Hyper Exponential Function

Uchida Keitaroh

Applied Mathematics Department

Hyper exponential function, which was created by Uchida, is a group of special functions.

The form of Hyper exponential functions of n-order.

$$Exph_i^n(x; f(x))$$

Hyper exponential functions of n-order generated by using any function f(x).

n: order.

j: the number of seed.

x: variable.

f(x): any function that is defined in an interval that contains zero.

seed
$$(x; j) = \frac{x^j}{j!} (j = 0, 1, 2, 3 \dots n - 1)$$

The seed of the Hyper exponential function means the first term of the series.

The main feature of the Hyper exponential functions of n-order.

$$x \in R, y \in R$$

 $y = Exph_i^n(x; f(x))$

The n-order derivative of y is the product of f(x) and y.

$$\frac{d^n y}{dx^n} = f(x)y$$

*Corresponding author

Uchida Keitaroh, Applied Mathematics Department, Japan, E-mail: keitaroh_uchida@eco.ocn.ne.jp

Submitted: 02 Nov 2018; Accepted: 12 Nov 2018; Published: 30 Nov 2018

The Hyper exponential functions are defined by the characteristics of the derivative rather than defined according to its method of generation.

The feature of Hyper exponential functions of second-order.

$$\frac{d^2y}{dx^2} = f(x)y$$

Two Hyper exponential functions of second-order that are generated using a function f(x), one is the first term 1, and the other is the first term x.

$$Exph_0^2$$
 --- The number of seed is 0. --- Seed(x)=1

$$Exph_1^2$$
 --- The number of seed is 1. --- Seed(x)=x

These two functions are linearly independent.

Graphs of the Hyper exponential functions of second-order.

$$y = Exph_1^2(x; -x)$$

$$y = Exph_0^2(x; x)$$

$$y = Exph_1^2(x; x)$$

$$y = Exph_0^2(x; -x^2)$$

$$y = Exph_1^2(x; -x^2)$$

$$y = Exph_0^2(x; x^2)$$

$$y = Exph_1^2(x; x^2)$$

$$y = Exph_0^2(x; -x^3)$$

$$y = Exph_1^2(x; -x^3)$$

$$y = Exph_0^2(x; x^3)$$

$$y = Exph_1^2(x; x^3)$$

$$y = Exph_0^2(x; -x^4)$$

$$y = Exph_1^2(x; -x^4)$$

All of the graphs listed above were drawn by Mathematica.

The formula for the solution of the second order linear homogeneous equation with variable coefficients.

$$x \in R, y \in R$$

$$u(x) = Exph_0^1(x; f(x))$$

$$u(x) = Exph_0^1(x; f(x)) \longrightarrow v(x) = Exph_j^2(x; g(x))(j = 0, 1)$$

$$u' = f(x)u(x)$$
$$v'' = g(x)v(x)$$

$$e^{\int_0^x f(x)dx} = Exph_0^1(x; f(x))$$

$$y = uv$$

$$A(x) = -2f(x)$$

$$B(x) = f(x)^2 - f'(x) - g(x)$$

$$A(x) = -2f(x) B(x) = f(x)^{2} - f'(x) - g(x) y'' + A(x)y' + B(x)y = 0$$

$$y = Exph_0^1(x; f(x)) \cdot \left(c_1 Exph_0^2(x; g(x)) + c_2 Exph_1^2(x; g(x))\right)$$

An example.

$$y'' + (5x + 1)y' + \left(6x^2 + \frac{1}{2}\right)y = 0$$

The initial conditions are as follows:

$$y(0) = 12, y'(0) = 10$$

The answer is as follows:

$$f(x) = -\frac{5x+1}{}$$

$$f(x) = -\frac{5x+1}{2}$$

$$g(x) = \frac{(5x+1)^2}{4} + \frac{(5x+1)'}{2} - \left(6x^2 + \frac{1}{2}\right) = \frac{1}{4}(x+1)(x+9)$$

$$u(x) = Exph_0^1(x; -\frac{5x+1}{2})$$

$$u(x) = Exph_0^1(x; -\frac{5x+1}{2})$$

$$v(x) = Exph_0^2(x; \frac{1}{4}(x+1)(x+9))$$

$$w(x) = Exph_1^2(x; \frac{1}{4}(x+1)(x+9))$$

$$w(x) = Exph_1^2(x; \frac{1}{4}(x+1)(x+9))$$

 C_1 and C_2 as arbitrary constants.

$$y=u(c_1v+c_2w)$$

From the initial conditions.

$$y(0)=u(0)(c_1v(0)+c_2w(0))=12$$

$$u(0)=v(0)=1, w(0)=0$$

$$y(0)=c_1=12$$

The list of the differential equations that the solutions by using the Hyper exponential functions.

Hermite Differential Equations

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 0$$

$$y = Exph_0^1 \cdot \left(c_1 Exph_0^2(x; x^2 - 2n - 1) + c_2 Exph_1^2(x; x^2 - 2n - 1)\right)$$

Bessel Differential Equations

$$\begin{split} \frac{d^2y}{du^2} - \frac{1}{u}\frac{dy}{du} + \left(1 - \frac{n^2}{u^2}\right)y &= 0\\ y &= c_1 Exph_0^2\left(x; n^2 - e^{-2x}\right) + c_2 Exph_1^2\left(x; n^2 - e^{-2x}\right) \end{split}$$

Legendre Differential Equations

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$
$$Y = \int_{\alpha}^{x} y \, dx$$

x≠ ±1

$$\begin{split} \frac{d^2Y}{dx^2} &= \frac{n(n+1)}{(x^2-1)}Y\\ Y &= c_1 Exph_0^2 \left(x; \frac{n(n+1)}{(x^2-1)}\right) + c_2 Exph_1^2 \left(x; \frac{n(n+1)}{(x^2-1)}\right) \end{split}$$

Solution to satisfy the wave equation.

The Hyper exponential functions of second-order are used to describe the solution that satisfies the wave equation.

$$x \in R, y \in R, z \in R, t \in R$$

$$F(v) = Exph_j^2(v; f(v))$$
 (j = 0,1)

$$v = lx + my + nz \pm ct$$

$$l^2 + m^2 + n^2 = 1$$

The *c* is constant.

$$\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} - \frac{\partial^{2}}{c^{2}\partial t^{2}}\right) F(v) = \left(l^{2} + m^{2} + n^{2} - 1\right) \frac{d^{2}F(v)}{dv^{2}}$$

$$\vdots$$

$$\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} - \frac{\partial^{2}}{c^{2}\partial t^{2}}\right) F(v) = 0$$

$$\frac{\partial^{2}}{\partial x^{2}} = l^{2} \frac{d^{2}}{dv^{2}}$$

$$\frac{\partial^{2}}{\partial y^{2}} = m^{2} \frac{d^{2}}{dv^{2}}$$

$$\frac{\partial^{2}}{\partial z^{2}} = r^{2} \frac{d^{2}}{dv^{2}}$$

$$\frac{\partial^{2}}{\partial z^{2}} = r^{2} \frac{d^{2}}{dv^{2}}$$

Handling of a singular point by the division by zero calculus.

The singular point of the following Bessel differential equations is considered.

$$\frac{d^2y}{dx^2} - \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{n^2}{x^2}\right)y = 0$$

$$y = y_1 y_2$$

However, y_1 and y_2 satisfy the following differential equations.

$$-2xy'_1 = y_1 \qquad \cdots \qquad \text{①}$$

$$\frac{4x^2}{4n^2 - 1 - 4x^2} y''_1 = y_2 \qquad \cdots \qquad \text{②}$$

x=0

From ①
$$y_1(0) = 0$$

From ②
$$y_2(0) = 0$$

$$\vdots$$

$$y(0) = y_1(0)y_2(0) = 0$$
 By the division by zero calculus.

Supplement:

- 1. The Hyper exponential functions of n-order can be generated using repetitive integrals.
- 2. The Hyper exponential functions of n-order are uniform convergence in the wider sence.
- 3. The n-order Hyper-exponential functions generated using a certain f(x) are linearly independent one another.
- 4. The domain and the range of the Hyper exponential functions of second-order are extended to a complex number. In addition, The formula for the solution of the second order linear homogeneous equation with variable coefficients is also extended to a complex number.

Recent Publications:

- Kumahara K, Saitoh S, Uchida K(2009) Normal solutions of linear ordinary differential equations of the second order, International Journal of Applied Mathematics, Volume 22 No. 6 2009, 981-996.
- 2. Uchida K(2017) [Introduction to Hyper exponential function and differential equation revised first edition], eBookland. (In Japanese).

 In this book, the method to generate the hyper exponential functions is described concretely.

Copyright: ©2018 Uchida Keitaroh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.