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Abstract

In this article it will be shown that by introducing a hyperbolic rotation as function of a Euclidean rotation angle,
all possible Lorentz group spacetime rotations can be performed by Euclidean rotation parameters. This unification
in Lorentz group rotations parameters (all Euclidean) allows for the calculation of the volume of a spacetime region
bounded by the light cone of a past event, i.e., a causality-volume with the shape of a spacetime three-sphere. As will be
calculated, the surface area of the spacetime three-sphere is the volume of our 3D space. Additionally, the unification in
Lorentz group rotation parameters allows for the derivation of a Dirac spinor purely from the spacetime three-sphere
symmetries. This derivation from the spacetime symmetries of a geometrical object yields the same result as solving the
Dirac equation with quantum mechanical eigenvalue eigenvector complex matrix calculations.
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Geometric Algebra, Spacetime Algebra.

1. Introduction

The six generators of the Lorentz group divide in two parts:
(a) three generators related to a hyperbolic rotation in the
three temporal planes (xt, ¢t and zt) plus (b) three generators
related to a Euclidean rotation in the three spatial planes (x4,
y3z and zx) [1-4]. To perform all possible spacetime rotations
three from the six generators are needed. They can be chosen
as: one temporal generator (3t plane) with hyperbolic rotation
parameter ¢ and two spatial generators (zx, xy planes) with two
Euclidean rotation parameters {6, ¢}, i.c., a mixed (hyperbolic
and Euclidean) set of rotation parameters {¢, 6, ¢}. In section
2 it will be shown that the division in hyperbolic and Euclidean
rotation parameters of the Lorentz group can be broken by the
introduction of a hyperbolic rotation with Euclidean rotation
parameter . The resulting Euclidean Lorentz group rotation
parameters {f3,0,¢} can perform all possible spacetime rotations.

The Euclidean Lorentz group rotation parameters {f,60,¢} -
which form the polar coordinates of a spacetime region bounded
by a 4D light cone (4D three-sphere) of a past event (Section 3)
have the following properties: (a) they are connected to parity-
reversal P and time-reversal T (section 4), (b) they can be mapped
to a double cube in R3? (section 4), and (c¢) they are related to
a Dirac spinor, being derived purely from the 4D three- sphere
symmetries (section 5) [5-8]. The volume of the 4D three-sphere
bounds the spacetime positions where potentially an observation
can take place, based on embedded event-information from a

past event, i.e., a causality-volume (section 4). The surface of the
4D three-sphere is a 3D two-sphere (section 4) [9].

Section 6 discusses the central line of thought and provides
additional meaning. For clarity and focus are most of the details in
the various sections (1-6) provided in appendices A-F. However,
if necessary, a section will start with relevant information about
the algebra or specific methods used in that section.

The mathematical formalism used in this article is based on the
geometric algebra (GA) of spacetime as developed by David
Hestenes (Appendix A) [10-12]. Foundations of geometric
algebra where jointly developed by Grassmann and Clifford in
the late 19th century [13,14]. The spacetime algebra (STA) multi-
vectors are “geometric numbers” representing scalars (points),
vectors (directed line segments), bivectors (directed planes),
trivectors (directed 3D volumes), and pseudoscalars (directed 4D
volumes ). These “geometric numbers” are mathematical objects
for geometric analysis in the same way as “complex numbers”
are for analytical analysis. There are many positive arguments
for using GA, especially in physics [15-26]. However, the most
decisive argument is the generalization of rotation which can be
applied in any dimension, and which can act on any multi-vector
by means of the so-called rotors [10,11,15-24,27,28]. Rotors
are directly related to spinors and automatically integrate Lie
algebra by the G4 bivectors [29-31].
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In spacetime algebra (STA) a spacetime inertial frame (reference  minus one, i.e., a Lorentz frame in R'3. The STA orthogonal
frame) {t, x, ¢, z} is represented by a set of four orthogonal basis vectors Y, satisfy the algebra of the Dirac gamma matrices
basis vectors Y,= Ve Vo Vo Vs [!0]. Th.e temporal basis vector (Appendix A).

Y, squares to one, while the spatial basis vectors y, square to

2. Hyperbolic Rotation with Euclidean Angle

# | STA[10, 20-22] Description

1 | vu={tx43 =¥oV1V2Vs} The four orthogonal basis vectors y, for the four spacetime axis {t, x, %, z}.

Fo)2=+1 (p)2=-1 Yu¥o =0 (%) The temporal basis vector y, squares to one, while the spatial basis vectors

2 o ¥, square to minus one, i.e., R3. The basis vectors ¥, satisfy the algebra of
metric diagonal {+1,-1,-1,-1} the Dirac gamma matrices.

YsYo =Vs-Yo + V3 AVe Va.Yo=0 The bIV?CtOr ¥3Y, defines the dlre.cted z.t—pllane. Interchanglng.the order of
3 the basis vectors reverses the orientation in a tz-plane and introduces a

¥3Yo =V¥3 Yo Y3Yo = —YoV3 minus sign.

w = cosh(@)Y, + sinh(9)ys @ € [—o0, 0] Hyperbolic unit-vector w as function of the hyperbolic angel ¢ € [—o0, 0]
4 in the plane spanned by the temporal t-axis basis vector y, and the spatial

2 _ — 2 p2 —
w? =ww = cosh®(¢) — sinh*(¢) = 1 z-axis basis vector y5. The norm w? is the geometric product of ww.

5 wy, = cosh(@) + sinh(@)ysy, = e¥37? The geometric product of wy, gives a multi-vector, with scalar cosh(¢) plus
(ys¥o)? = +1 bivector sinh(¢)ysY,, Which can be written as a Euler relationship e?3¥o®.

6 | R=a+bysy, » R=a—bysy, Revision operator ~ is an invariant type of conjugation.

7 | Be[5T] Is a range indicator, i.e., Euclidean angle in the range —g <B< 32—"

Table 2.1: Overview of STA relevant for this section.
A more detailed overview of STA is given in Appendix A.

For clarity in this section on hyperbolic rotation with Euclidean angle, we will only consider the tz-plane, as spanned by the
temporal y, and spatial y, basis vectors. A generalization follows from section 3 on.

A hyperbolic unit-vector w(¢) as function of a hyperbolic angel ¢ is given by:

w(@) = cosh(@)y, + sinh(@)y; @ € [-wo,0] w? = cosh?(p) — sinh?(p) =1 (2.1)
Unit-vector w(p) describes a hyperbola with an implicit hyperbolic symmetry: cosh?(¢) — sinh?(¢) = 1. However, a hyperbola can
also be described by a hyperbolic unit-vector p(f) as function of a Euclidean angle f3:

p(B) = sec(B)y, + tan(B)ys e p? = sec*(B) —tan*(B) = 1 (2.2)
unit-vector p(f) as function of Euclidean angle 8 describes a positive and negative hyperbola with an implicit hyperbolic symmetry:

sec?(B) - tan?(B) = 1. These two hyperbolic unit-vectors {w(¢),p(8)} describe an equal hyperbola =w(¢) = p(p) if the two different
angle types {¢, f} have the following implicit relationship:

y—
[ tanh(p) = sin(g) pel-Fo o o] ope|-5T 1Y) (23) ]

The hyperbolic angle interval @p€[—o0,00 — 00,—o0] is bound by infinities, while the angle S€ [-3, 32—"] interval is periodic and has a
double cover. Substitution of the explicit function @=tanh (sin(B)) (2.3) in w(¢) will make the two-hyperbola equal:

+w (tanh™(sin())) = p(B) = sec(B)¥o + tan(B)ys B € [-53]
Bel5T (2.4)

—w (tanh™(sin(B))) = p(B) = sec(B)yo + tan(B)ys f € 5]
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Therefore, p(f) is under the implicit relationship tanh(¢) = sin(f) (2.3) a hyperbolic unit-vector +w(¢) as function of Euclidean
angle B € [-%,3E] (Fig. 2.1), but how to perform a hyperbolic rotation with Euclidean angle?

2’ 2

Yo

cosh(<p)yol‘r§_'r_‘fl_(_‘/_’22’_3___

sec(B)vo tan(B)ys

tanh(p) =sin() | ,///
¢ € [0, 0,00, —00] b >

m m w3 7L 3
pel-33 % 3 / ,

p(F) = +w(®)
© Be[-53l

p(B) = —w(p)

Bels¥

Figure 2.1: Shows the equality between the hyperbolic unit-vectors +w(¢) as function of a hyperbolic angle ¢ and the hyperbolic
unit-vector p(f) as function of a Euclidean angle S (using tanh(¢) = sin(f)).

A general rotor R = pS_ is part of the STA even subalgebra (Appendix A) and consists of a scalar density p times a spinor S, [15]
(Appendix B):

____________________________________________________________________________________________________

An irreducible rotor R can be calculated by taking the square root of the geometric product (GP) of two unit-vectors laying in the
plane of rotation [32]. Hence, an irreducible hyperbolic rotor for the {y,y,—3t} plane can be calculated from the square root of the
GP of hyperbolic unit vector w(¢) (2.1) and temporal basis vector y:

R(p) = Jwy, = /cosh(p) + sinh(p)ysy, = Velsho? = e¥3¥09/2 ¢ € [—00,00] (y3¥9)? =1
(2.6)

R(@) = e¥3Y0%/2 = cosh(¢/2) + sinh(¢/2)ys¥o M'=RMR RR=1 R =e 73%0%/2

where R(¢) is an irreducible hyperbolic rotor with hyperbolic angle ¢ and bivector (generator) y,y,, with a positive (y,y,)=+1
signature (Appendix B). A rotation of a (multi)-vector M takes place by a double-sided GP M'=RMR. This is a powerful algebraic
generalizing of rotations because it is applicable in any dimension and with any multi-vector M [10,11,15-24,27,28]. The type of rotor
(hyperbolic or Euclidean) depends on the squared signature of the bivector. A hyperbolic rotor has a positive B>=+1 signature and
a Euclidean rotor has a negative B>=—1 signature. By substitution of the explicit function @=tanh™'(sin(f)) (2.3) in the irreducible
hyperbolic rotor R(¢) (2.6) a mixed type of rotor can be calculated:

R(p) = e?3%0%/2 s R (tanh'l(sin(ﬁ))) =L;(B) = pLy(B)  Density p and spinor L,,; (8)

___________________________________________________________________________________________________

(2.7)

___________________________________________________________________________________________________

where L (B)=pL_,(F) is an irreducible hyperbolic rotor ((y,y,)>=+1) with Euclidean rotation angle 8 (Appendix B). Note that
temporal spinor L ,(B)#Exp(y,y,B/2) is not a Euler relationship (y,y,)*=+1.
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A connection to spacetime symmetries can be made by mapping the Euclidean angle § to relative speed v/c, in the same way has
done with the hyperbolic angle ¢ (rapidity):

tanh(p) = sin(B) — tanh(p) =sin(B) = tv/c Mapping to relative speed

v

- € [—1,+1] o @ E[—,00] One to one (2.8)
e~ N

E €[-1,+1->+1,-1] & BE [—%,g —>§ 37”] Periodic and double cover

The mapping of relative speed v/c to hyperbolic angle ¢ is one to one, while the mapping of relative speed v/c to Euclidean angle
[ is periodic and has a double cover (Fig. 2.1). The mapping of tanh(¢@)=sin(f)=+v/c results in four trigonometric relativistic
proportionality factors with an implicit circular and hyperbolic symmetry:

sin(B) = +v/c cos(B) = +/1—(v/c)?2 » sin?(B) + cos?(B) = 1 Circular

1 +v/c (2.9)
sec(f) = ——— tan(B) = ~ sec?(B) — tan®(B) = 1 Hyperbolic

/1= (W/c)? /1= /e

From the implicit circular and hyperbolic symmetries two explicit vectors {x,p} can be derived:

sin?(B) + cos?(B) =1 » x =y, +sin(B)ys Circular symmetry
T 31
B € [—5.7 (2.10)

sec?(B) —tan?(B) =1 » p = sec(B)y, + tan(B)y; Hyperbolic symmetry

The above given proportionality factors (2.9), symmetries, and vectors (2.10) are visualized in Fig. 2.2:

vo £p=L1(ﬁ)V0Z1(ﬁ) i

p = sec(B)yo + tan(B)ys

) -1
sin(B) = xv/c p? = sec?(B) — tan?(B) = 1

cos(B) = +/1—(v/c)?

(X = L (Brolu(B) |

1 ______________________

sec(B) = W x =yp +sin(Bys
o/ s x? =1 —sin?(B) = cos?(B)
tan(f) = ———r———
an(p +J1—(v/c)? px = cos(B)
Angle § € [—g, 32—"] is related :"—_;l;l_(_/;;;“i_;_/_c_“\‘:
to cos?(B) + sin?(B) = 1. ' BE [—; g' g' 37n i
i P_ « Parity > P, St felnnn -]

_____________________

Figure 2.2: Visualization of the relativistic proportionality factors (2.9) together with the two explicit vectors {x,p} (2.10). Vector
x=L_,(B)y,L,,(B) (position vector) is related to a circular symmetry, while vector p=L, (8)y,L,(8) (momentum vector) is related to
a hyperbolic symmetry.

Note that over the full range of f€ [5 %] vector x is future pointing T, while vector p can undergo a time-reversal T ©T . However,
the two vectors {x,p} will remain aligned in direction, as reflected in the scalar value of their GP px=cos(8)=+V1-(v/c)? (Fig. 2.2).
Both vectors can have a parity-reversal P, <P _.
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3. Spacetime Volume Element

# | STA[10, 20-22]

Description

1 | vy={tx43=ovuy2vs)

The four orthogonal basis vectors y,, for the four spacetime axis {t,x, 4,2}

e)? = +1
YuVv T WV = ZTIW

¥?=-1 Vurn=0+r (u*v)
Metric diagonal {1,-1,-1,-1}

The temporal basis vector y, squares to one, while the spatial basis vectors
¥« square to minus one, i.e., R'3. The basis vectors ¥, satisfy the algebra of
the Dirac gamma matrices.

3 i=vyoy1VaVs =Vo AV1 AV Ays B2=-1

STA pseudoscalar i.

The three orthogonal basis vectors g; for the three spatial axes {x, ¢, z}.

The spatial basis vectors g, = y, ¥, are temporal spacetime bivectors which
are orthogonal to the temporal basis vector y,.

(0)* =41 0405 =0 v (k%))

The spatial basis vectors gy: square to one, form an even STA subalgebra

i = Yo¥1Y2ys = 010,03

5 {1, 0y, gy, 1 }, and satisfy the algebra of the Pauli matrices (algebra of 3D
Oy 0 + 0.0y = 26y space).
6 i=00,03=0N0, Aoy 12 =1 The pseudoscalars of 3D space 0,0,05 and 4D spacetime y,y,Y,Y5 are

equal.

7 Ok =YkYo < Vi = OkYo

Changing spacetime basis vector y, into a spatial basis vector g}, and vice
versa, can be done via a right GP with y,.

8 | sin(B) =xv/c cos(B)=11—-(v/c)?

Relativistic proportionality factors with an implicit circular symmetry.

Table 3.1: Overview of STA relevant in this section.

A more detailed overview of STA is given in Appendix A.

In 3D space each position x can be marked by three cartesian coordinates {x,4,2}

a symmetrical 3D condition:

r?=x2+y?+ 32

x(r,0,9) =rus(6,9)

3D position vector

or by two polar coordinates {6,¢p} connected to

u3(8, ¢) = sin(8)cos(p)o; + sin(8)sin(¢p)o, + cos(¢p)o; (u3)? = +1 Spatial unitvector  (3.1)
e3(8,¢) = sin(8)cos(p)y; + sin(@)sin(p)y, + cos(@)ys  (e3)* =—-1  uz = es¥o

where 72 is the symmetrical 3D condition, an invariant squared spatial distance.

In 4D spacetime each position x can be marked by four cartesian coordinates {ct,x,4,%}:
x = xty, = ctyo + xy; + yy2 + 3¥3 st=x?2=c%t?—x?—y?— 32 (3.2)

However, by using the Euclidean Lorentz group rotation parameters {,0,¢} (section 2), each 4D spacetime position x can also be
marked by three polar coordinates {f,0,¢p} connected to a symmetrical 4D condition (Fig. 3.1) (Appendix C1):

x(ct, B,6,$) = ct(yo + sin(Bles(6, ¢))

Spacetime position vector

=

x(ct,B,0,¢) = xty, 2% =ct x1 = ct sin(B)sin(0)cos(¢p)
(3.3)
x% = ct sin(B)sin(8)cos(¢p) «x3 = ct sin(B)cos(0)

s? =x? = %1% = ¢?t?(1 — sin*(B)) = c*t*cos?(B)  Proper distance

where s?=c?7? is the symmetrical 4D condition, an invariant squared spacetime proper distance.
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@) Yor (b) RO3

sec(f) r-tan(B)- = p /,/yo. e3=0 V3
ct = i
myC =
T,
t
TiTe e3(6,¢) =
T-
T 3T
pel-57]
V1
P« Par‘ity Py
X(Ct = 1!ﬁ! 0! ¢) =Yo + sin(ﬁ)e3(0, ¢) p(mOC = 1'ﬁ' 6' ¢) = Sec(ﬁ)(yo + Sin(ﬂ)e3(9r ¢))

e3(8,¢) = sin(8)cos(P)y, + sin(8)sin(¢p)y, + cos(8)ys (e3)* =-1 Uz = €3)o €3 = U3zYo

Figure 3.1: Visualizes that each spacetime position x can be marked by three polar coordinates {f,6,¢p} connected to a symmetrical
4D condition. In (a) future pointing spacetime position vector x(ct=1,8,0,¢) (3.3) together with momentum vector p(m c=1,5,6,9).
In (b) two-sphere §°* with all possible spatial positions sin(f)e,(8,¢) on and inside two-sphere $°°.

Figure 3.1a shows all possible spacetime position vectors x in a 2D representation, because the temporal basis vector y R and
spatial unit vector e,(6,¢)ER" (3.1) merge as orthogonal vectors (y,.e,=0) to R"*. Figure 3.1b shows all possible spatial positions
sin(B)e,(6,¢) on and inside two-sphere $°* in R%*. Note that over the full range of B€ [-L %] there is a double cover in position.

Spatial position sin(f)e,(6,¢) is equal to spatial position sin(f+m)e (6+m,p)=(—sin(B))(—e,(8,p))=sin(B)e,(8,¢) (Fig. 3.1b).

By coordinate transformation from cartesian {ct,x,y,3} to polar coordinates {ct,3,6,¢p} four spacetime curvilinear basis vectors a,
={a,.a,a,a,} can be calculated (Appendix C2):

[ ox?v
i ay 67]/1)5 ay = {at' ag, Ay, aqb} = {('ZO! aq, &y, a3} rh = {Ct' .8' o, d)} W= {VO' Y1, V2, V3}

V(0 o1 22 .3 0 _ 1_ ; ; (3.4)
xV ={x" xtx%,x3) xP=ct x' = ct sin(B)sin(6)cos(¢)

x% = ct sin(B)sin(8)sin(¢p) x3 = ct sin(B)cos(6)

The metric 9, of the four curvilinear basis vectors a={a.a,a,a,} is given in appendix C2. The wedge product Vi=a Aa Aa,Aa,
of the four spacetime curvilinear basis vectors a, provides via the scalar component V the spacetime volume element dV:

Vi=agAa,Aay Aas = V = c3t3 sin?(B) cos(B) sin(8) —» dV =V cdt dB db d¢
(3.5)
dV = c3t3 sin?(B) cos(B) sin(8) cdt df db d¢ Spacetime volume element.

where dV allows for the calculation of a causality-volume v, = f ' f ' f - f av ,a spacetime region that is bounded by the 4D light
cone of a past event (section 4). TR0

4. Causality Volume S

This section shows the relation between: (a) causality-volume Ve = fr L L LdV , (b) position vector (spacetime trajectory [33-
35]) x(cAt,B,0,¢) (3.3), and (c) the discrete combinations of parity-reversal P and time-reversal T (PT quadrants) as function of
hyperbolic rotation angle ,BE[—” 31 [5, 8, 36, 37] (Appendix D):

2’2
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1 ) —-n 31
V= 37 c*At*cos*(B) x = cAt(y, + sin(B)es (6, ¢)) B € [7,7

(4.1)
3
WP e[-50] @RATBe[0]] BPRTipelfn] @rTpen
Causality-volume V_ bounds all possible spacetime positions where potentially an observation can take place, based on event-

information - embedded in causality-volume V_ - that originated from a past event. The shape of the causality-volume (4D light
cone) is related to merging a one-sphere S'° with a two-sphere $°? into a three-sphere $'* (Fig. 3.1) (Fig. 4.1).

/— Three-sphere S$? = {(x = (yo + sin(B)es (8, d)))) € RM3:x2 = cosz(ﬁ)} ﬁ
(@) N P e R

K P_ « Parity > P,

Figure 4.1: Visualizes the relation between all causal position vectors x(cAt=1,5,0,¢) in three-sphere $'2 and the discrete PT
quadrants. In (a) all causal position vectors x(cAt=1,5,0,¢) with polar coordinates {f5,0,¢} forming the boundary of three-sphere
$'2. In (b) the mapping of the polar coordinates {f3,0,¢} of position vector x, momentum vector p and the PT quadrants to a double
cube in R**.

To give insight in the shape of three-sphere S'2a comparison between: (a) a two-sphere $?° in R*?, (b) a three-sphere $*° in R*°[38,
39] and (c) spacetime three-sphere S$'? in R!?:

4773

$20 ={(xg = ctuz(8,¢)) ER¥*%:x2 =c?t5r=ct} us=-esy, (e3)?=-1 V= 3
mirt

§30 = {(xb = ct(cos(B)yo + sin(ﬁ)u3(9,¢))) € R*0:xf = c?t%4r = ct} V= 5 (4.2)
nrt

§t2 = {(x = ct(yo + sin([)’)e3(0,¢))) € R3:x2 = c%t%cos?(B);r = ct cos(ﬁ)} V= e

where V is the volume of the spheres in comparison. The radius r=ct cos(f) of three-sphere S'? depends on the relative motion of
an observer. Hence, it will stay a three-sphere independent of the direction of motion [9].

The volume of three-sphere ' forms a boundary for proper distance cAt=cAt cos(f) (3.3), i.e., a causality-volume V_that can be
calculated via:

V. J;LLLCZV = fT: /;:/02 f;o szoc3t3sin2 (B) cos(B) sin(B) cdt dB dO d¢
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The B integrand in the calculation of causality-volume V_must be in the range of ,BE[O. g],because there is a double cover in spatial
position (sin(B)e,(0,¢)=sin(f+m)e(0+m,p)) (Fig. 3.1).

The event-information in causality-volume V _ with a 4D “radial” expansion as function of time cAt [9, 40] can potentially be
observed by an observer (measurement device) following a spacetime trajectory x(cAt,[3,6,¢) with a proper distance cAt (Appendix
C1). Here the term spacetime trajectory is meant in the sense of a quantum mechanical path integral interpretation [33-35, 41]. The
event-information in causality-volume V¢ - originated from a past event cAt - expands with the flow of time cAt while an observer
moves along a proper distance cA7. Hence, the event-information in causality-volume V_will be observed on the surface of V
(Appendix D). The surface A_of V_(4D light cone) can be calculated via the expansion rate cAt of causality-volume V :

V.=2mc3At3 [m®] At = At cos(B) Surface A, of three-sphere S¥2 | (4.4)

The surface A_of causality-volume V_is the volume of 3D space, i.e., the volume of a two-sphere $*° (4.2). For observers in relative
motion A_ will remain a two-sphere [9, 40] (independent of the direction of motion).

The relation between the relativistic proportionality factors (2.9) and the discrete P and T reversals (PT quadrants in $*2) (4.1) (Fig.
4.1) as function of hyperbolic rotation angle f€ [-Z, 3] are shown in (Table 4.1):

2’ 2

PT quadrants as PT reversal ratioR = P/T Parity-reversal P Time-reversal T

function of

hvoerboli sin(B) tv/c cos(B) = +/1—(v/c)?

yperbolic tan(B) = 508 = Y reeypr sin(B) = tv/c ® 1

rotation angle 8 +/1-(/c sec N
+J1 - (w/c)?

) _m

RIHﬁE[?ﬂ R_ P T,

mmﬁehﬂ R, P, T,

&tﬂegﬂ R_ P, T

RLﬁeh? R, P T

Table 4.1: Discrete PT quadrants (4.1) as function of hyperbolic rotation angle € [—g, 32—"], i.e., four /2 regions.

Each reference frame {ct,x,4,z} will contain its own angle 8 dependent discrete parity-reversal P «>P_and time-reversal T ,«<>T_
(PT quadrants) (4.1) (Fig. 4.1). Hence, in case of a difference in temporal and/or spatial orientation (boost and/or spatial rotation)
there is a difference in time-reversal T and/or parity-reversal P between the reference frames, i.c., the PT quadrants of the reference
frames will not be aligned.

The result of an observation - based on event-information in causality-volume V_- arises from the interaction between observer
trajectory x and event-information in the four possible PT quadrants:

PT, pe[-50| x(catp ,6+m¢)=cht(y —sin(Ble;(0,))

T, in R®0
P.T., BE [0,%] x(cAt, B ,0 ,P) = cAt(yo + sin(B)es (6, q.’)))
Fig. 4.1b
PT. BE [g, 7'[] x(cAt,B £ m, 0 ,P) = cAt(yO — sin(B)es (6, q.’)))
T_in R30 (4.5)

PT. BE [n,%" x(cAt,B +m, 0 +m, ¢) = cAt(yO + sin(ﬁ)e3(0,¢))

Each of the four spacetime trajectories x(cAt,f,0,¢) is related to a PT quadrant (4.1). Spatial rotation angle 6 provides a parity-
reversal P by 8+ acting on e (6,¢). Temporal rotation angle f§ provides a time-reversal T by f+m acting on cos(f) plus also a
parity-reversal by f+m acting on sin(f) (Table 4.1).
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So, an observer can perform an observation moving along
spacetime trajectory x(cAt,[(,0,¢) or spacetime trajectory
x(cAt,f+m,0+m,¢) which are equal, but different in PT quadrant
(P+T+ or P-T—) (4.5). The same holds for the spacetime
trajectories x(cAt,[,0+m,¢) and x(cAt,f+m,0,¢p) which are
equal, but also different in PT quadrant (P_T, or P,T ) (4.5). The
result of an observation manifests itself on the surface 4_(4.1)
of causality-volume V_ (4.3). However, interactions (observer
trajectory <> event-information) take place during (cAt) a
spacetime trajectory in causality-volume V_ (4.3) (duration
expressed in coordinate time cAt).

The puzzling and fascinating character of an quantum mechanical
observation is the manifestation of event-information in a particle
(fermion or a boson) [4, 42, 43], i.e. it are particles that are
being observed. This is very noticeable in the sound of a Geiger
counter. An observation contains an initial state, a transition
phase, and a final state. In the initial state definite information
(energy, momentum, spin, etc ...) about a particle is known.
The transition phase takes place during an interaction between
observer (measurement device) and the event-information in
causality-volume V . Where the event-information in causality-
volume V_ originates from both the initial state of the particle
(past event) and the observer. The final state provides the
manifestation of a particle - at present time - on the surface A_

of causality-volume V. The initial state is connected to the final
state by a spacetime trajectory x(cAt,B,0,¢) [33-35, 41] through
causality-volume V.

The discrete PT quadrants as function of hyperbolic rotation
angle pe [—g, 37”] (4.1) are connected to the reference frame
of an observer as well as to the reference frame of the event-
information (initial state reference frame). Both reference frames
(observer and event-information) are bounded by the causality-
volume V . The observer via a spacetime trajectory x(cAt,f,0,¢)
with proper distance cAt. The event-information - expanding
with the flow of time cAt - distributed over the causality-volume
V_(4.3). An PT quadrant is discrete, but the orientation between
the reference frames (observer and event-information) can differ
continuously by a temporal rotation over angle  (boost) and/
or by a spatial rotation given by the polar angles {6,¢}. For the
latter we must distinguish between two types of spatial rotation:
(1) a spatial rotation defining the direction of a boost and (2) a
spatial rotation defining the spatial spin direction (vector). In this
article we use an equal boost and spin direction (vector), known
as helicity.

5. Spacetime Spinors
This section shows the derivation of a Dirac spinor ¥, purely
from three-sphere S$'? symmetries (Fig. 5.1).

ﬁ Three-sphere §*? = {(x =(yo + sin(ﬁ)e3(9,4)))) € RY3:x2 = cosz(ﬁ)} ﬁ

Yo
sec(f) r -tan(B)- =

P ,/’/Vo- e3 =0

(a) \

P.T,

€3 (91 ¢)

P, T

P_ « Parity —» P,

L S'2 in a 2D representation

(b) R

V3

»//\Cf3 (9' ¢)

5in(B).

$°2 in R

e
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~
(d) PT reversal § € [

v
sin(B) = i; Parity reversal Py
cos(B) = +4/1—(v/c)?  Timereversal Ty

sin(B) ___ +v/c
cos(B)  +/1- (v/c)?

PT reversal ratio R,

sin?(B) + cos?(p) = 1} Circular symmetry
Sl,(}

ksecz(ﬁ) —tan®(B) =1 Hyperbolic symmetry )

X =yq +sin(Be; (0, p) x2 = cos?(B)

p = sec(B)(yo + sin(Bles(6,¢)) p? =

Figure 5.1: Three-sphere S represents all possible spacetime trajectories x(cAt=1,[3,0,¢) parameterized by three Euclidean polar
coordinates {f,0,¢}, which can be mapped to a double cube in R*? (¢). In (a) three-sphere $'2 in a 2D representation with: (1) the
four PT quadrants as function of angle £, (2) circular symmetry related position vector x, and (3) hyperbolic symmetry related
momentum vector p. In (b) two-sphere $°* in R with all possible spatial positions sin(f)e,(6,¢). In (d) discrete parity-reversal
P and time-reversal T as function of angle S€ [_E, 3_"] , in relation to the circular symmetry of position vector x and the hyperbolic
symmetry of momentum vector p. 22

The Lorentz group consist of six generators, represented by the six spacetime bivectors {o,,io,} (Appendix A). To perform all
possible spacetime rotations three of the six bivectors {,,io,} are needed. They can be chosen as: (a) temporal bivector o, (zt
plane) and (b) two spatial bivectors {io,,io,} (zx, xy plane) [22, 28]. From this set of three orthogonal planes represented by
spacetime bivectors {0,,i0,,ig,}, three unitary irreducible rotors {L,(8),Q,(0),Q »(P)} can be calculated [32] (2.6) (2.7) (Appendix
B):

L (B) = /sec(B) (cos (g) + sin (é) 03) Temporal rotor in: o3 = y3Y, plane (03)* = +1

6 0
Q@ =1 (cos (E) — sin <E> ﬁcrz) Spatial rotor in: —ig, = y3y; plane (ig,)? =—-1  (5.1)
~ & (b . o L
Qe () =1|cos 5)—sinls fiog Spatial rotor in: —iio; = y,y, plane (iog3)* = —1

where L (B)=Vsec(B)L,,(B) is an unitary irreducible temporal hyperbolic rotor with scalar density Vsec(f) times temporal spinor
L, (B)(2.7)and {Q,(0),Q H(P)} are two unitary irreducible spatial rotors. Rotors are part of the STA even subalgebra M+ (Appendix
A). So, the GP of § (8,¢)=0Q AP)Q,(6) provides by means of the two orthogonal spatial planes {io,,io,} a unitary spatial rotor
S5,(6.9):

6 6 —~ N\~
5:.0,0)=1,W, =1 <cos (9> — sin (?) ﬁa3) (cos (—) —sin (—) ﬁGz) A= (W1W1) Vo 1
2 2 2 2
(5.2)
§02 — {ek = 51Yk§1 € RO3. e,% = —1} eg-e = diag(—1,-1,-1)

Spatial rotor/spinor S (6,¢) is equal to a complex Pauli spinor [15, 20, 44, 45] (Appendix E1).

The geometrical product of spatial spinor S (6,¢) with irreducible temporal hyperbolic rotor L (f) (5.1) - acting in temporal plane
o, which is orthogonal to each of the two spatial planes {io,icg,} - results in a spacetime rotor R (8,0,¢)=S (0,¢)L (B) (Appendix
E2):
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______________________________________________________________________________________________

= o (2) s (31) o 0) - () ) e 0 () )

e e e e e e e e e e e e e e e e e e e e e / (5.3)

In spacetime rotor R (8,0,¢)=S (6,¢)L l(ﬁ)S‘ (8,0)S (0,0)=S ,(8,0)L () are the boost direction and the spin direction vector aligned,
i.e., helicity. The general case with a separation in boost and spin direction is research in progress R (8,6,,¢,.0 ,¢ )=S (6,,9,)L,(B)

5,(6,,9,)S,(6,.0).

Spacetime rotor R =n, U, has due to the demand for unitarity R 11?121 a density factor of n,=Vsec(f), which is true for the helicity
(this article) and general (in progress) formulation of spacetime spinor R|. The spacetime spinor part U =S L  consist of a spatial
spinor S| times irreducible temporal spinor L

______________________________________________________________________________________________

{ U, (B,0,¢) = (cos (%) — sin (g) 1‘:’103) (cos (g) — sin (g) ﬁaZ) (cos ([2—;) + sin (g) 03) E (54)

Spacetime rotor R, (5.3) and spacetime spinor U, (5.4) can perform all possible spacetime rotations while preserving circular and
hyperbolic symmetries in R” (Fig. 5.1) (2.9). This symmetry preserving property is reflected in the two spacetime frames P=Ry.R,
and x=UyJU,as shown in table 5.1.

P, =Ryy,Ri €RV:PE =1,PF = -1 Xu = U1y Uy € R¥3: ¢ = cos?(B), xE = —cos?(B)
u — —
Ry = Vsec(ﬁ)leul :Pu = R1YFR1 Uy = S1Lu Xu = UIY;(UI
0 Py = p = sec(B) (v, + sin(B)e3) Xo =X =7Yo+sin(Bes
1 j P = e =875 Spacetime bivector X1 = cos(B)es 1
2 P, =e, = 57,5 viyz = 703 X2 = cos(B)e;
3| Py = sec(B) (sin(By, +es) X5 = sin(BYyo + es
Hyperbolic symmetry: sec?(B) — tan?(B) = 1 Circular symmetry: sin?(f) + cos?(B) = 1

Table 5.1: Circular and hyperbolic R'* symmetries as reflected in the spacetime frames P, and X

The emerging pattern in the spacetime frames {Pox,} isindependent of the three selected orthogonal spacetime bivectors {0 ,,i0,,io,}
(5.1) from which the three irreducible rotors where calculated {L (8),Q,(6),Q AP} If the choice had been a different temporal plane
with two other spatial planes, the emerging pattern would have been the same.

The emerging pattern from the spacetime frames IP#(,B,H,qb) and )(H(,B,H,q,’)) can be summarized as:

*  The sum of the vectors P +P, and x +x, are null vectors, i.e., .’P# and X, are Lorentz frames.

e The QP of .‘PLPZ and y x, are related to spacetime bivector yy,=—fo, (Table 5.1) via bivector e]ez=(R]y].Rl)
(R Y,R =Ry v,R=l(sin(B)cos(¢)o +sin(8)sin(¢p)o,+cos(0)o,) [21] (Venzo de Sabbata; page 116 —page 122). So, spacetime

bivector e e,=R y y,R =—fu, is the dual of the spatial unit vector u,=S ]035' ,»1.€., the dual of the boost and spin direction (vector).
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Aphase S/h (action S divided by Planck’s constant #) - to induce a phase in bivector y,y,=-ig, - can be calculated from the GP
of momentum and position S=px. This GP of action S=px [46, 47] will unify the hyperbolic symmetry of momentum p with
the circular symmetry of spacetime trajectory x (Appendix E2):

S = px = myc?At cos(B) = +myc?Aty1 — (v/c)? [kgm?/s] px=p.x » pAx=0
(5.5)

S/h=m°czAtcos(,8) [<] = S/h=wlAt ﬁe[

- 311]
h

2’2
Bringing together: (a) spacetime spinor U, (5.4), (b) spacetime bivector y y,=—fo, (Table 5.1) and (c) phase S/ = w At (5.5),
results in a wavefunction ¥ (x)=y (cAt,B,0,¢):

2

myC
¥1(cAt, 8,6, ¢) = Uy Exp(—io30,A7) wy = —

At = At cos(B) = +At\J1 — (v/c)? (5.6)

Wavefunction ¥ (cAt,[(,0,¢) derived purely from $'? symmetries (Fig. 5.1) is a solution of the Dirac equation [4, 15, 22, 27, 48,
49] (Appendix E3):

__________________________________________________________________________________________________

i AV, (X)ias — moc?h (v =0 P1(x) = P, (cAt, B,6,¢) = U1 (B, 6, ) Exp(—iozwyAT) E (5.7)

Consequently, ¥_(x) is a Dirac spinor representing information that at observation will manifest in one of the four fermion
properties: a particle or anti-particle with spin-up or spin-down. An observer (measurement device) can perform a measurement
along a spacetime trajectory x in four possible PT quadrants (4.5) (Fig. 5.2).

P_ < Parity > P,
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/ (c)

x(cAt, B, 6, ¢) (4.5) with

T T T 3m

PT quadrant Rﬂ”ﬁek?ﬂ Pﬂ;ﬁepﬁ] ﬂ[ﬁekm] R[ﬁehq-
Relative orientation The discrete PT quadrants are connected to a {ct, x, ¢, 3} reference frame (inertial frame).
between the frames These reference frames can have a difference in temporal and/or spatial orientation.
Related causality-volume. V.= irr c*At* [m*] has an 4D “radial” expansion as function of cAt = cAt cos(B)
Related observer R_P.T, x(cAt,B 0 £ m, ) = cAt(y, — sin(B)es (6, ¢))
(measurement device) R,P,T, x(cAt, B 0 ,P) = cAt(yO +sin(B)es (8, ¢))
spacetime trajectories R = P/T;Ratio cAt

R_P,T. x(cAt,B+m0 ,P)= cAt(yo —sin(B)es (0, ¢))

proper distance cAt. R,P.T. x(cAt,f 1,0 £m,¢) = cAt(yo + sin(Bes (6, ¢))

______________________ N

Related Dirac spinor 1 (x). R_P.T,; Particle  Sypum

Y1 (cAt, B, 0, ) with the
four possible fermion

R,P,T,; Particle Sup

R_P,T_; Anti-Particle Sgouwn

[
1
i
1
1
1
1
i
1
properties at observation. !
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
U

R, P_T_; Anit-Particle Sup

S -

Note the connection with
the spacetime trajectories.

Y, (cAt,p ,0tmd)=151041m, DYoL (B)y e~ 1300t
Y, (cALB 0 ) = 151(0, )Ly (Be 173w0lT

Vi (ALBEmO ,d) = £51(0,)yLur (B £ My etiosent
), (cAt, B+ 1,0 £1,¢) = £51(6 + 1, )Lyt (B £ metioawot

Exp(—iozwoAt cos(B)) = e™17s®ol® Exp(—io30oAt cos(B + 1)) = e*io3w0lT

S'2, R; yoLy1Yo Spin-reversal via PT ratio SY2,P; @ + m Parity-reversal SY2,T; B + m Time-reversal via cos ()

2

—/

Figure 5.2: Three-sphere S'? representing all possible spacetime trajectories x(cAt=1,8,0,¢) parameterized by three polar
coordinates {f,0,¢}. In (a) three-sphere S'? with the four PT quadrants together with future pointing position vector x. In (b) the
mapping of the PT quadrants in §'* to a double cube in R*’. In (c) the relation between: PT quadrants, causality-volume V , related
observer spacetime trajectory x, and related Dirac spinor ¥ (x) with the four possible fermion properties at observation on surface

A_ of causality-volume V .

Dirac spinor ¥ (x) holds all possible information that at
observation will manifest in one of the four fermion properties:
one of the four eigenvalues of the Dirac equation a particle or
anti-particle with spin-up or spin-down. Hence, Dirac spinor
¥ (x) implicitly holds all four eigenvectors 1/:j={1/)1,1/)2,1p3,1p . of
the Dirac equation. The eigenvectors 1/)], whitin ¥, can be made

explicit by geometric derivation acting on 3, (Fig. 5.2c) (Table
5.2). The geometric derivation provides a connection between
the eigenvectors w}. and the PT quadrants via a parity-reversal
(P,<»>P_) provided by 8=+, a time-reversal (T ,«>T ) provided by
p+m and a spin-reversal (up <> down) provided by y L v, i.e.,
spin-up at P,T ,P T and spin-down at P T ,P,T (Table 5.2).

)

Y;(cAt, B, 6, ¢) U; = S1Ly4 as a base.

Eigenvectors Geometric derivation of U, and V; with Ui(B,6,¢) and V;(B,0,¢)

52(6,9) = $1(6 +m, ¢)

Yy = Uyeios@ol® Uy =156, 9) L1 (B) R.P.T, | Uy = £51(6,$)(+cos(B/2) + sin(B/2)03)

%)

up

Y, = Uye10300ht Uy, = 25180 £, 0)voLui(B)yo R-P.T, | Uy = £5,(8,9)(+cos(8/2) — sin(B/2)03) Saown

Y3 = Vyetioswolt Vi =250 +m )Ly (BEm) RPT. | Vi =1x5(0,¢)(—sin(B/2) + cos(B/2)a3)  Sup

Yy = Ve tios®lt Vo =15(0,0)voLui(B £ myo R-PT. | Vo =15(0,¢)(—=sin(8/2) — cos(B/2)a3) Saown

Exp(—ioswoAt cos(B)) = e7193908T  Exp(—iow,At cos(B + 1)) = e*i95@oAT  Ppositive and negative energy states

S'2, R; yoLy1Yo Spin-reversal PT ratio $'2,P; O +  Parity-reversal SY2,T; B + m Time-reversal via cos(f)

Table 5.2: Relation between Dirac spinor i, (x) and the eigenvectors l,bj(x) of the Dirac equation.
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Here U =S L is a base for the geometric derivation. However,
each of the spinors U, or V, can serve as a base because each of
them separately can be derived purely from S'? symmetries. The
spatial spinors S, (5.2) and S, in U,,V, are directly related to the
complex Pauli spinors [50] (&5,(0,9)=S (0+m,¢)) (Appendix
El).

Each of the eigenvectors 1,[}}. (Table 5.2) of the Dirac equation (5.7)
are directly related to the four well known complex eigenvectors
[4] of the Dirac equation [15,22,27,48,49] (Appendix E3).
Figure 5.2c and table 5.2 show that the four eigenvectors
l,l)j: {Y, ¥, ¥, ¢,} are connected to the PT quadrants (Table 4.1)
and the spacetime trajectories x(cAt,S,0,¢) (4.5) of an observer.
The two reference frames (observer and event-information)
will interact in the transition phase. If they are aligned in PT
quadrants (4.1) the initial state is with a 100% probability
detected in the final state. If there is a difference in temporal and/
or spatial orientation an PT quadrant information mixing will
occur providing final state outcome probabilities for: particle
and anti-particles with spin-up or spin-down. An experiment to
proof or falsify this logic is given in appendix F.

6. Discussion

The introduction of a hyperbolic rotor L (f) (2.7) with Euclidean
angle f unite the mixed Lorentz group rotation parameters into
a set of Euclidean rotation parameters. This unification allows
for: (a) a periodic and double cover connection with spacetime
symmetries (2.8) (2.9), (b) the calculation of a causality-
volume, i.e., the volume of a three-sphere S$'2 (4D light cone)
(Fig. 4.1) (4.3), and (c) the derivation of a Dirac spinor (5.6)
purely from three-sphere S'? symmetries (Fig. 5.1). The
connection with spacetime symmetry (2.9) is based on the
mapping of tanh(¢@)=sin(f)=*v/c to relative speed (2.8). It
is this implicit tanh(¢@)=sin(f) relationship which allows for
the decomposition of irreducible hyperbolic rotor R(¢) (2.6)
in a scalar density \'-sec(ﬁ) and a temporal spinor L (B) (2.7).
An important factor for the calculation of causality-volume V
(4D light cone) is the spacetime curvilinear volume element dV
(3.5). This volume element dV (3.5) also offers the possibility to
calculate spacetime densities, spacetime Green’s functions [51,
52] and spacetime Fourier transformations.

The Euclidean Lorentz group rotation parameters {,0,¢}, form
the polar coordinates {,6,¢} of three-sphere S'* (4D light cone)
(Fig. 4.1). The volume of three-sphere $'* bounds the spacetime
trajectories x(cAt,[5,0,¢ ) (4.2) where potentially an observation
can take place based on event-information from a past event
cAt, ie., a causality-volume V _. The event-information in
causality-volume V_has a 4D “radial” expansion as function of
time cAt [9,40] while an observer follows a spacetime trajectory
x(cAt,B,0,¢) in V_with proper distance cAt [33-35,41]. Hence,
an observation takes place - at present time - on surface A_(4.4)
of V. However, the interaction between event-information and

observer will take place during the transition phase in V_(4.3).
Where the event-information is connected to the refence frame
of the initial state.

Spacetime rotor R, (5.3) and spacetime spinor U, (5.4) can
perform all possible spacetime rotations while preserving
circular and hyperbolic symmetries in R'* (2.9) (Fig. 5.1) (Table
5.1). Due to the use of a hyperbolic rotation with Euclidean
angle L (B) (2.7) (5.1) is it possible to decompose spacetime
rotor R =n S L =n U, (5.3) in a scalar density n =Vsec(f) and
a spacetime spinor U =S L . This decomposition shows clearly
that spacetime spinor U =S L  consist of the GP of a spatial
spinor S| (5.2) and a temporal spinor L , (2.7) (5.1).

Temporal spinor L , with the characteristic half Euclidean angle
p is related to a boost, while the spatial spinor S is related to the
well-known complex Pauli spinors [15,20,44,45,50] (Appendix
El). Although U,=S L, is STA even, the GP U,U =cos(B)
is a scalar value. So, the demand for unitarity of spacetime
rotor Rlﬁl:l introduces the density factor r/l:\/sec([)’) (5.4),
which has a singularity at f = = m/2 = v = +c. Dirac spinor
Y (x)=U(B,0,¢) Exp(—io,w,At) (5.7) derived purely from
S$t2 symmetries (Fig. 5.1) contains all possible information to
manifest at observation in one of the four fermion properties
(Fig. 5.2¢) (Table 5.2), i.e., one of the four eigenvalues of the
Dirac equation (Appendix E3). Hence, the geometric derivation
(Table 5.2) - acting on Dirac spinor ¥ (x) - yields the same result
as solving the Dirac equation with complex quantum mechanical
eigenvalue eigenvector matrix equations.

The process of an observation contains an initial state, a transition
phase, and a final state. The transition phase takes place during
(cAt) an interaction between observer (measurement device)
and the event-information in causality-volume V . The observer
as well as the event-information have discrete PT quadrant (4.1)
connected reference frames (Fig. 5.2c) (Table 5.2). Where the
event-information is connected to the reference frame of the
initial state. If there is a difference in temporal and/or spatial
orientation between the two reference frames (observer, event-
information) a discrete PT quadrant information mixing will
occur. An experiment to proof or falsify this logic is given in
appendix F.

The idea to connect relative speed to a hyperbolic and
trigonometric function tanh(¢@)=sin(f) = + v/c (2.8) was
already in my notebook many years ago. This connection
opened a view on unknown territory, but by using common
math/physics it was difficult to put my ideas on paper. At the end
it was the use of geometric algebra that allowed me to write this
article on “Hyperbolic rotation with Euclidean angle illuminates
spacetime spinors”. Hopefully it will encourage you to embark
for a stimulating research journey through unexplored territory.
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Appendix A: Overview of spacetime algebra (STA)

# Spacetime Algebra (STA) [10, 20-22]

Description

1 | v={tx4 3} =VovV2Vs}

The four orthogonal basis vectors y,, for the four spacetime axis {t, x, 4, z}.

Go)?=+1 )*=-1 ¥ =0rv =)
YuVv + Vo¥u = 21, Metric diagonal {1,-1,-1,-1}

The temporal basis vector y, squares to one, while the spatial basis
vectors y, square to minus one, i.e., R3. The basis vectors Yy satisfy the
algebra of the Dirac gamma matrices.

3 | i=vonreVs = Vo AViAY2 AYs BP=-1

STA pseudoscalar i.

4 | a=a,+a'y; b=0b,+bly,

Two STA vectors a, b in the {y,y; — tx} plane.

ab=ab+anb
ab = (a%, + a'y,)(b%, + b'y;)
ab = a®b%,y, + a®blyoy; + a'b®yyy, + athyy,

The GP of two vectors ab = a.b + a A b is the dot product a. b plus the
wedge a A b product, resulting in a scalar plus a bivector.

M= (M>o+(M)1_ (M), _(M)3 + (M),

5
ab = (a®b°® — a'h)1 + (a®b* — a'b)y,y; The dot product a. b is the symmetrical part of the GP ab while the wedge
a.b=a’h° — alp? Scalar product a A b is the asymmetrical part of the GP ab.
aAb=(a’h' — a'b)y,y, Bivector
4D space 3D space, M, The full STA is a graded (M), linear space with dimension 2* = 16.
Scalars 1 (M), 1 The STA multi-vectors are “geometric numbers” being scalars, vectors,
bivectors, trivectors, and pseudoscalars.
Vectors Yu (M), The spacetime bivectors (M), consist of three temporal bivectors g, and
. three spatial bivectors igy,. The temporal spacetime bivectors form the
6 Spacetime Y«Yo Ok = YkYo . P K . P P
X (M), basis vectors gy, for the three spatial axes of 3D space {x, ¢, z} (see A.9).
Bivectors iyevo fio,, = fyiyo
General STA multi-vector M:
Trivectors fr, | (M) M = (Mg + (M), + (M), + (M); + (M), 4D space.
Pseudovectors i (M), i M, =M — iMi) = (M), + (M), + (M), 3D space
M=(M)o+(M)1+(M)2+<M)3+<M)4 - . . . . .
7 Revision operator ~ is an invariant type of conjugation.

M, = 3(M — M) = (M)q + (M), + (M),
8 | MyM, =M, = (M)o+ (M), + (M),
M+M+ = (M)o + <M)4

The even subalgebra M, of STA is closed under a GP, i.e., the GP of
M.M, =M,.

The GP of M, M, = (M), + (M), gives a scalar plus a pseudo scalar.

o = {x,4,2} = {01,003}

The three orthogonal basis vectors gy, for the three spatial axes {x, ¢, z}.

g, =v¥iYo (0p)?=+1 The spatial basis vectors g, = y,y, are temporal spacetime bivectors
9 . with each of them orthogonal to the temporal basis vector y,. The spatial
foy, = {0,03,030,,0,0,} . N . R
bivectors io, square to minus one and are together with gy part of the
foy, = fyeyo (iop)? = -1 even subalgebra M, of STA (see A.6).
2 _ _ .
10 (@)*=+1 005 =0 0 (k#)) The spatial basis vectors g square to one and satisfy the algebra of the
0Ok 0; + 0;.0), = 26y; Pauli matrices (algebra of 3D space).
11 i=000;=01A0y N0 FP=-1 The pseudoscalars of 3D space 0,0,0; and 4D spacetime y,y,Y.Y3 are
i =yoy1¥2¥s = 010,03 equal.
Changing spacetime basis vector y,, into a spatial basis vector g; and vice
12 | ok =YkYo € Yk = 0k)o gINg sp Yk P k

versa, can be done via a right GP with the temporal basis vector y,.

Appendix B: Irreducible rotors

Irreducible rotors: an irreducible rotor R = (M), + (M), is an even subalgebra M, unitary (Rﬁ = +1) geometrical number with
# | zero pseudoscalar (M), = 0. Where (M), is a STA temporal bivector g, = y, ¥, or a STA spatial bivector 1o, (Appendix A).

The type of irreducible rotor depends on the squared signature of the bivector (hyperbolic (g;)? = +1 or Euclidean (ig})? = —1).

A general rotor R = pSy consist of a scalar density p times a spinor S; and is part of the STA even subalgebra M,.

Even if pseudoscalar (M), in R is non-zero the rotor should be unitary RR = 1, i.e., the pseudoscalar part in RR should be zero.

R(p) = +1(cosh(@/2) + sinh(p/2)a;) = et3%/?
2 | R(p) = +1(cosh(p/2) — sinh(p/2)a;) = e %%/2
w = RyoR = cosh(@)y, + sinh(@)y,

@ € [—o0, 0]

Irreducible hyperbolic rotor R(¢) = (g3)? = +1 with hyperbolic
angle @ acting in the o3 — zt plane.

A rotation of a (multi)-vector M takes place by a double-sided GP
M’ = RMR.
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Qg (8) = +1(cos(6/2) — sin(8/2)ic,) = e~1020/2
3 | Qg(6) = +1(cos(8/2) + sin(8/2)ia,) = e*io=0/2
u= Qg¥3Q9 = cos(8)y; +sin(A)y, 6 € [0,2n]
Qy () = +1(cos(¢/2) — sin(¢/2)ia,) = e™17:9/2
4 | Qu(P) = +1(cos(¢/2) + sin(¢p/2)ig;) = e*ios¢/2

u=Qp¥1Qyp = cos(P)y; +sin(@)y, ¢ € [0,2n]
s N
R(p) =e%%%? — R (tanh‘l(sin(ﬁ))) =L,(B) =pLy Irreducible hyperbolic rotor L;(8) + (05)? = +1 with Euclidean

angle 8 acting in the a; — zt plane. Rotor and spinor are different.
L =,/sec cos(B/2) + sin(f/2)o
5 18 () (cos(8/2) (B/2)o) The substitution of ¢ = tanh‘l(sin(ﬁ)) (2.3) in the hyperbolic

L, (B) = ysec(B)(cos(B/2) — sin(B/2)a3) rotor R(¢) (2.6) (B.2) gives a mixed type of rotor L, ().
p =+/sec(B) Ly = cos(B/2)+ sin(B/2)o; B € [—232—"] Temporal spinor: L,,, (8) = cos(B/2) + sin(f/2)a; + e*?3F/2

Irreducible spatial rotor Qu(8) ~ (fig,)? = —1 with Euclidean
angle 6 acting in the 1o, — zx plane. Rotor and spinor are equal.

Irreducible spatial rotor Q,(¢) = (fo3)? = —1 with Euclidean
angle ¢ acting in the iz = xy plane. Rotor and spinor are equal.

u=LyoLy = sec(B)y, + tan(B)ys B € [0,2n] u? = +1 Vector x is future pointing while vector u can have a time-reversal

- for B + m. Note that 8 + m will also induce a parity-reversal in
— — i 2 2
6 | x=LuYoLu =vo+sin(Blys B €[0,2n] x* = cos*(p) vector x. Both vectors will remain aligned, as reflected in the scalar

u = sec(B)x = sec(B)(yo + sin(B)ys) ux = cos(B) | value of their GP ux = cos(B) (Fig. 2.2).

. J
sin(B) = tv/c cos(B) = /1 —(v/c)? w sin®(B) + cos?(B) =1 Circular symmetry S € [—g, g,—> g, 37"]
sec(B) = 1 tan(B) = _ Evie - sec?(B) — tan?(B) = 1 Hyperbolic symmetry Ve [-1,1,-1,-1]

7 +y1-(w/c)? +J1-(/c)? ¢

The mapping of tanh(p) = sin(B) = +v/c B € [—§,32—”] results in four trigonometric relativistic proportionality factors with an
implicit circular and hyperbolic symmetry.

Appendix C1: Spacetime position vector x and momentum vector p

# Spacetime position vector x and momentum vector p.

1 e;(0,¢9) = sin(0)cos(p)y, + sin(8)sin(p)y, + cos(0)y; ‘ Spacetime spatial unit vector e5(8, ¢); (e3)? = —1; uz = esy,.

2 | x(ct, B,6,¢) = ct(y, + sin(Bes(6, ¢)) ‘ Spacetime position vector x(ct, 8,6, ¢) (Fig. 3.1).

U x = ctyy + ct sin(B)sin(0)cos(p)y; + ct sin(B)sin(8)sin(¢p)y, + ct sin(B)cos(0)y;
tanh(tpguz sin(B) = +v/c >  x = cty, + vt sin(8)cos(¢p)y, + vt sin(0)sin(Pp)y, + vt cos(0)y; = cty, + vt e;(6, P)
3 - x? = c?t? —v?t? = ¢?t? cos?(B) » s =ct =ctcos(B) » T =t cos(B)

The different vector components x* = {ct, |X|e; (8, ¢)} of spacetime position vector x(ct, 8,6, ).

Proper distance s = ¢t = ct cos(B) with proper time T = t cos(B) = +t/1 — (v/c)?.

4 | p(myc,B,0,¢) = myc sec(B) (v, + sin(Bes (6, ¢)) ‘ Spacetime momentum vector p(myc, B, 0, ¢) (Fig. 3.1).

P =p*Y =00 + 01 + 0?72 +0°Ys
p =mgyc sec(B)y, + myc tan(B)sin(8)cos(p)y, + myc tan(B)sin(0)sin(¢p)y, + myc tan(B)cos(8)y;
5 | p =mycsec(B)y, + mov sec(B)sin(8)cos(P)y, + myv sec(B)sin(8)sin(Pp)y, + myv sec(f)cos(6)ys
E
E/c=mocsec(B) |l =movsec(B) p=_Yo+IBles(0,8)  p* = (moc)?(sec*(B) — tan®(§)) = (moc)?

The different vector components p* = {E /c, |Ble; (6, ¢)} of spacetime momentum vector p(myc, B, 0, §).

Appendix C2: Curvilinear basis vectors a, and spacetime volume element dV

# Curvilinear spacetime basis vectors a,, and spacetime volume element dv.

x = x + xly; + x2y, + x3y; x = cty, + ct sin(B)sin(8)cos(¢p)y, + ct sin(B)sin(8)sin(¢)y, + ct sin(B)cos(0)y;

1
Spacetime position vector x(ct, 8, 0, ¢)
T P ™
i a=oh g={aagapag)  x'={x0x 2t %% ={ct.f,0,4} ¥ ={oriV2 s}
4
2 l\ x%=ct xt = ct sin(B)sin(8)cos(p) x% = ct sin(B)sin(0)sin(¢p) x3 = ct sin(B)cos(9)
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a; = %yv ~ a; = ct cos(B)sin(8)cos(p)y; + ct cos(B)sin(8)sin(¢)y, + ct cos(B)cos(0)y;

a, = %yu ~ a, = ct sin(B)cos(8)cos(p)y; + ct sin(B)cos(8)sin(¢p)y, — ct sin(B)sin(8)y;

az = %yn = a; = —ct sin(B)sin(8)sin($)y, + ct sin(B)sin(8)cos(¢p)y,

The four curvilinear spacetime basis vectors a,, = {a,, a;, @, as}.

cos?(B) —ct sin(2B)/2 0 0
—ctsi 242 .2
; Qv = @ty = CtSl?:)(Zﬁ)/Z c?t Ocos ®B —cztzosinz(ﬁ) g
0 0 0 —c%t? sin?(B)sin?(9)

The metric g,,,, of the four curvilinear basis vectors a, = {a,, @y, a5, as}.

ds? = cos?(B)c?dt? — ct sin(B)cos(B)dtdp — ct sin(B)cos(B)dBdt — c?t? cos?(B)dB? — c?t? sin?(B)dH>
4 —c?t? sin®(B)sin?(0)d¢?

Line-element form of the g,,, = . a, metric.

Appendix D: Causality-volume of three-sphere S*? (4D light cone)

# Causality-volume of three-sphere S in relation to position vector x and discrete PT quadrants.

§12 = {(x = cAt(y, + sin(B)es (8, q’)))) € RY3: x% = c2At%cos?(B); r = cAt = cAt cos(B)}

' Spacetime three-sphere $'2 with radius r = cAt.

, | *= cAt(y, + sin(B)es (6, $)) x% = c?At? cos*(B) +— s = cAt = cAt cos(B)
Spacetime position vector x(cAt, 8,0, ¢) with proper distance s = cAt.

3 The radius of three-sphere $*2 (r = cAr) is equal to the proper distance s = cAt (3.3) of position vector x. Hence, position vector
x(cAt, B, 6, ¢ ) is pointing at the surface of three-sphere $'2.

4 Note that the radius of $* and proper distance of position vector x are positive because ct and cos(3) keep an equal sign under

time-reversal Ty: {cAt = (+cAt) (+cos(B))} (Fig. 4.1).

5 Spacetlme causality-volume V. of three-sphere $'2 (4D light cone) (4.3).

Causality-volume V has a 4D “radial” expansion as function of time cAt and bounds the spacetime positions x where potentially
an observation can take place based on information from a past event cAt.

The discrete combinations of parity-reversal P, < P_ and time-reversal T, < T_ (PT quadrants) in relation to the four quadrants
6 of hyperbolic rotation angle 8 € [—f 3—”] [5, 8, 36, 37] (Table 4.1) (Fig. 5.2).

The discrete PT quadrants are connected to a reference frame (inertial frame) {ct, x, ¢, z}. Hence, the different reference frames
in an interaction can via a difference in temporal and/or spatial orientation contain PT quadrant information mixing, i.e., parity-
reversal P, & P_and time-reversal T, < T_ between the reference will not be aligned.

x(cAt, B,8,9) = cAt(y, + sin(Bles(6,¢)) s = cAt = cAt cos(B)

The event-information in causality-volume V. has a 4D “radial” expansion as function of time cAt while an observer follows a
spacetime trajectory x(cAt, 3, 6, ¢) through V, over a proper distance cAt. Hence, the event-information in V, will be observed -
at present time - on surface A, of causality-volume V..

The surface 4, of causality-volume V, is the volume of 3D space, i.e., the volume of a two-sphere $%° (4.2).

Surface A, can be negative. However, due to the future pointing character of the spacetime trajectories an observation will take
place on the positive side of surface 4.

However, the double cover of position vector x allows for the contribution of all PT quadrants to an observation.
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Appendix E1: Spatial spinor $'(0,¢) is equal to a spin-up complex Pauli spinor

# Spatial spinor S, (0, ¢) is equal to a spin-up complex Pauli spinor.

5.,(6,¢) = (cos (?) — sin (%) ﬁo-g) (CDS (g) — sin (g) iioz) = e7l03b/2p1026/2

0 ¢ (O . (PN, (0 (AW 0\ . (), )
. 5,06, ¢) = cos (E) cos (5) + sin (E) sin (E) o, — sin (E) cos (E) o, — cos (E) sin (E) io;  S$;(0,0) =1 Spin — Up
i
0. ;43 -
5,(8,¢) = a® + atio, — a’io, + a’io; < 1S,(6,¢)) = (+a2 + ?a1) = (COS(G/Z)E :¢> 15,(0,0)) = ((1)) Spin — Up
—a’+ia sin(0/2)e* =
Spatial spinor S; (0, ¢) (5.2) is equal to a spin-up complex Pauli spinor IS,) [15, 44] (i = v—1).
¢ (PN, (0 AW . .
S5,(0,9) =S5,(6 +m,¢) = (cos (E) —sin (E) 1103) (—sm (E) — cos (E) 1102) 5,(0,0) = —io, Spin — Down
2 _ _ (—sin(8/2)e /2 (0 .
15,6, 9)) = 1S,(6 + m, §)) = (+COS(9/2)6+¢¢/2) 1S,(0,0)) = (1) Spin — Down
Spatial spinor S,(8, ¢) is equal to a spin-down complex Pauli spinor IS, ).
km = {0, m, 2m, 3m, 4m}
5,0 + km, ) = {+S1,+S,, =S, =S5, +51}
Typical spinor characteristics: picking up a minus sign at a 2 rotation and being back original after a 4m rotation.
3 Important: note that 6 + m gives a spin-reversal (up < down), plus also a minus sign:

5,0 xm,¢) ={+S,,—S,}and S, (6 £ 7, ¢p) = {—S,,+S,}
However, 8 +  will also induce a parity-reversal in the spacetime spatial unit vector e (8, ¢), (e;)? = —1.
e3(0,9) = sin(0)cos(p)y, + sin(0)sin(¢)y, + cos(0)y; = e;3(6 £ m, ) = —sin(B)cos(@)y; — sin(B)sin(@)y, — cos()ys

(51(6,9)S, (6, ¢0))q = (5,(6, 9)S1 (B0, 90))o — (51 (6, $)S1 (60, Do) iios)olias

The inner product (S, (6, ¢)S;(6,, @0))q to calculate the probability amplitude for detecting spin-up in the u3 (6, ¢) direction given
4 spin-up in the u3(8,, ¢,) direction. The inner product (S, (6, $)S;(6,, @0))q projects out the {1,io3} components from the GP
5106, $)S1(80, o) [15, 44].

u3 (8, ¢) = sin(0)cos(¢p)a; + sin(8)sin(¢p)o, + cos(8)a; u; = ezy, (uz)* = +1 Spatial unit vector.

The probability IP for detecting spin-up in the u;(6, ¢) direction given spin-up in the u3(6,, ¢,) direction can be calculated via:

P((8,9), (85, $0)) = [(5:(6, $)5, (B0, $0))g|” = 2(1+u3(6,8).u5(80,65))  P((8, ), (0,0)) = 2(1 + cos(8)) = cos*(8/2)

Appendix E2: Spacetime rotor R (f8,0,¢), spacetime spinor U,(f3,0,¢) and Dirac spinor ¥, (cAt,3,0,¢)

# | Spacetime rotor R, (B, 0, ¢), spacetime spinor U, (8, 8, ¢) and Dirac spinor 1, (cAt, B, 0, ¢).

118, = (cos (9) — sin (f) ﬁ03) <COS (ﬁ) — sin (€> ﬁaz) Spatial spinor S (6, ¢) (5.2).

2 2 2 2
2 | Li(B) =/sec(B)(cos(B/2) + sin(B/2)a3) Irreducible hyperbolic rotor L, (8) = +/sec(B) L, (B).
3 | R(B,0,9)=5,0,p)L,(B) =nU.(B,6,9) Spacetime rotor R, (B, 0, ¢) and spacetime spinor U; (8, 0, ¢).
S N N7 St )

- ——= 3 ~
R, (B,0,9) =1,Uy(B,0,¢) | RiR, =1 — n, = (U,T,) Y2 _ [sec(B) | Unitarity of RR = 1 defines the scalar density ;.
\

b= 5 e (&) s E) 1) o (0 s o) o (B s (E)o) = 0,

Rotor R; (5.3) and spinor U; (5.4) can perform all possible spacetime rotations while preserving circular and hyperbolic symmetries
in RY3 (Fig. 5.1) (Table 5.1) (2.9). Where rotor R; is related to hyperbolic symmetry and spinor U, is related to circular symmetry.

0,6,6,6) = 50,001 (8) = 5,0.6) (cos (5) + sin (5) o) il =cos®) v = 0+ 0 + ),
_ B 0 ¢ O\ (Y. (0 (AP AYPILAW

5 U,(B,0,¢p) = cos (E) (+cos (E) cos (E) + sin (E) sin <5> fo; — sin (E) cos (E) io, — cos (E) sin (E) 1103)

+sin (g) (—cos (g) sin (?) i+ sin (g) cos (%) o, +sin (g) sin (%) o, +cos (g) cos (?) 03 )

L Spacetime spinor U; (8, 8, ¢). Note that although spacetime spinor U, is STA even, the GP U, I; = cos(p) is a scalar value [15]. )

p(moc, B,6,¢) = myc RyyoRy = myc sec(B)(vo + sin(B)e;(6,¢)) p? = mdc? (sec?(B) — tan?(B)) = mjc?
6 | x(cAt,B,0,¢) = cAt UyyoU; = cAt(y, + sin(Be; (6, ¢)) x? = c2At?(1 — sin?(B)) = c?At?cos?(B)

Preserving spacetime symmetries {pz; x2} by spacetime rotor R, and spacetime spinor U;.
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S = px = myc?At R1yoR U1y U, = myc?At sec(B)U1¥o U U1¥o U, = myc?At sec(f)cos?(B) = myc?At cos(B)
S myc?
S = px = myc?At cos(B) = myc?Aty 1 — (v/c)?2 [kgm?/s] px=p.x » pAx=0 7= ;l At cos(B) [-]

7 Action S = px = p.x provides a unification between the hyperbolic symmetry of momentum p and the circular symmetry of
spacetime trajectory x(cAt, 8, 8, ). Resulting in a phase S/h:

S myc? s myc?
7= h At cos(B) = woAt cos(B) = woAT — = woAT wo =—¢

Bringing together: (a) spacetime spinor U, (E2.5), (b) spacetime bivector y,y, = —io; (Table 5.1) and (c) phase S/h = wyAt (5.5),
results in a wavefunction ¥, (x) = ¥, (cAt, B, 6, ¢):

Y1 (x) =, (cAt, B,6,¢) = U;Exp(—ios S/h) = U, Exp(—lozw,At)  x(cAt,B,6,$) = cAt(y, + sin(Ble;) B e _7"37"

P, (x) = U;Exp(—io; p.x/h) = U; Exp(—io3woAT)  Wavefunction 1, (x) is a solution of the Dirac equation (E3).

So, ¥, (x) is a Dirac spinor derived purely from three-sphere S$*? symmetries.

Appendix E3: Dirac equation

# Dirac equation.

1 | AV (0)ioy — mec®P(X)y, =0 Dirac equation.

d d d ] Spacetime vector derivative V. Where the y* are a reciprocal
— yH — 0 1_ 2 2 _ mn — 18
2 V=yto, =v cot Ty ox ty dy ty 0z Yih =6, frame of vectors to the basis vectors y,, defined via Yhv = 65’.

3 | Y (x) =y(cAt, B,0,¢) = U Exp(—io; S/h) = U Exp(—ios p.x/h) = U; Exp(—lo3w,AT) Dirac spinor (E2.8) (E2.9).
Vip, = —wo(sec(By, + tan(Bes)iosyp, VU, =0 Vector derivative of Dirac spinor: Vip,.
mocz(sec(ﬁ)yo + tan(Bes)h; = moc?hyv, Outco.me of the vector derivative substituted in the Dirac
equation.
4 (sec(ﬁ)yo + tan(ﬁ)e3)U1 =Uivo Becomes an algebraic equation with U, derived purely from $12,

(sec(B)y, + tan(Bes)U U, = UyyoU;  UyU, = cos(B) | Solving by multiplying both sides on the right with T,

Y, (x) = U Exp(—ioz p.x/h) = Uy Exp(—lo3w,AT)

Yo + sin(B)es =y + sin(Bes ) ) - )
is a solution of the Dirac equation.

Dirac spinor ¥, (x) holds all possible information that at observation will manifest in one of the four fermion properties: one of the
four eigenvalues of the Dirac equation particle spin-up, particle spin-down, anti-particle spin-down or anti-particle spin-up.

6 | RPT,; B€ [—g, 0] (2)R,P,T; BE0,T] (B RPT;BE E,n’] (4 R,P.T ;B € [ni—”] R = P/T;Ratio

R_P_T, Particle Stown  Ya(cAt,B 0 £, @) = £5,(0 £ 7T, @IYoLur (BIyoe 700 s 1h, = UpeTIoawott
R.P.T, Particle Sup Pi(cAt,B .0 ,p) = £5,(8,P)L,,(B)e 1o3wolT P P, = Uje it
R_P,T_ Anti-Particle S, Pi(cAt, B+ 1,0  ,p) = +5,(6,P)yoLyi (B £ mypetios @t s, = V,etlosw0lT
7 | R,P_-T_ Anti-Particle Sy, Y1(cAt,B+m,0 +1m,¢) = +5,(0 + 1, )Ly (B + m)etio39lT sy, = ,etio300l7

The four well known eigenvectors ¥; = {11, ,,13,1,} [4] of the Dirac equation are all implicit contained in 1, (x) (Table 5.2).

The geometric derivation provides a connection between the eigenvectors ¥; and the PT quadrants via a parity-reversal (P, < P_)
related to 8 + m, a time-reversal (T, < T_) related to § + m and a spin-reversal (up & down) related to yL,1¥o- Where yoL,1Yo
is connected to the ratio R = P /T between the PT quadrants (clockwise or counterclockwise temporal spinor (Table 5.2)).

R_P.T, Particle Saown  x(cAt =1, ,0+md) =7v,+ (+sin(B))(—es(8,9)) = v, — sin(Bes(8, p)
R,P, T, Particle Sup x(cAt =1,8 ,0 ,P) =y, + (+sin(/§‘))(+e3 (6, ¢)) =Y, + sin(B)e; (6, )
R_P,T_ Anti-Particle S,,,, x(cAt =1,8+ 7,0 ,P) =y, + (—sin(ﬁ))(+e3(6, qb)) =Yy, — sin(B)e;(6, p)
R,P.T_ Anti-Particle Syp,, ~ x(cAt =1, 27,0 7, ¢) =y, + (—sin(B))(—es(6,9)) = v, + sin(B)es (6, )

8 Event-information in causality-volume V_ expands with the flow of time cAt while an observer (measurement device) follows a
spacetime trajectory x(cAt, 8,0, ¢) in V, with a proper distance of cAt = cAt cos(B) = tcAt\/1 — (v/c)?.

The full range of g € |% 3—"] results in a double cover in position (4.5). Hence, an observer can perform a measurement at equal

2’ 2

spacetime trajectories, which are different in PT quadrant (Fig. 5.2c).

The geometric derivation gives both: an eigenvector ¥; and spacetime trajectory connection to the PT quadrants.
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Appendix F: Experiment

The discrete PT quadrants are connected to a reference frame (Fig. 5.2). An PT quadrant is discrete, but the orientation between
reference frames can differ continuously. So, the different reference frames (observer and event-information) can undergo a PT
quadrant related information mixing.

# Experiment to proof or falsify PT quadrant related information mixing.

1 | Y,(x) =¢,(cAt, B,6,¢9) = U (B,0,d)Exp(—io; S/h) Dirac spinor derived purely from three-sphere $*2 (E2.7) (E2.9)

The inner product (T, (8 = 0,0, p)U, (B, 6, ¢0))q to calculate the probability amplitude for observing - in the lab frame (relative
speed B = 0) - a particle in a spin-up state in the u3(0, ¢) direction given a particle prepared in a spin-up state in the u3(0,, ¢o)
2 direction with relative speed S, in the u;(6,, ¢,) direction is given by:

([71(0: 0,$)U,(Bo, 6o, ¢o))q = (171(0: 68, 9)U1(Bo, 00, o)) — <l71(0: 6, )U1(Bo, 0o, Po)ias)olio; oz = —y1v2

The inner product (T, (8 = 0, 8, ¢)U, (B,, 6o, ©0))q projects out the {1,105} components from GP 7,(0,8, p)U; (Bo, 8o, Po) [15, 44].

The probability IP, for detecting a particle in the spin-up state in the u5 (6, ¢) direction given a particle prepared in a spin-up state
in the u3(6,, ¢,) direction with a relative speed B, in the u3(8,, ¢,) direction can be calculated as:

IFD2((0r 0,9), (Bo, 6o, d)o)) = |<l71 (0,6, 9)U1(Bo, 6o, ¢0))q|2 = % cosz(ﬁo/Z)(l + u3(8, ). u3(6,, ({bo))
|2

]Pz((O, 0,9), (ﬁ0v90v¢0)) = |<U1(O' o, ¢)U1(ﬁ0'90'¢0))q|2 = Cosz(ﬁ0/2)|(§1(9, )51 (6o, ¢0)>q (E1.4-5)

The above (F.3) allows to calculate the probabilities for detecting the four fermion properties: particle spin-up, particle spin-down,
anti-particle spin-up or anti-particle spin-down in the u5 (8, ¢) direction given a particle prepared in a spin-up state in the z-direction
with relative speed B, in the z-direction u; (6, = 0, p, = 0):

’ P, (0,0 +m,¢), (B,  ,0,0)) = cos?(By/2)sin?(6/2)  Particle Saown  P.Ty
P,((0,6 ,$),(Bo  ,0,0)) = cos?(By/2)cos?(0/2)  Particle Sup P,T,
P;((0,8 ), (B +7,0,0)) = sin?(By/2)cos*(6/2)  Anti-Particle S, P.T_

4 1 P,((0,6 £7,¢),(Bo £7,0,0)) = sin?(By/2)sin*(6/2)  Anti-Particle Sypn  P-T-
Each of the probabilities PP; is related to a: fermion property, PT quadrant and a spacetime trajectory x(cAt, —B,, 0, ¢p) of the
measurement device. The particle is moving with relative speed S, through the measurement device, but due to relativity we can

also state that the measurement device is moving with a relative speed —f3, along the particle.

The PT quadrants are discrete, but the orientation between the reference frames (observer and event-information) can differ
continuously by a temporal rotation over angle S, or by a spatial rotation over the polar angles {6, ¢}. So, the reference frames of
observer and event-information (initial state reference frame) can undergo a PT quadrant related information mixing.

This PT quadrant related information mixing can be proven or falsified by performing the following experiment.

Experimental setup: to proof or falsify PT quadrant information mixing.

Spin measurement device in the y, frame (lab-frame 8 = 0) with one degree of freedom, a rotation in the {y;y; — zx} plane of
the lab frame as function of the spatial rotation angle 6.

6
The spatial rotation angle 6 will provide a parity-reversal mixing between the reference frame of the event-information (initial state
reference frame) and the reference frame of the observer (lab frame).
Prepare a beam of particles in a spin-up state in the z-direction with a given relative speed f in the z-direction u; (6, = 0, ¢, = 0).
7

The relative speed S, will provide a time-reversal mixing between the reference frame of the event-information (initial state
reference frame) and the reference frame of the observer (lab frame).

Perform spin measurements under different spatial rotation angle 8 orientations on a beam of particles prepared in a spin-up state
g | inthe z-direction having different relative speeds B, in the z-direction.

The calculated probabilities IP; (F.4) for measuring fermion properties are given in table F.1.

Already my thanks and respect to the researchers who want to conduct this experiment (please contact me).

9 You will need a great deal of inventiveness and creativity. Crunching my head on how this experiment can be done? Maybe via a
Stern-Gerlach device to prepare the spin-up state followed by a cathode ray tube to induce a relative speed followed by a Stern-
Gerlach device to measure?
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Table F.1: Probabilities for measuring fermion properties, under different spatial angle 8 orientations, given a beam of
particles prepared in a spin-up state in the z-direction with different relative speeds fyin the z-direction.

Event-information S'2,T; B Time-reversal (Table 4.1) (Fig. $'2, P; @ Parity-reversal (Table 4.1) (Fig. 5.2)
mixing 5.2)
PT quadrants P.T, P.T, P, T_ P.T_
Relative Spatial Probability P, Probability P, Probability P5 Probability P, (F.4)
speed angle detecting particle detecting particle | detecting anti- detecting anti-particle | Sum
Bo spin-down % spin-up % particle spin-up % | spin-down % %
0 0 100 0 0 100
=0
v 0 m/3 25 75 0 0 100
c
/2 50 50 0 0 100

Probabilities for a beam of particles prepared in a spin-up state having a relative speed of §, = 0 (time-reversal angle).
Rotating the spin measurement device at different spatial angle 8 orientations (parity-reversal angle) give the well-known
Stern Gerlach spin measurements of particle spin-up and particle spin-down probabilities.

0 0 85.36 14.64 0 100

/4
v 2 /3 21.34 64.02 10.98 3.66 100
¢ 2 /2 42.68 42.68 7.32 7.32 100

Probabilities for a beam of particles prepared in a spin-up state having a relative speed of B, = 7/4 (time-reversal angle).
At an 8 = 0 orientation of the spin measurement device there is a 14.64% probability of detecting anti-particles in a spin-
up state because of the time-reversal event-information mixing of {T,, T_} caused by the relative speed of B, = /4. At
an @ = /3 and 6 = /2 orientation of the spin measurement device there will also arise probabilities for anti-particle
spin-down and particle spin-down states because of the parity-reversal event-information mixing {P,, P_}.

0 0 75 25 0 100

/3
v 3 /3 18.75 56.25 18.75 6.25 100
¢ 2 /2 125 37.5 37.5 125 100

Probabilities for a beam of particles prepared in a spin-up state having a relative speed of B, = 7/3 (time-reversal angle).
At an 8 = 0 orientation of the spin measurement device there is a 25% probability of detecting anti-particles in a spin-up
state because of the time-reversal event-information mixing of {T,, T_} caused by the relative speed of 8, = /3. At an
6 = /3 and 8 = m/2 orientation of the spin measurement device there will also arise probabilities for anti-particle spin-
down and particle spin-down states because of the parity-reversal event-information mixing {P,, P_}.

At a relative speed of f = + /2 where time-reversal is indefinite the Dirac spinor 1, (x) will have the following form:

1

P(chef = +50,0) =VIS,0.6) (14 00)) il =cosGir/D =0 (MAtaw) =10t
P1(cAt, B =+%0,¢) = % (+cos (g) cos (%) + sin (g) sin (%) i, — sin (g) cos (%) fo, — cos (g) sin (%) ﬁ03)

+ % (—cos (g) sin (%) i+ sin (g) cos (%) o1 +sin (g) sin (%) o, +cos (g) cos (%) o3 )

Photons are massless and particle/anti-particle in one. Hence, Dirac spinor ¥, (x) also contains a connection between
fermions and bosons.
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Recommendation: Start teaching Geometric Algebra to high
school students.
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