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Abstract
Farmers use natural and synthetic pesticides to protect crops against rodents, insects, and disease-causing microbes. 
With an increasing human population, large quantities of pesticides are used to control pests and increase food yields. 
Pesticides have been linked to numerous environmental problems, including water, soil and air contaminations, 
biodiversity loss, and pest resistance. Despite the known risks, farmers in most nations are increasing their pesticide use. 
This study aims to evaluate the amount of pesticides in selected soil samples and its impact on the microbial population of 
the soil. Soil samples from ten communities designated A to J were collected with soil auger from tillage and rooting depth 
of plants (0 – 21cm) into sterile polytene bags in triplicates. Cultural, morphological and biochemical reactions were 
used for bacterial identification, while Gas Chromatography - Mass Spectrometry (GC-MS) was used in the pesticide 
analysis. In the control community (OAUSTECH), bacterial population range from 90.00 x 105±0.00 cfu/g to 92.67x 
105±0.58cfu/g across the eight locations while the population ranged from 16.67x105±1.16 to 71.33 x 105±1.16 in the 
treatment communities. The bacterial number in the treatment communities differ significantly (P < 0.005) compared 
to the control. For pesticide analysis, Endosulfan ether range from 0.01 ±0.006ppm to 0.04 ±0.006ppm; Dieldrin from 
0.03±0.0012ppm to 0.05 ±0.0010ppm; a P-DDT from 0.03 ±0.0012ppm to 0.06±0.0025ppm and Endrin ketone from 1.20 
±0.0037ppm to 2.06 ±0.015ppm. The results of this study, which show that pesticides negatively affect soil microbial 
populations, validate and support current environmental concerns. 
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1. Introduction
Since the turn of the last century, worldwide grain production has 
climbed from 500 million tons to the current level of 700 million 
tons per year [1]. Cereals, in particular, make up over 80% of the 
food consumed by humans worldwide [2]. Pests can cause damage 
to crops even when they are growing or in storage. For instance, 
China is primarily an agricultural nation, but every year, a variety 
of insect pests waste 40 million tons of the country's entire grain 
output [3]. India averages 250 million tons of grain production 
year but it loses 11-15% of that total, or roughly 27.5-37.5 million 
tons, to pests and other reasons. Agricultural and domestic pests 
are commonly controlled with pesticides to prevent losses of this 
nature [4]. Pesticides are natural or synthetic compounds that 
are used to destroy insects, disease causing microorganisms, rats 
and weeds. They include insecticides, herbicides, nematicides, 
fungicides, molluscicides, rodenticides, plant growth regulators, 
and other compounds [5-7]. The term "pest" is used to describe 
any organism, plant or animal, that causes harm to humans or other 
animals hence pesticides are used by farmers to destroy or inhibit 

the development of pests. (USEPA, 2004). The persistent use of 
chemical inputs like pesticides has damaged the environment, 
harmed human health, decreased agricultural output, and lowered 
the sustainability of farming [8-11]. Several pests and illnesses 
have flourished due to the elimination of their helpful predators by 
pesticides in agricultural ecosystems. Although, the use of chemical 
inputs such as pesticides has increased agricultural production and 
productivity. Immediate benefits, such as increased crop yields and 
quality as a result of insect elimination, are the principal benefits 
of employing pesticides in farming. Pesticides are also used to 
prevent illnesses spread by vectors, including crop protection, 
food preservation, and significant roles in commercial as well as 
food based industrial practices, i.e., aquaculture, agriculture, food 
processing, and storage [12-14]. This is why, despite all the risks, 
the use of pesticide is on the increase across the nations particularly 
the developing ones while biological methods of pest control are 
increasingly limited. 

About 4.19 million metric tons of pesticides were used worldwide 
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in 2019, with China using the most (1.76 million metric tons), 
followed by the United States (408,000 tons), Brazil (377,600 tons), 
and Argentina (204,600 tons) [15]. According to the World Health 
Organization, pesticide use is rising annually in southeast Asia, 
with 20% of developing countries being consumers [16-17]. The 
average annual usage of pesticides was 2.784 kg ha-1 between 2010 
and 2014, with a cost-benefit ratio of 0.645 g of total pesticides per 
kilogram of crop production with highest usage by Japan (18.94 
kg ha-1) and least usage by India (0.26 kg ha-1) as shown in Figure 
1 while the classification of pesticides and its impacts on human 
is as shown in figure 1. The drawbacks associated with the use of 
pesticides are caused by improper use, a lack of information on 

how to use them in terms of quantity, a high amount of discharge 
into water bodies, and pesticides that are adsorbed, desorbed, 
and broken down as they travel through the soil. The occurrence 
of these phenomena is contingent on pesticide properties such 
as persistence, bioaccumulation, and toxicity. As a result of this 
process, soils become secondary sources of contaminants in terms 
of air-soil exchange [18]. Pesticide bioavailability in the food web, 
pesticide assimilation, toxic kinetics, dispersion, metabolism, and 
excretion all have an effect on species. On numerous crop species, 
pesticides are used excessively and arbitrarily, harming beneficial 
biota such as microorganisms, honeybees, predators, birds, plants, 
and small animals [19].
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Fig. 1: Zhang 2018.  

 
 

 
 
Study Area 
Soil samples for this study were collected across two Local Government Areas (LGAs) in Ondo 
Southern senatorial districts. Nine of the communities are located in  Ilaje LGA of Ondo State at 
between long (6°12°E and 60 30°E) and lat (4°10°N and 4°6°N) of the Equator. The 
communities are Ojumole (B), Awoye (C), Odofado (D), Ugbonla (E), Odonla (F), Idi – Ogba 
G), Ile pete(H) Odonla (I) and Oroto (J) while the tenth community Olusegun Agagu University 
of Science and Technology OAUSTECH designated as (A) was the control and it is located in 
Okitipupa LGA of Ondo State. In the OAUSTECH control community, the use of pesticides to 
manage weeds is not allowed because to the community's awareness of the hazards connected 
with pesticide use. However, in the other nine trial communities, farmers are permitted to freely 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 

Percentage distribution of types of pesticides and its effects on man (Nicolopoulou-Stamati et al.,2016;Alengebawy et al.,2021). 
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FIGURE 1 

Percentage distribution of types of pesticides and its effects on man (Nicolopoulou-Stamati et al.,2016;Alengebawy et al.,2021). 

Figure 1: (%) of pesticide usage across the world. (Zhang, 2018). 

Figure 2: Percentage distribution of types of pesticides and its effects on man (Nicolopoulou-Stamati et al.,2016;Alengebawy et al.,2021).
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1.1 Study Area
Soil samples for this study were collected across two Local 
Government Areas (LGAs) in Ondo Southern senatorial districts. 
Nine of the communities are located in Ilaje LGA of Ondo State at 
between long (6°12°E and 60 30°E) and lat (4°10°N and 4°6°N) 
of the Equator. The communities are Ojumole (B), Awoye (C), 
Odofado (D), Ugbonla (E), Odonla (F), Idi – Ogba G), Ile pete(H) 
Odonla (I) and Oroto (J) while the tenth community Olusegun 
Agagu University of Science and Technology OAUSTECH 
designated as (A) was the control and it is located in Okitipupa 
LGA of Ondo State. In the OAUSTECH control community, the 
use of pesticides to manage weeds is not allowed because to the 
community's awareness of the hazards connected with pesticide 
use. However, in the other nine trial communities, farmers are 
permitted to freely use pesticides for pest control. 

2. Materials and Methods
Using a soil auger, triplicate soil samples from ten communities 
designated A to J were collected from the tillage and rooting 
depth of plants (0 – 21cm) and transmitted to the OAUSTECH 
laboratory for analysis. To eliminate debris, the soil was sieved 
through a 2-millimeter mesh.

2.1 Organic Pesticide Determination Using Gas Mass 
Spectrometry (Gc-Ms)
Two grams (2g) of soil samples each is weighed into a conical 
flask, 20ml of dichloromethane (DCM) was added, and the flask 
was deposited on an ultrasonic bath. The sample was sonicated 

for approximately 25 minutes, after which the clear portion was 
transferred to a clean beaker. The procedure was repeated with 
an additional 25ml of solvent. The clear liquid in the receptacle 
was centrifuged for 10 minutes at 4000rpm. In a dry receptacle, 
the supernatant was collected. By loading a column with silica 
gel, anhydrous sodium sulphate, and cotton wool, the sample was 
purified. The cleansed sample was concentrated to approximately 
1 ml and prepared for GC-MS analysis of pesticides. Triple 
quadrupole (QqQ) which is the mass analyzer operating in the 
selected reaction monitoring (SRM) mode was then used to detect 
and measure the quantities of pesticide residues in the samples.

2.2 Bacterial Analysis 
Standard plate count procedures were used to assess bacterial 
population [20]. Nutrient agar (NA) was utilized to evaluate the 
bacterial population. One gram (1g) of each soil sample was 
measured into a test tube containing 9 ml of sterile distilled 
water, serially diluted to a dilution factor of 105, and 1 ml of the 
appropriate dilutions was pipetted onto a sterilized plate containing 
NA and incubated at 30oC. Each plate was incubated upside-down. 
At 48 hours, bacterial counts were carried out 

2.3 Statistical Analysis 
The data obtained were subjected to analysis of variance and the 
means were compared using the Duncan Multiple range test. A 
significant level of 0.05 was used. The experiments were all 
designed as a complete randomized design (CRD).

3. Results and Discussions 
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Table 1: Amount of Residual pesticides in selected soil samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Values are Mean±SD. Means with different letter(s) in a column are significantly different with Duncan’s Multiple Range Test (DMRT) (p<0.05).  
 
 
 
 
 
 
 

S/N Communities  Endosulfan ether(ppm) Dieldrin (ppm) Dichlorodiphenyltrichloroethane 
(DDT) ppm 

Endrin ketone 
(ppm) 

A OAUSTECH 
(Control) 

0.01±0.006a 0.00±0.006a 0.00±0.000a 0.00±0.000a 

B Ojumole 0.02 ± 0.012b 0.03±0.0012b 0.03±0.006b 1.20±0.0037b 

C Awoye  0.04 ± 0.015c 0.05±0.0010d 0.06±0.015e 2.06±0.015j 

D Odofado 0.03 ± 0.012bc 0.03±0.0012bc 0.04±0.012c 2.00±0.0012i 

E Ugbonla 0.02 ± 0.012b 0.04±0.0010c 0.03±0.006b 1.80±0.015e 

F Odonla  0.03± 0.012bc 0.04±0.0010c 0.06±0.015e 1.60±0.0058c 

G Idi - Ogba 0.03± 0.012bc 0.03±0.0012bc 0.05±0.015d 1.98±0.0012gh 

H Ilepete 0.04± 0.018cd 0.05±0.0010d 0.05±0.018de 1.82±0.015ef 

I Obenla 0.02± 0.012b 0.04±0.0010c 0.04±0.012cd 1.95±0.0012g 

J Oroto 0.03± 0.012bc 0.04±0.0010c 0.06±0.015e 1.65±0.0087d 

Table 1: Amount of Residual pesticides in selected soil samples

Values are Mean±SD. Means with different letter(s) in a column are significantly different with Duncan’s Multiple Range Test (DMRT) 
(p<0.05).
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            Table 2: Bacterial populations at the various locations in the communities  

Communities  L1 L2 L3 L4 L5 L6 L7 L8 
OAUSTECH 91.33±0.58

e 80.00±0.00
f 72.67±3.06

g 96.00±1.00
g 82.33±4.04

g 73.67±1.12
g 81.00±0.00

h 73.67±0.58
e 

Ojumole  62.33±2.08
d 57.33±1.53

d 55.00±1.73
ef 71.33±1.16

f 62.67±1.16
f 65.67±1.16

f 65.00±1.00
g 54.00±0.00

d 
Awoye 31.67±1.16

a 36.67±1.16
a 37.00±1.00

b 30.67±1.16
a 38.00±1.00

b 37.00±0.00
c 33.00±1.00

a 34.00±3.00
a 

Odofado 62.33±1.53
d 63.67±2.08

e 58.00±1.73
f 55.00±1.73

e 56.00±1.00
d 48.00±1.00

e 47.33±0.58
f 37.33±1.16

b 
Ugbonla 35.67±3.06

b 40.67±1.16
b 46.33±1.53

d 44.00±1.73
c 60.00±0.00

e 46.33±2.31
de 38.67±0.58

c 36.33±1.16
ab 

Odonla 42.00±0.00
c 36.67±1.16

a 52.00±1.73
e 46.33±0.58

d 37.33±0.58
b 45.00±1.73

d 43.67±1.16
e 45.00±2.00

c 
Idi-Ogba 34.00±1.73

a 40.67±1.16
b 52.33±2.52

e 38.33±0.58
b 16.67±1.16

a 26.00±1.73
a 37.67±1.16

bc 47.67±2.31
c 

Ilepete 43.33±1.53
c 37.67±1.53

a 42.67±1.16
c 37.33±1.53

b 37.67±1.16
b 38.33±0.58

c 39.00±0.00
c 33.33±2.31

a 
Obenla 42.00±1.00

c 40.33±0.58
b 52.00±1.00

e 55.67±1.16
e 57.67±0.58

de 33.33±2.31
b 37.00±0.00

b 34.67±0.58
ab 

Oroto 42.00±0.00
c 44.67±2.52

c 32.33±1.53
a 38.00±1.00

b 44.33±1.16
c 36.67±0.58

c 42.33±0.58
d 35.33±1.16

ab 
 

 Values are Mean±SD. Means with different letter(s) in a column are significantly different with Duncan’s Multiple Range Test (DMRT) 
(p<0.05). L=Location 

 
       
 
 
 
 
 
 
 
 
 
 

Table 2: Bacterial populations at the various locations in the communities

 Values are Mean±SD. Means with different letter(s) in a column are significantly different with Duncan’s Multiple Range Test (DMRT) 
(p<0.05). L=Location

Table 1 revealed the amount of residual pesticides in the soil samples. 
Endosulfan ether, Dieldrin, dichloro-diphenyl-trichloroethane 
(DDT) and Endrin ketone were the major pesticides in the soil 
samples. The amount of pesticide residues in the soil samples are 
not significantly different across the soils of OAUSTECH used as 
control. Values of each of the residual pesticides in the treatments 
are much higher and differ significantly (P < 0.005) compared 
to the control. Literature extensively documents the occurrence 
of residual insecticides in soil. Naturally produced pesticides, 
referred to as biopesticides, are synthesized by many organisms, 
including plants, bacteria, and fungi inside the soil [21-22]. 
Residues of synthetic pesticides in the soil have been documented 
in studies conducted by Gill and Garg, Zhang and Sharma [13-23]. 
These documented reports agree with the findings of this research. 
According to reports, Endosulfan Sulfate has been found to have an 
impact on human respiration and has the potential to be absorbed 
via the skin. Prolonged and significant exposure to Endosulfan 
Sulfate has been associated with several adverse health effects, 
including but not limited to headache, dizziness, impaired eyesight, 
feelings of nausea, episodes of vomiting, instances of diarrhea, 
and muscular debility. Severe poisoning has been associated with 
several adverse health outcomes, including but not limited to 
leukemia, convulsions, prostate cancer, non-Hodgkin lymphoma, 
ovarian cancer, coma, and mortality [24-29]. Several studies have 
demonstrated that dichlorodiphenyltrichloroethane (DDT) and its 
metabolites might potentially cause detrimental effects on multiple 
organs and tissues in animals, such as the neurological system, 
liver, kidney, reproductive system, endocrine system, and immune 
system [30-33]. The accumulation of pesticides within the human 
body can lead to adverse health effects, which may manifest over 
an extended duration of exposure, even when exposed to very low 
quantities. Previous research in the field of animal studies has 
documented many adverse effects observed in animals subjected to 
differing levels of aldrin or dieldrin exposure. These effects include 
convulsions, tremors, cognitive impairments, hepatic injury, and 
reproductive complications [34-36]. Pesticides that have a high 

propensity to infiltrate soils can provide toxicity risks to various 
organisms such as arthropods, earthworms, fungus, bacteria, and 
protozoa. These organisms play a crucial role in ecosystems as 
they exert significant influence over both the composition and 
operation of natural systems. Honeybees, which play a crucial role 
in the pollination of various agricultural products such as fruits and 
vegetables, have adverse effects from the majority of insecticides 
employed. Agricultural losses can also occur as a result of 
diminished insect pollination of crops caused by the application 
of pesticides [37-39]. The bacterial population in different places 
of both the control and trial communities is presented in Table 2. 
Research findings indicate that the inclusion of pesticides resulted 
in a decrease in the number of bacteria across all types of pesticides. 
In the OAUSTECH control community, there is no statistically 
significant difference in bacterial counts among the majority of 
the locations (P>0.05). Nevertheless, when the control locations 
are contrasted with the trial sites, there is a notable disparity in 
bacterial loads (P< 0.05) across all the locations. 

These findings align with the conclusions of which indicate 
that the presence of glyphosate leads to a reduction in bacterial 
count, microbial biomass, and acidobacteria population [40-45]. 
For a considerable duration, it was considered that a decrease 
in the population of bacteria may potentially undermine some 
biogeochemical activities carried out by these microorganisms. 
Pathak documented that the harmful impacts of pesticides arise 
from their ability to hinder the production of amino acids through 
the shikimic acid pathway [23]. Nicoleta also reported that the 
presence of Cypermethrin and thiamethoxam in pesticides inhibits 
the metabolic process and significantly decreased ammonifying, 
nitrifying and denitrifying bacteria compared to the untreated sample 
[45]. Conversely, other studies have demonstrated significant 
increase in bacteria count after pesticide treatments. Reportedly, 
bacteria can exploit the pesticide as a source of nutrition, produce 
water and carbon dioxide, and therefore circumvent the pesticide's 
negative effects on the environment. These pesticides build up 
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in the soil and provide carbon and electrons to the microbes that 
live there. For bacteria to biodegrade effectively, several aspects 
must be considered, including the type of bacteria involved, 
the environmental circumstances, the amount and duration of 
pesticide exposure, and growth parameters including temperature, 
pH, moisture, nutrients, and water availability [46-50].

4. Conclusion
Pesticides have a substantial impact on the amount of bacteria 
present in soils. Pesticide use can result in a reduction in soil 
bacteria populations, hence adversely affecting soil health and 
fertility. The influence of pesticides on soil microorganisms is 
contingent upon various elements, such as the specific type of 
pesticide, its concentration, and the mode of administration. 
Implementing organic farming techniques can mitigate the adverse 
impact of pesticides on soil microbes and foster sustainable 
agricultural practices. Hence, it is crucial to meticulously 
assess the utilization of pesticides and contemplate alternative 
methodologies that can aid in preserving robust soil ecosystems.
In order to resolve the conflict between high-yield or stable 
production in agriculture and environmental damage, researches 
must keep tending towards finding and developing pesticides with 
low toxicity, high effectiveness, and low pesticide residues while 
we also keep finding and developing strategies to degrade the 
attending pesticides residues[51-55].
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