomials. If m 
= 0 in (6), the model contains an intercept, if m = 1 it also includes 
a linear trend, and if m > 1 it becomes non-linear - the higher m is 
the less linear the approximated deterministic component becomes 
[43, 44].
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series (GDP per capita and IMR) overlap each other, suggesting that they can be statistically 

similar. For example, and focusing on the original data, the estimated value of d for the GPP 

per capita under autocorrelated errors is equal to 0.88, and the confidence interval (0.24, 

1.39) is wide enough to include the unit root null. For the IMR data and also using 

autocorrelated errors, d is equal to 1.45 and the interval is now between 1.07 and 1.68. Very 

similar results are obtained with the logged and logistic transformations (Panels B and C in 

Table 3). 
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-253.94
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94.83
(2.12)

-132.51
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d θ1 θ2 θ3 θ4

White noise 2.19
(1.89,   2.58)

141.28
(2.53)

-18.88
(-0.49)

-0.12
(-0.01)

4.59
(1.24)

Bloomfield 1.45
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White noise 1.05
(0.67,   1.48)

5.91
(12.39)

-0.62
(-2.19)

-0.03
(-2.28)

-0.28
(-3.22)

Bloomfield 0.92
(-0.86, 1.68)

5.77
(434.94)

-0.62
(-40.85)

-0.03
(-2.27)

-0.28
(-16.85)

ii)    Infant Mortality Rate
d θ1 θ2 θ3 θ4

White noise 1.94
(1.74,   2.20)

4.85
(11.37)

-0.15
(-0.54)

0.03
(0.50)

0.07
(2.19)

Bloomfield 1.53
(1.36,   1.64)

4.56
(12.71)

1.61
(0.04)

-1.72
(-0.03)

0.08
(2.18)

Panel C  (logistic)
Infant Mortality Rate (logistic)

White noise 1.88
(1.71,   2.13)

1.71
(21.76)

-0.03
(-0.63)

0.08
(0.62)

0.01
(2.35)

Bloomfield 1.46
(1.41,   1.68)

1.64
(31.15)

1.67
(0.44)

1.82
(1.06)

0.02
(3.74)

In bold, in columns 3 – 6, significant coefficients at the 5% level.

Table 3 displays the estimated values of d along with the Cheby-
shev polynomial coefficients for the two cases of uncorrelated and 
Bloomfield-type errors, first for the original data (Panel A), for the 
logged transformed data (Panel B) and for the logistic IMR trans-
formation (in Panel C). We observe several statistically significant 
coefficients, especially for the IMR series, and the fractional differ-
encing parameter is now substantially smaller for the IMR series. 
In fact, the unit root null is still rejected, however, the confidence 
intervals in the two series (GDP per capita and IMR) overlap each 
other, suggesting that they can be statistically similar. For example, 
and focusing on the original data, the estimated value of d for the 
GPP per capita under autocorrelated errors is equal to 0.88, and the 
confidence interval (0.24, 1.39) is wide enough to include the unit 

root null. For the IMR data and also using autocorrelated errors, 
d is equal to 1.45 and the interval is now between 1.07 and 1.68. 
Very similar results are obtained with the logged and logistic trans-
formations (Panels B and C in Table 3).

This is the basis that allows us to proceed with the multivariate 
work. A necessary condition in a bivariate cointegration approach 
is that the two individual series must display the same degree of 
integration, and though in the three cases of the original data, the 
log and logistic transformations, the values of d differ, performing 
the Robinson and Yajima approach based on log-periodogram-type 
of estimators we cannot reject the homogeneity condition in the 
degree of integration in any of the three cases [ 31, 35].

Table 4: Fractional cointegration results based on linear regression models

Panel A (original data)
IMRt  =  α   +   β CAPt    +   xt;    (1 – l)d xt  =  ut

d  (95% band) α  (t-value) β  (t-value)
White noise 2.24  (2.01,  2.59) 120.888  (308.57) -0.00051   (-0.34)
AR (1) 0.21  (0.10,  0.40) 95.895  (18.78) -0.0513   (-6.12)
Bloomfield 1.74  (1.37,  2.26) 120.816  (253.31) -0.000012   (-0.007)

Panel B (logged data)
Log (IMRt) =  α   +   β Log (CAPt)   +   xt;    (1 – l)d xt  =  ut

d  (95% band) α  (t-value) β  (t-value)
White noise 2.06  (1.90,  2.28) 4.7968 (121.01) -0.00028   (-0.03)
AR (1) 0.14  (-0.09,  0.29) 6.4675 (20.45) -0.3861   (-7.12)
Bloomfield 2.09  (1.74,  2.65) 4.7965  (122.78) -0.00019   (-0.02)
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Panel C (logistic)
Logistic (IMRt) =  α   +   β Log (CAPt)   +   xt;    (1 – l)d xt  =  ut

d  (95% band) α  (t-value) β  (t-value)
White noise 2.06  (1.92,  2.25) 5.4858  (137.78) -0.00027   (-0.03)
AR (1) 0.14  (-0.09,  0.31) 7.1705  (22.54) -0.3891   (-7.12)
Bloomfield 2.09  (1.73,  2.63) 5.4855  (139.18) -0.00019   (-0.02)

In bold, in columns 3 – 4, significant coefficients at the 5% level.

In Table 4 we display the results of the regressions of IMR on 
GDP per capita on the original data (Panel A), logged data and 
using the logistic transformation for IMR ((Panel C). In fact, this 
is an extension of the Engle and Granger’s approach to the frac-
tional case [ 13, 45, 46].  As expected the β-coefficient is negative 
in all cases but only statistically significant in the context of AR 
(1) disturbances, and more importantly, the estimated value of d 

is substantially smaller than 1. In fact, for the original data, the 
value is about 0.21 and the two hypotheses of integer degrees of 
differentiation (d = 0, i.e., standard cointegration, and d = 1, i.e., 
no cointegration) are decisively rejected in favour of a fractional 
value. For the logged and logistic data, the estimated value of d 
is 0.14 and in this case the I (0) hypothesis cannot be rejected at 
conventional significance levels.

Table 5: Hausman test of no cointegration (Marinucci and Robinson, 2001)

Series d1 (IMR) d2 (GPD) d* H (d1 = d*) H (d2 = d*)
Original 1.456 0.883 0.211 86.801 25.288
Logged 1.531 1.058 0.144 107.731 46.872
Logistic 1.462 1.058 0.141 97.722 47.089

In bold, rejection of the null of no cointegration at the 5% level.

As a final step, we conduct the Marinucci and Robinson’s method, 
comparing the estimates of the individual series obtained above 
with the more efficient bivariate one of Robinson, which uses the 
information that the series share the same degree of integration [ 
31, 38]. The results for a bandwidth number m = (T)0.5 are report-
ed in Table 5 and we observe strong evidence against the null of no 
cointegration and in favour of fractional cointegration.

Concluding comments
The GDP series shows a high degree of persistence with levels of 
d being greater than one under different formulations of the error 
term and hence indicating the persistence of shocks in per capita 
income. Positive changes in per capita income in Kenya are there-
fore likely to be sustained over time if critical growth policies un-
der Kenya’s Vision 2030 are maintained. For the infant mortality 
series, the results substantially change depending or not on the in-
corporation of deterministic terms. The unit root hypothesis for the 
infant mortality series cannot be rejected in the absence of deter-
ministic terms but this hypothesis is decisively rejected in favour 
of much higher degrees of integration under deterministic terms. 
Using semiparametric and non-linear approaches the persistence 
of the infant mortality series is, however, confirmed. This suggests 
that under most analysed formulations, positive changes to infant 
mortality in Kenya in recent years are likely to be sustained in the 
future. In terms of the relationship between the per capita income 
and infant mortality series, we observe strong evidence in favour 
of fractional cointegration suggesting that a long run relationship 
exists between income per capita and infant mortality in Kenya 
though it takes a long period of time to converge. This is import-

ant for public policy since it suggests that the current emphasis 
on raising income per capita is likely to have positive effects on 
the critical health outcome of infant mortality in Kenya. Econom-
ic policy in Kenya is currently focused on the “big four” agenda 
which prioritizes food security, manufacturing, affordable univer-
sal health care and affordable housing. The focus on healthcare 
further accentuates the nexus between health policy and economic 
prosperity [47].  

Our findings provide an empirical basis for reinforcing the per cap-
ita income-infant mortality nexus, which is an important aspect 
of current public policy in Kenya. The findings also imply vital 
synergies in public policy outcomes in the Kenyan context. This 
is in line with the growth approach to reducing infant mortality 
which contends that increasing a country’s income per capita is 
a vital pillar of improving important health outcomes.  Growth in 
per capita income in Kenya is considered as being necessary for 
sustaining infant mortality improvements although not necessari-
ly sufficient. Additional work is required to identify the most ef-
fective social policy interventions.  Lower infant mortality in turn 
has positive effects on sustaining the benefits from Kenya’s demo-
graphic dividends, which is dependent on the survival of its young 
population. Other lower middle income countries in Africa with 
similar economic characteristics to Kenya can also be encouraged 
to continue emphasizing polices aimed at raising GDP per capita 
as this is likely to contribute to better health outcomes. 
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