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As is known, the main problem in interpreting images of the ocean 
surface formed by microwave synthetic aperture radar (SAR) is the 
distortions introduced by the orbital movements of the small-scale 
(centimeter and decimeter) ripples in the field of large waves. The 
point is that the standard aperture synthesis procedure is a matched 
filtering operation aimed at extracting from the reflected signal a 
part that has a phase that changes according to a known scenario 
corresponding to a stationary reflecting surface. The movement of 
the ripples responsible for microwave backscattering violates this 
scenario, which mainly manifests itself as cut-off of the high-fre-
quency part of the image spectrum, which in turn leads to a loss of 
azimuthal resolution and false indication of the direction of wave 
propagation. The theory of this phenomenon is presented in or, in 
a simplified form, in where detailed calculations are omitted [1, 2].

In this work, we propose a sensing method aimed at reducing the 
effect of orbital velocities on the SAR image of the ocean surface. 
The method involves the use of two synchronized SARs, which 
look across the track line and illuminate the same area of the sur-
face (Figure 1).

Figure 1: Probing geometry

It is assumed that the incidence of beams from both sides is fairly 
gentle, so that the horizontal component of the radial orbital veloc-
ity is much greater than the vertical one. In this case, the radial ve-

locities relative to these beams will be close in magnitude, but mu-
tually opposite in sign, which is the basis of the proposed method. 

The aperture synthesizing operation is performed using the follow-
ing transformation:

where a and аSAR are, respectively, the complex amplitudes of the 
backscattered microwave electromagnetic field and the synthe-
sized signal, ∆t is the integration time. 

Assuming the size of the SAR resolution cell in the horizontal 
range to be small in comparison with the characteristic wavelength 
on the surface, we will consider one row of the image in the az-
imuthal direction x. For the complex amplitude of the backscat-
tered field, we write:

Where w is the azimuthal size of the physical resolution cell of 
the SAR, and р (xʹ, tʹ) is the complex reflection coefficient of the 
surface. Let the reflecting element of the surface be a point scat-
terer moving with a velocity, the radial component of which with 
respect to one of the SARs is

Obviously, with respect to another SAR, the radial velocity will 
have the opposite sign and close, although different from νrad mag-
nitude -νrad + ∆ νrad. (This difference is due to the presence of a 
small vertical component of the radial velocity, and from geomet-
ric considerations it follows:

∆νrad                                   , where ψ is the depression angle.) Then
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for two SARs:

Let's write a1 and a2 in real form and then multiply them:

Let us apply the operation of matched filtering to the first term on 
the right-hand side of (4), having previously written it down in the 
usual complex form; while taking into account the double frequen-
cy of the filtered signal:

Applying matched filtering to the second term gives a negligible 
value, which is natural due to the absence of a filtering object. 

As is known (see, for example, [1]), in the case of a traditional 
survey using a single SAR

If we consider the ocean surface as a continuum of moving scatter-
ers, whose velocities correspond to the spectrum of orbital veloci-
ties, and compare (5) and (6), then we can conclude that the results 
of the theory [1] are applicable to the pair with the only difference 
that k and νrad should be replaced by 2k and  vrad                 . Since the

depression angle ψ is assumed to be small, it can be expected that 
the influence of orbital velocities will be significantly reduced. In 
addition, as can be seen from (5), the nominal azimuthal resolution 
of the pair is twice as high as compared to the traditional SAR. 

As shown in the theory, the presence of orbital velocities in most 
cases leads to the fact that images of different parts of the surface 
are randomly shifted and superimposed on one another. The fact 
that each point in the image plane is formed by different parts of 
the surface means a loss of resolution or, equivalently, the appear-
ance of a spectral cut-off. The number of these parts, depending on 
the state of the surface, is random, and its fluctuations, along with 
fluctuations of the radar cross section, form the SAR image of the 
surface.

If the number of the parts is equal to one, then the disturbances 
introduced by the orbital velocities are not so significant and there 
is no spectral cut-off. From the theory [1], as applied to the pair, 
the condition for the absence of overlaps follows:

where ∆σrad is the root-mean-square value ∆vrad and Λv is the char-
acteristic wavelength in the spectrum of orbital velocities. Thus, 
for a sufficiently small value of ∆σrad, we obtain a wave pattern that 
is practically not perturbed by the orbital velocities. At the same 
time, it should be borne in mind that if for a conventional survey 
we consider the intensity of the SAR signal to be proportional to 
the surface elevations, then in this case the values of the obtained 
wave field turn out to be proportional to the square of the eleva-
tions. 

We point out that to form a row of the image spaced at a distance 
d from the flight line shown in Figure. 1, one should use the trans-
formation

In order to understand which sounding scheme can be applied for 
this method, some evaluations have been performed. As the initial 
data, we took H - the flight altitude of the SAR carrier and ψ - the 
depressing angle of the probe beam near the ocean surface. Then, 
taking into account the sphericity of the Earth, for the incidence 
angle ϑ and the slant range R we obtain

where a = 6371 km is the Earth radius. The estimates were carried 
out for ψ = 30ᵒ and the SAR carrier speed V= 8 km/s. For H= 200 
km (low near-earth orbit), we get and ϑ = 57.10ᵒ R= 644.6KM, and 
R/v= 80.6 s.

The value R/V ≈ 80 s with the traditional sensing method by no 
means guarantees the absence of spectral cut-off, while the pro-
posed method, as shown below, can almost completely eliminate 
its probability. 
Let us estimate the right-hand side of (7) for a given sounding 
scheme, which will give us          - an upper estimate of the value 

∆σrad, of at which the wave pattern obtained using the pair remains 
practically undistorted. For Λv ≈100 m, which corresponds to de-
veloped waves at a wind speed near the surface of about 10 m/s, 
we obtain                               And then we give an estimate for the 
left-hand side of (7) for the same conditions, taking into account 
that 

Here φ is the angle between the flight direction and the general 
direction of waves propagation, U is the near-surface wind speed. 
The second equality is an estimate of the root-mean-square value 
of the orbital velocity, following from the formula for the Pear-
son-Moskowitz spectrum. 

Substituting in (10) the arbitrary value φ= 45ᵒ and the above values 
of all other quantities, we obtain ∆σrad = 0.27.
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         The value            with the traditional sensing method by no means guarantees  the 

absence of spectral cut-off, while the proposed method, as shown below, can almost completely 

eliminate its probability. 

          Let us estimate the right-hand side of (7) for a given sounding scheme, which will give us 

        an upper estimate of the value of         at which the wave pattern obtained using the 

pair remains practically undistorted. For   ≈100 m, which corresponds to developed waves at a 

wind speed near the surface of about 10    , we obtain                 . And then we give 

an estimate for the left-hand side of (7) for the same conditions, taking into account that  
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Here   is the angle between the flight direction and the general direction of waves propagation, 

  is the near-surface wind speed. The second equality is an estimate of the root-mean-square 

value of the orbital velocity, following from the formula for the Pearson-Moskowitz spectrum. 

Substituting in (10) the arbitrary value       and the above values of all other quantities, we 

obtain                    
        Thus, the considered sounding scheme provides a practically undistorted wave pattern with 

an increased resolution. It is possible to evaluate other schemes for the application of this method 

in space, although, of course, the initial tests should be carried out using airborne SARs. 
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distorted wave pattern with an increased resolution. It is possible 
to evaluate other schemes for the application of this method in 
space, although, of course, the initial tests should be carried out 
using airborne SARs.
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