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Abstract
This study focuses on examining various approaches for Tensor decomposition (TDs) and their potential applications in 
satellite imaging (SI) and deep learning (DL). The research highlights how these decompositions can contribute to the 
advancement of SI and DL, providing valuable insights for future utilization of TDs in research. It explores how these 
techniques contribute to the advancement of SI and DL methods, providing insights into their potential applications and 
suggesting future research directions. The study aims to enhance the use of TDs techniques to further advance research efforts 
in these fields. More importantly, the current investigation offers a thorough analysis of the potential advantages and reasons 
for employing TDs techniques in different domains, including satellite imaging and deep learning. The aim is to enhance 
research outcomes by utilizing TDs. The review also identifies unresolved issues and proposes future directions for further 
investigation in this field. Fundamentally, these proposed open problems will open new grounds to the research community 
to articulate, innovate, and provide more real-life applications to improve the current state of the art by delving into a wider 
vision for a higher-level performance of both satellite imaging (SI) and deep learning (DL). Looking at the bigger scenario, 
this also suggests that TDs could be potentially employed to revolutionize existing machine learning technologies as well as 
the current space AI industry.

Keywords:Tensor Decompositions (Tds), Satellite Imaging (Si), Deep Learning (Dl), Tensor Train Networks (Ttns), Tucker 
Decomposition (Tud), Canonical Polyadic Decomposition (Cpd), Polyadic Decomposition (Pd), Roll, Pitch, and Yaw (Rpy).

1. Introduction
In principle, this current work supplies a complementary part of the research conducted (c.f., [1]). The author now feels the task completion 
and demonstration with both analytic expressions as well as illustrative data to interpret the newly devised research results. Existing 
super-resolution research focuses mostly on two-dimensional pictures [2]. There are well-known techniques for super-resolution. The 
methods employ interpolation techniques [3-5]. 

Provided an outline of the TD strategies used to solve electromagnetic problems. Integral Equation solvers' use of TDs to reduce CPU 
and memory use was specifically explored.

The TDs used in surrogate modeling for estimating uncertainty in electromagnetic research were also examined. The discussion of 
TDs' function in enhancing energy works is more engaging. TDs approaches have received a lot of interest from researchers in various 
domains of computer science and engineering [2-5]. Fig. 1 depicts TTNs.
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Fig. 1: A schematic of TTNs [4] 
 
TT, TUD and CPD are required for these approaches. Furthermore, the optimal performance for each of the decompositions 
is determined by certain factors. For example, the TUD [5] is effective at compressing low-dimensional arrays [7-12] 
containing Green's function samples and associated integrals. However, due to the curse of dimensionality, it performs 
badly for compressed high-dimensional data[13,14]. When great precision is desired, TTN is commonly employed instead 
of classic PD. Fig.2 depicts a three-way CPD array. 
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Tucker Representation (TR) 
      Defines a three-dimensional array, , namely . Thus, this array’s TR has a core tensor  of 
low rank combined with a set of factor matrices , . These rewrite .

Notably, xi and ri serve as i Zmode matrix-tensor multiplication and multilinear rank pertaining to ith dimension respectively. More 
interestingly,  is defined to be highly compressible if 
    				  
									         (2)

And   (c.f., (1), (2)) are calculated by singular value decomposition (SVD) approach for a given tolerance, tol [4,15,16]. 

This paper’s road map is. Section I overviews the short paper upon which this current paper is aimed to be an extension of it. Section II 
deals with methodology. In section III, results and discussion are provided. Some influential emerging open problems from this paper 
are given in the figure section combined with concluding remarks and the next phase of research is given in section IV.

2. Methodology
Both panchromatic (PAN) and multispectral (MS) images are collected by remote sensing platforms with PAN bands having a higher 
spatial resolution and a higher spectral richness than MS images [17]. To create better images, these pictures are fused using image 
fusion techniques; this process results in "pan-sharpening" whenever MS and PAN images of the same scene are fused. Three types of 
pan-sharpening techniques—pixel, feature, and decision-level techniques—are classified based on how the input images are merged.

To produce a high-resolution color image, pan-sharpening algorithms combine high-resolution panchromatic (PAN) and lower-resolution 
multispectral (MS) data [18,19]. Similarly, it is challenging to preserve the excellent spatial and spectral quality of the input images 
during this procedure. Certain techniques could compromise one element for the other, leading to a compromise between spectral and 
spatial performances. 

Imaging systems such as cameras are employed in aeronautical video surveillance, SI, and remote sensing applications to produce 
three-dimensional models, and panoramic mosaics, and detect changes in regions of interest [20,21]. Moreover, in aerial imaging, 
imaging is collected from various positions and camera orientations, and the orientation of the camera must be calculated to align them 
appropriately, as illustrated in Figure 5A (c, f., [21]) [21]. The RPY convention is used to define the orientation of a camera relative to 
an aircraft. For more illustration, (see, Fig.3 (c.f., [21]) [21].

TT, TUD, and CPD are required for these approaches. Furthermore, the optimal performance for each of the decompositions is determined 
by certain factors. For example, the TUD is effective at compressing low-dimensional arrays containing Green's function samples and 
associated integrals [5, 7-12]. However, due to the curse of dimensionality, it performs badly for compressed high-dimensional data 
[13,14]. When great precision is desired, TTN is commonly employed instead of classic PD. Fig.2 depicts a three-way CPD array.
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Fig.3. RPY convention is a way of describing the orientation of an aircraft or camera in three-dimensional space. 
 

An extensive analysis [22] of the evolution of deep learning models over time, starting with the early neural networks 
influenced by brain research and going all the way up to the prevalent models of today such as recurrent neural networks, 
convolutional neural networks, and deep belief networks. In addition, the paper looks at the models' beginnings, original 
construction, and evolution over time, providing important context for current and upcoming deep learning research. More 
specifically[22]  focusing on three major families: deep generative models, convolutional neural networks, and recurrent 
neural networks. The paper aims to achieve two goals: documenting significant milestones in the history of deep learning 
that have influenced its current development and providing insights into how these remarkable works have emerged among 
numerous contemporaneous publications. Additionally, the authors briefly summarize three common directions pursued by 
these milestones, including simplicity in implementation, solving unique problems, and drawing inspiration from domains 
outside of machine learning and statistics. 
 
Occam's razor [22] is a principle that suggests simpler models are often preferred over complex ones in deep learning. 
Dropout, for example, is widely recognized not only for its performance but also for its simplicity in implementation. 
Additionally, being ambitious in proposing models with more parameters can be remarkable if they solve problems that 
others cannot, such as Long- Short Term Memory (LSTM) bypassing the vanishing gradient problem.  
 
Many DL models are inspired by domain knowledge outside of machine learning, like how convolutional neural networks 
draw inspiration from the human visual cortex. These directions can help readers have a greater impact on society, and more 
directions can be explored through revisiting these milestones. DL[23] has revolutionized pattern recognition by achieving 
superior accuracy in recognizing patterns in spatial and temporal data compared to humans. DL has expanded the 
capabilities of traditional machine learning algorithms and has gained popularity among practitioners dealing with diverse 
data types. In addition to covering important DL architectures, automatic architecture optimization protocols, fault detection 
and mitigation through DL, this overview also looks at several domains where DL has made notable strides, including 
financial forecasting, fraud detection, medical image processing, power systems research, and recommender systems. The 
goal of the paper is to serve as a resource for academics who are considering using deep learning (DL) for pattern 
recognition tasks due to its remarkable ability to learn and scale with data. 
 
During the backpropagation process in recurrent neural networks (RNNs), the issue of vanishing and exploding gradients 
can occur, which can be addressed by using LSTM networks. LSTMs utilize gates, such as the 'forget' gate and 'input' gate, 
to control the retention of information from previous time steps and update the candidate values accordingly. LSTM 
networks can also be enhanced with peephole connections or variations like Gated Recurrent Units (GRUs) for improved 
performance in tasks like acoustic modeling, handwriting recognition, sentence embedding, and part-of-speech tagging. A 
recurring module in LSTM networks, or a sort of recurrent neural network (RNN) that addresses the issue of vanishing and 
exploding gradients in RNNs by including specialized gates to regulate the flow of input over time.  
 
The repeating module in an LSTM is made up of several parts, including forget gates, input gates, and output gates, that 
allow the network to store and update data from earlier time steps, making it suited for jobs involving sequential data. 

III. RESULTS  AND DISCUSSION 
     The authors of [24] discussed the challenges of analyzing large and complex datasets that deviate from standard 
statistical assumptions. A novel online algorithm for decomposing low-rank, Poisson-distributed tensors, which arise in 
various applications such as traffic engineering, genomics, and SI was proposed [24].  
The authors [24] applied their proposed algorithm for Poisson TD and imputation to a real solar flare video that was 
corrupted by Poisson noise.  
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An extensive analysis of the evolution of deep learning models over 
time, starting with the early neural networks influenced by brain 
research and going all the way up to the prevalent models of today 
such as recurrent neural networks, convolutional neural networks, 
and deep belief networks [22]. In addition, the paper looks at the 
models' beginnings, original construction, and evolution over 
time, providing important context for current and upcoming deep 
learning research. More specifically focusing on three major 
families: deep generative models, convolutional neural networks, 
and recurrent neural networks [22]. The paper aims to achieve 
two goals: documenting significant milestones in the history of 
deep learning that have influenced its current development and 
providing insights into how these remarkable works have emerged 
among numerous contemporaneous publications. Additionally, the 
authors briefly summarize three common directions pursued by 
these milestones, including simplicity in implementation, solving 
unique problems, and drawing inspiration from domains outside of 
machine learning and statistics.

Occam's razor is a principle that suggests simpler models are often 
preferred over complex ones in deep learning [22]. Dropout, for 
example, is widely recognized not only for its performance but also 
for its simplicity in implementation. Additionally, being ambitious 
in proposing models with more parameters can be remarkable if 
they solve problems that others cannot, such as Long- Short Term 
Memory (LSTM) bypassing the vanishing gradient problem. 

Many DL models are inspired by domain knowledge outside of 
machine learning, like how convolutional neural networks draw 
inspiration from the human visual cortex. These directions can 
help readers have a greater impact on society, and more directions 
can be explored through revisiting these milestones. DL has 
revolutionized pattern recognition by achieving superior accuracy 
in recognizing patterns in spatial and temporal data compared 
to humans [23]. DL has expanded the capabilities of traditional 
machine learning algorithms and has gained popularity among 
practitioners dealing with diverse data types. In addition to covering 

important DL architectures, automatic architecture optimization 
protocols, fault detection and mitigation through DL, this overview 
also looks at several domains where DL has made notable strides, 
including financial forecasting, fraud detection, medical image 
processing, power systems research, and recommender systems. 
The goal of the paper is to serve as a resource for academics who 
are considering using deep learning (DL) for pattern recognition 
tasks due to its remarkable ability to learn and scale with data.

During the backpropagation process in recurrent neural networks 
(RNNs), the issue of vanishing and exploding gradients can 
occur, which can be addressed by using LSTM networks. LSTMs 
utilize gates, such as the 'forget' gate and 'input' gate, to control 
the retention of information from previous time steps and update 
the candidate values accordingly. LSTM networks can also be 
enhanced with peephole connections or variations like Gated 
Recurrent Units (GRUs) for improved performance in tasks like 
acoustic modeling, handwriting recognition, sentence embedding, 
and part-of-speech tagging. A recurring module in LSTM networks, 
or a sort of recurrent neural network (RNN) that addresses the 
issue of vanishing and exploding gradients in RNNs by including 
specialized gates to regulate the flow of input over time. 

The repeating module in an LSTM is made up of several parts, 
including forget gates, input gates, and output gates, that allow the 
network to store and update data from earlier time steps, making it 
suited for jobs involving sequential data.

3. Results and Discussion
The authors of discussed the challenges of analyzing large and 
complex datasets that deviate from standard statistical assumptions 
[24]. A novel online algorithm for decomposing low-rank, Poisson-
distributed tensors, which arise in various applications such as 
traffic engineering, genomics, and SI was proposed [24]. 

The authors applied their proposed algorithm for Poisson TD and 
imputation to a real solar flare video that was corrupted by Poisson 
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noise [24].

To address the challenges of storing and transmitting large amounts 
of remote sensing data, as well as the use of super-resolution 
methods to improve the spatial resolution of low-resolution images, 
the authors proposed a tensor-based approach for compressing and 
recovering multi-spectral image data, as well as a robust algorithm 
for super-resolving SIs, followed by an experimentally validated 
convolutional neural network for classification [25].

More specifically, discussed the challenges of storing and 
transmitting large amounts of remote sensing data, particularly 
multispectral and hyperspectral images [25]. Due to limitations in 
equipment and bandwidth, images are often compressed, which 
can negatively impact subsequent processing and classification 
tasks. Quantization, a process of mapping input values to output 
values, is used to reduce data size, but it also introduces challenges 
in data acquisition.

Using the sparse representations learning framework, the suggested 
approach for super-resolution synthesizes high-spatial resolution 
hypercubes from low-resolution ones [25,26].

Discussed a method for compressing object detection models 
based on Tucker decomposition, which can reduce the storage and 
computing complexity of CNN-based models deployed onboard 
satellites. 

TDs are widely used in machine learning (ML), especially 
when compressing massive amounts of data for deep learning. 
A framework for balancing the amount of model parameters 
and predictive accuracy is provided by tensor networks, such as 
tensor factorization, which enables the compression of neural 
models. This method has been effectively used with several DL 
architectures, including convolutional networks and restricted 
Boltzmann machines, either by compressing the entire design or 
by applying TDs to specific layers. The integration of TDs with 
DL models, specifically focusing on modifying input aggregation 
functions using tensors within artificial neurons would explain how 
this approach can capture higher-order relationships in structured 
data, such as tree structures, and highlights using TDs as a trade-
off between simplicity and complexity in neural aggregation [27].

Notably, the use of TDs in DL models is an emerging research 
area that shows promise [27]. While tensor factorization is a 
well-established method for multi-way data analysis, tensor 
decompositions are also being explored for the enhancement of the 
expressiveness of neural representations. This research direction is 
still in its early stages but holds potential for advancing DL models.

The research themes present intriguing challenges that can enhance 
the performance of DL models and provide deeper insights into 
their functioning [27]. The question of whether tensorization 
should only have an impact on the forward phase of neural 
models (i.e., computing neural activity) or if it also has significant 

implications for the backward phase (i.e., learning) is one such 
difficult open problem brought about using tensorized neural 
layers. By investigating this issue, we can increase our knowledge 
and the efficiency of DL models.

The popularity of image decomposition and natural language 
processing in the context of DL has increased the demand for 
effective storage and support of the numerous parameters needed 
by deep learning algorithms [28]. One solution to this problem is to 
employ sparse representation methods to compress the parameter 
matrix and lower storage pressure, such as tensor decomposition 
and matrix decomposition. Vectors can benefit from the 
compression capabilities of matrix-TDs’ reshaping and unfolding 
techniques, and an analysis is done to find the ideal compress ratio 
by reshaping. In DL, the input vector is reshaped into a three-way 
tensor, and the output tensor is unfolded into a vector [28]. This 
reshaping and unfolding process reduces the number of parameters 
through tensor decomposition. However, the choice of reshaping 
into two-way, three-way, or N-way tensor affects the compressed 
ratio and representation power, which depend on the structure of 
the input data. The paper focuses on finding the best reshaping and 
unfolding strategy to achieve the optimal parameter compressed 
ratio. 

The authors used a vector as the input for a Tensor-Factorized 
Neural Network (TFNN) to restructure it into a matrix or tensor to 
manage the number of parameters and increase training efficiency 
in deep learning [26]. It remains an open challenge to find a better 
tensor shape to maintain representation power while compressing 
paramers.

TDs are fundamental components in modern DL architectures, 
serving as the building blocks for various operations like 
convolution and attention [27]. By incorporating tensor 
decompositions, deep neural networks can reduce the number of 
parameters, making them more efficient, robust, and capable of 
preserving the underlying structure in the data. Tensor analysis also 
helps in understanding the success of neural networks, including 
their approximation capabilities and the biases they leverage in 
computer vision.

In modern deep neural networks, each layer produces an activation 
tensor [27]. This allows for obtaining a low-dimensional 
representation of the activation tensor, maintaining its structural 
properties within the network.

By using TDs and expressing the higher-order polynomial as a 
product of simpler functions, the expansion order can be increased 
without significantly increasing the network's complexity [29].

4. Conclusion
An explanation is given to confirm the influential role of TDs in 
developing and revolutionizing SI. The current paper has several 
emerging open problems.
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• Following, is it feasible to undertake their approach much further 
to other object detection models and mobile devices with other 
rank selection to be involved. This is a potentially challenging 
problem [24].
• According to, the authors did not prove either the convergency 
or the optimality for their proposed algorithm, so it is a real 
challenging open problem to mathematically validate their 
undertaken algorithm [24].
• Rank selection is a significant challenge in tensor methods, as 
determining the rank of a tensor is generally a computationally 
complex task [29]. In practice, heuristics are often used to estimate 
the rank, such as selecting a rank that preserves around 90% of 
the parameters and gradually reducing it through compression. 
Using a penalty to the loss function to automatically set some 
components to zero is another method, as is applying Bayesian 
matrix factorization.
• In tensor methods, the choice of decomposition is a significant 
consideration. Heuristics and experimental work can guide the 
selection, but there is no definitive method [29,30]. In general, 
the Tensor-Train decomposition works well for obtaining 
large compression ratios, the CP decomposition is helpful for 
interpretable latent components, and the Tucker decomposition 
is appropriate for subspace learning. Further concerns come into 
play in DL, where the Tucker convolution provides flexibility with 
distinct ranks for each mode and the CP factorization is comparable 
to a MobileNet-v2 block. Higher-order convolutional LSTM 
learning has also proven to be successful using convolutional 
tensor-train decompositions.

• Choosing the right TDs and its rank based on the tensor structure 
is a continuous issue because of the interaction between tensor 
decomposition and convolutional kernels in deep learning models 
and the lack of theory to guide optimal selections [29,30]. It also 
tackles the numerical challenges encountered in training tensorized 
deep neural networks, such gradient vanishing or exploding and 
instability, and offers solutions such as automatic mixed-precision 
and improved normalisation approaches.
• In financial markets, trading in real-time poses a significant 
challenge as previously trained models may perform poorly when 
the dataset dynamics change [23]. To address this, repetitive 
training of algorithms is necessary, but DL mechanism is 
more time- resources based. However, the application of deep 
learning with faster incremental learning in the financial market, 
particularly for automated trading, can help investors rely on 
deep learning models and avoid missing out on profitable trades. 
Additionally, Progressive Neural Networks can continually learn 
and transfer knowledge to new domains, making them effective in 
reinforcement learning tasks such as playing games like Atari and 
3D maze games.
•	 DL architectures have the potential to overcome major 
industrial difficulties due to the growing availability of data and 
sophisticated computing units [23]. However, learning abstractions 
without explicit verbal explanations is less effective with typical 
deep learning algorithms because they mainly rely on big data 
sets. Techniques including data augmentation, transfer learning, 

recursive classification, synthetic data creation, and one-shot 
learning are being investigated to get around this restriction and 
work with less datasets. These techniques enable deep learning 
models to learn from sparse or fewer data representations.
• Sensor fusion has led to a significant increase in data availability, 
which can provide more training examples for machine learning 
[23]. However, the challenge lies in distinguishing useful data from 
irrelevant or erroneous instances. This requires further research to 
develop techniques for filtering out bad data, such as missing or 
incorrect values, and ensuring data quality for effective training.

More interesting, the next research phase includes finding solutions 
to the provided open problems.

References
1.	 Mageed, I. A., Yilmaz, M., Zhang, Q., Celikel, R., & Sidhu, 

M. S. (2022, October). A review of potential applications 
of Tensor Decompositions to Electromagnetics and energy 
works. In 2022 Global Energy Conference (GEC) (pp. 385-
390). IEEE.

2.	 Bose, N. K., Lertrattanapanich, S., & Koo, J. (2001, May). 
Advances in superresolution using L-curve. In ISCAS 2001. 
The 2001 IEEE International Symposium on Circuits and 
Systems (Cat. No. 01CH37196) (Vol. 2, pp. 433-436). IEEE.

3.	 Hou, H., & Andrews, H. (1978). Cubic splines for image 
interpolation and digital filtering. IEEE Transactions on 
acoustics, speech, and signal processing, 26(6), 508-517.

4.	 Dai, S., Han, M., Xu, W., Wu, Y., & Gong, Y. (2007, June). 
Soft edge smoothness prior for alpha channel super resolution. 
In 2007 IEEE Conference on Computer Vision and Pattern 
Recognition (pp. 1-8). IEEE.

5.	 Sun, J., Xu, Z., & Shum, H. Y. (2008). Image super-resolution 
using gradient profile prior. In 2008 IEEE conference on 
computer vision and pattern recognition (pp. 1-8). IEEE.

6.	 Liu, X., Zhao, D., Xiong, R., Ma, S., Gao, W., & Sun, H. 
(2011). Image interpolation via regularized local linear 
regression. IEEE Transactions on Image Processing, 20(12), 
3455-3469.

7.	 Giannakopoulos, I. I., Guryev, G. D., Serrallés, J. E., 
Georgakis, I. P., Daniel, L., White, J. K., & Lattanzi, R. 
(2022). Compression of volume-surface integral equation 
matrices via Tucker decomposition for magnetic resonance 
applications. IEEE transactions on antennas and propagation, 
70(1), 459-471. 

8.	 Giannakopoulos, I. I., Litsarev, M. S., & Polimeridis, A. 
G. (2019). Memory footprint reduction for the FFT-based 
volume integral equation method via tensor decompositions. 
IEEE Transactions on Antennas and Propagation, 67(12), 
7476-7486.

9.	 Polimeridis, A. G., & White, J. K. (2014). On the compression 
of system tensors arising in FFT-VIE solvers. In 2014 IEEE 
Antennas and Propagation Society International Symposium 
(APSURSI) (pp. 2144-2145). IEEE.

10.	 Wang, M., Qian, C., Di Lorenzo, E., Gomez, L. J., 
Okhmatovski, V., & Yucel, A. C. (2021). SuperVoxHenry: 

https://www.researchgate.net/profile/Manjit-Sidhu/publication/366679744_A_review_of_potential_applications_of_Tensor_Decompositions_to_Electromagnetics_and_energy_works/links/63e1aaebaf870646abe9054a/A-review-of-potential-applications-of-Tensor-Decompositions-to-Electromagnetics-and-energy-works.pdf
https://www.researchgate.net/profile/Manjit-Sidhu/publication/366679744_A_review_of_potential_applications_of_Tensor_Decompositions_to_Electromagnetics_and_energy_works/links/63e1aaebaf870646abe9054a/A-review-of-potential-applications-of-Tensor-Decompositions-to-Electromagnetics-and-energy-works.pdf
https://www.researchgate.net/profile/Manjit-Sidhu/publication/366679744_A_review_of_potential_applications_of_Tensor_Decompositions_to_Electromagnetics_and_energy_works/links/63e1aaebaf870646abe9054a/A-review-of-potential-applications-of-Tensor-Decompositions-to-Electromagnetics-and-energy-works.pdf
https://www.researchgate.net/profile/Manjit-Sidhu/publication/366679744_A_review_of_potential_applications_of_Tensor_Decompositions_to_Electromagnetics_and_energy_works/links/63e1aaebaf870646abe9054a/A-review-of-potential-applications-of-Tensor-Decompositions-to-Electromagnetics-and-energy-works.pdf
https://www.researchgate.net/profile/Manjit-Sidhu/publication/366679744_A_review_of_potential_applications_of_Tensor_Decompositions_to_Electromagnetics_and_energy_works/links/63e1aaebaf870646abe9054a/A-review-of-potential-applications-of-Tensor-Decompositions-to-Electromagnetics-and-energy-works.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ca253e5df6e99b48b16667f9fbf5d0ad9e8a4cdb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ca253e5df6e99b48b16667f9fbf5d0ad9e8a4cdb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ca253e5df6e99b48b16667f9fbf5d0ad9e8a4cdb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ca253e5df6e99b48b16667f9fbf5d0ad9e8a4cdb
https://ieeexplore.ieee.org/document/1163154
https://ieeexplore.ieee.org/document/1163154
https://ieeexplore.ieee.org/document/1163154
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0af9b0bfd597b04c87100f86a387af70f5a415a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0af9b0bfd597b04c87100f86a387af70f5a415a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0af9b0bfd597b04c87100f86a387af70f5a415a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0af9b0bfd597b04c87100f86a387af70f5a415a7
https://gr.xjtu.edu.cn/html/documents/GrArticles/UserFiles/File/getPDF.pdf
https://gr.xjtu.edu.cn/html/documents/GrArticles/UserFiles/File/getPDF.pdf
https://gr.xjtu.edu.cn/html/documents/GrArticles/UserFiles/File/getPDF.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=636d277a532eeac4f0d47907a44abbc06a26b70e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=636d277a532eeac4f0d47907a44abbc06a26b70e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=636d277a532eeac4f0d47907a44abbc06a26b70e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=636d277a532eeac4f0d47907a44abbc06a26b70e
https://ieeexplore.ieee.org/document/9465722
https://ieeexplore.ieee.org/document/9465722
https://ieeexplore.ieee.org/document/9465722
https://ieeexplore.ieee.org/document/9465722
https://ieeexplore.ieee.org/document/9465722
https://ieeexplore.ieee.org/document/9465722
https://arxiv.org/pdf/1811.00484.pdf
https://arxiv.org/pdf/1811.00484.pdf
https://arxiv.org/pdf/1811.00484.pdf
https://arxiv.org/pdf/1811.00484.pdf
https://arxiv.org/pdf/1811.00484.pdf
https://drive.google.com/file/d/1mmuTkSVMp3wHWNFOFHobzVuA1BypI0xs/view
https://drive.google.com/file/d/1mmuTkSVMp3wHWNFOFHobzVuA1BypI0xs/view
https://drive.google.com/file/d/1mmuTkSVMp3wHWNFOFHobzVuA1BypI0xs/view
https://drive.google.com/file/d/1mmuTkSVMp3wHWNFOFHobzVuA1BypI0xs/view
https://arxiv.org/ftp/arxiv/papers/2105/2105.08627.pdf
https://arxiv.org/ftp/arxiv/papers/2105/2105.08627.pdf


Volume 5 | Issue 2 |6Adv Mach Lear Art Inte,  2024

Tucker-enhanced and FFT-accelerated inductance extraction 
for voxelized superconducting structures. IEEE Transactions 
on Applied Superconductivity, 31(7), 1-11. 

11.	 Wang, M., Qian, C., White, J. K., & Yucel, A. C. (2020). 
VoxCap: FFT-accelerated and Tucker-enhanced capacitance 
extraction simulator for voxelized structures. IEEE 
Transactions on Microwave Theory and Techniques, 68(12), 
5154-5168. 

12.	 Wang, M., & Yucel, A. C. (2021, December). FFT-accelerated 
and Tucker-enhanced impedance extraction for voxelized 
structures. In 2021 IEEE International Symposium on 
Antennas and Propagation and USNC-URSI Radio Science 
Meeting (APS/URSI) (pp. 217-218). IEEE.

13.	 Qian, C., & Yucel, A. C. (2020). On the compression of 
translation operator tensors in FMM-FFT-accelerated SIE 
simulators via tensor decompositions. IEEE Transactions on 
Antennas and Propagation, 69(6), 3359-3370.

14.	 Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions 
and applications. SIAM review, 51(3), 455-500.

15.	 Giannakopoulos, I. I., Litsarev, M. S., & Polimeridis, A. G. 
(2018). 3D cross-Tucker approximation in FFT-based volume 
integral equation methods. In 2018 IEEE International 
Symposium on Antennas and Propagation & USNC/URSI 
National Radio Science Meeting (pp. 2507-2508). IEEE. 

16.	 Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M. 
G., Cichocki, A., Phan, A. H., Tanaka, T., & Oseledets, I. 
(2021). Randomized algorithms for computation of Tucker 
decomposition and higher order SVD (HOSVD). IEEE 
Access, 9, 28684-28706. 

17.	 Javan, F. D., Samadzadegan, F., Mehravar, S., Toosi, A., 
Khatami, R., & Stein, A. (2021). A review of image fusion 
techniques for pan-sharpening of high-resolution satellite 
imagery. ISPRS journal of photogrammetry and remote 
sensing, 171, 101-117.

18.	 Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., 
Garzelli, A., Licciardi, G. A., & Wald, L. (2014). A critical 
comparison among pansharpening algorithms. IEEE 
Transactions on Geoscience and Remote Sensing, 53(5), 
2565-2586. 

19.	 Snehmani, Gore, A., Ganju, A., Kumar, S., Srivastava, P. K., 
& RP, H. R. (2017). A comparative analysis of pansharpening 

techniques on QuickBird and WorldView-3 images. Geocarto 
International, 32(11), 1268-1284.

20.	 Dehghanpoor, G., Frachetti, M., & Juba, B. (2020). A Tensor 
Decomposition Method for Unsupervised Feature Learning on 
Satellite Imagery. In IGARSS 2020-2020 IEEE International 
Geoscience and Remote Sensing Symposium (pp. 1679-1682). 
IEEE.

21.	 Zingoni, A., Diani, M., & Corsini, G. (2019). Tutorial: Dealing 
with rotation matrices and translation vectors in image-based 
applications: A tutorial. IEEE Aerospace and Electronic 
Systems Magazine, 34(2), 38-53.

22.	 Ye, C., & Mateos, G. (2019). Online tensor decomposition 
and imputation for count data. In 2019 IEEE Data Science 
Workshop (DSW) (pp. 17-21). IEEE.

23.	 Wang, H., & Raj, B. (2017). On the origin of deep learning. 
24.	 Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., 

Atiah, F., & Peters, A. (2020). A review of deep learning with 
special emphasis on architectures, applications and recent 
trends. Knowledge-Based Systems, 194, 105596.

25.	 Aidini, A., Giannopoulos, M., Pentari, A., Fotiadou, K., & 
Tsakalides, P. (2019). Hyperspectral image compression 
and super-resolution using tensor decomposition learning. 
In 2019 53rd Asilomar Conference on Signals, Systems, and 
Computers (pp. 1369-1373). IEEE.

26.	 Fotiadou, K., Tsagkatakis, G., & Tsakalides, P. (2018). 
Spectral super resolution of hyperspectral images via coupled 
dictionary learning. IEEE Transactions on Geoscience and 
Remote Sensing, 57(5), 2777-2797.

27.	 Huyan, L., Li, Y., Jiang, D., Zhang, Y., Zhou, Q., Li, B., & 
Fang, H. (2023). Remote Sensing Imagery Object Detection 
Model Compression via Tucker Decomposition. Mathematics, 
11(4), 856.

28.	 Bacciu, D., & Mandic, D. P. (2020). Tensor decompositions 
in deep learning. 

29.	 He, S., Li, Z., Tang, Y., Liao, Z., Li, F., & Lim, S. J. (2020). 
Parameters compressing in deep learning. Computers, 
Materials & Continua, 62(1), 321-336.

30.	 Panagakis, Y., Kossaifi, J., Chrysos, G. G., Oldfield, J., 
Nicolaou, M. A., Anandkumar, A., & Zafeiriou, S. (2021). 
Tensor methods in computer vision and deep learning. 
Proceedings of the IEEE, 109(5), 863-890.

Copyright: ©2024 Ismail A Mageed. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

https://opastpublishers.com/

https://arxiv.org/ftp/arxiv/papers/2105/2105.08627.pdf
https://arxiv.org/ftp/arxiv/papers/2105/2105.08627.pdf
https://arxiv.org/ftp/arxiv/papers/2105/2105.08627.pdf
https://arxiv.org/ftp/arxiv/papers/2004/2004.02609.pdf
https://arxiv.org/ftp/arxiv/papers/2004/2004.02609.pdf
https://arxiv.org/ftp/arxiv/papers/2004/2004.02609.pdf
https://arxiv.org/ftp/arxiv/papers/2004/2004.02609.pdf
https://arxiv.org/ftp/arxiv/papers/2004/2004.02609.pdf
https://personal.ntu.edu.sg/acyucel/conf_papers_abs/C68.pdf
https://personal.ntu.edu.sg/acyucel/conf_papers_abs/C68.pdf
https://personal.ntu.edu.sg/acyucel/conf_papers_abs/C68.pdf
https://personal.ntu.edu.sg/acyucel/conf_papers_abs/C68.pdf
https://personal.ntu.edu.sg/acyucel/conf_papers_abs/C68.pdf
https://ieeexplore.ieee.org/document/9234041
https://ieeexplore.ieee.org/document/9234041
https://ieeexplore.ieee.org/document/9234041
https://ieeexplore.ieee.org/document/9234041
https://www.cs.umd.edu/class/fall2018/cmsc498V/slides/TensorBasics.pdf
https://www.cs.umd.edu/class/fall2018/cmsc498V/slides/TensorBasics.pdf
https://www.researchgate.net/profile/Ilias-Giannakopoulos/publication/330367050_3D_Cross-Tucker_Approximation_in_FFT-Based_Volume_Integral_Equation_Methods/links/5cc1bbc492851c8d2203d6c2/3D-Cross-Tucker-Approximation-in-FFT-Based-Volume-Integral-Equation-Methods.pdf
https://www.researchgate.net/profile/Ilias-Giannakopoulos/publication/330367050_3D_Cross-Tucker_Approximation_in_FFT-Based_Volume_Integral_Equation_Methods/links/5cc1bbc492851c8d2203d6c2/3D-Cross-Tucker-Approximation-in-FFT-Based-Volume-Integral-Equation-Methods.pdf
https://www.researchgate.net/profile/Ilias-Giannakopoulos/publication/330367050_3D_Cross-Tucker_Approximation_in_FFT-Based_Volume_Integral_Equation_Methods/links/5cc1bbc492851c8d2203d6c2/3D-Cross-Tucker-Approximation-in-FFT-Based-Volume-Integral-Equation-Methods.pdf
https://www.researchgate.net/profile/Ilias-Giannakopoulos/publication/330367050_3D_Cross-Tucker_Approximation_in_FFT-Based_Volume_Integral_Equation_Methods/links/5cc1bbc492851c8d2203d6c2/3D-Cross-Tucker-Approximation-in-FFT-Based-Volume-Integral-Equation-Methods.pdf
https://www.researchgate.net/profile/Ilias-Giannakopoulos/publication/330367050_3D_Cross-Tucker_Approximation_in_FFT-Based_Volume_Integral_Equation_Methods/links/5cc1bbc492851c8d2203d6c2/3D-Cross-Tucker-Approximation-in-FFT-Based-Volume-Integral-Equation-Methods.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350569
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350569
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350569
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350569
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350569
https://research.utwente.nl/files/256783070/1_s2.0_S0924271620303002_main.pdf
https://research.utwente.nl/files/256783070/1_s2.0_S0924271620303002_main.pdf
https://research.utwente.nl/files/256783070/1_s2.0_S0924271620303002_main.pdf
https://research.utwente.nl/files/256783070/1_s2.0_S0924271620303002_main.pdf
https://research.utwente.nl/files/256783070/1_s2.0_S0924271620303002_main.pdf
https://openremotesensing.net/wp-content/uploads/2015/02/IEEE_TGRS_2015_vivone_pansharpening.pdf
https://openremotesensing.net/wp-content/uploads/2015/02/IEEE_TGRS_2015_vivone_pansharpening.pdf
https://openremotesensing.net/wp-content/uploads/2015/02/IEEE_TGRS_2015_vivone_pansharpening.pdf
https://openremotesensing.net/wp-content/uploads/2015/02/IEEE_TGRS_2015_vivone_pansharpening.pdf
https://openremotesensing.net/wp-content/uploads/2015/02/IEEE_TGRS_2015_vivone_pansharpening.pdf
https://www.researchgate.net/profile/Akshay-Gore/publication/305466387_A_comparative_analysis_of_pansharpening_techniques_on_QuickBird_and_WorldView-3_images/links/5a0be991aca2721a23fa24af/A-comparative-analysis-of-pansharpening-techniques-on-QuickBird-and-WorldView-3-images.pdf
https://www.researchgate.net/profile/Akshay-Gore/publication/305466387_A_comparative_analysis_of_pansharpening_techniques_on_QuickBird_and_WorldView-3_images/links/5a0be991aca2721a23fa24af/A-comparative-analysis-of-pansharpening-techniques-on-QuickBird-and-WorldView-3-images.pdf
https://www.researchgate.net/profile/Akshay-Gore/publication/305466387_A_comparative_analysis_of_pansharpening_techniques_on_QuickBird_and_WorldView-3_images/links/5a0be991aca2721a23fa24af/A-comparative-analysis-of-pansharpening-techniques-on-QuickBird-and-WorldView-3-images.pdf
https://www.researchgate.net/profile/Akshay-Gore/publication/305466387_A_comparative_analysis_of_pansharpening_techniques_on_QuickBird_and_WorldView-3_images/links/5a0be991aca2721a23fa24af/A-comparative-analysis-of-pansharpening-techniques-on-QuickBird-and-WorldView-3-images.pdf
https://par.nsf.gov/servlets/purl/10310363
https://par.nsf.gov/servlets/purl/10310363
https://par.nsf.gov/servlets/purl/10310363
https://par.nsf.gov/servlets/purl/10310363
https://par.nsf.gov/servlets/purl/10310363
https://ieeexplore.ieee.org/document/8666694
https://ieeexplore.ieee.org/document/8666694
https://ieeexplore.ieee.org/document/8666694
https://ieeexplore.ieee.org/document/8666694
https://www.hajim.rochester.edu/ece/sites/gmateos/pubs/tensor/tensor_DSW19.pdf
https://www.hajim.rochester.edu/ece/sites/gmateos/pubs/tensor/tensor_DSW19.pdf
https://www.hajim.rochester.edu/ece/sites/gmateos/pubs/tensor/tensor_DSW19.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1905.13294&sa=U&ved=2ahUKEwji-Z-qnsLvAhWJsBQKHRg2Dc8QFjATegQIAxAB&usg=AOvVaw0KE4HeDV4exyzO8y47xnUJ
https://arxiv.org/pdf/1905.13294&sa=U&ved=2ahUKEwji-Z-qnsLvAhWJsBQKHRg2Dc8QFjATegQIAxAB&usg=AOvVaw0KE4HeDV4exyzO8y47xnUJ
https://arxiv.org/pdf/1905.13294&sa=U&ved=2ahUKEwji-Z-qnsLvAhWJsBQKHRg2Dc8QFjATegQIAxAB&usg=AOvVaw0KE4HeDV4exyzO8y47xnUJ
https://arxiv.org/pdf/1905.13294&sa=U&ved=2ahUKEwji-Z-qnsLvAhWJsBQKHRg2Dc8QFjATegQIAxAB&usg=AOvVaw0KE4HeDV4exyzO8y47xnUJ
https://users.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2019-Asilomar.pdf
https://users.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2019-Asilomar.pdf
https://users.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2019-Asilomar.pdf
https://users.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2019-Asilomar.pdf
https://users.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2019-Asilomar.pdf
https://www.researchgate.net/profile/Grigorios-Tsagkatakis-2/publication/328945721_Spectral_Super_Resolution_of_Hyperspectral_Images_via_Coupled_Dictionary_Learning/links/5d416b1f299bf1995b597df7/Spectral-Super-Resolution-of-Hyperspectral-Images-via-Coupled-Dictionary-Learning.pdf
https://www.researchgate.net/profile/Grigorios-Tsagkatakis-2/publication/328945721_Spectral_Super_Resolution_of_Hyperspectral_Images_via_Coupled_Dictionary_Learning/links/5d416b1f299bf1995b597df7/Spectral-Super-Resolution-of-Hyperspectral-Images-via-Coupled-Dictionary-Learning.pdf
https://www.researchgate.net/profile/Grigorios-Tsagkatakis-2/publication/328945721_Spectral_Super_Resolution_of_Hyperspectral_Images_via_Coupled_Dictionary_Learning/links/5d416b1f299bf1995b597df7/Spectral-Super-Resolution-of-Hyperspectral-Images-via-Coupled-Dictionary-Learning.pdf
https://www.researchgate.net/profile/Grigorios-Tsagkatakis-2/publication/328945721_Spectral_Super_Resolution_of_Hyperspectral_Images_via_Coupled_Dictionary_Learning/links/5d416b1f299bf1995b597df7/Spectral-Super-Resolution-of-Hyperspectral-Images-via-Coupled-Dictionary-Learning.pdf
https://www.mdpi.com/2227-7390/11/4/856
https://www.mdpi.com/2227-7390/11/4/856
https://www.mdpi.com/2227-7390/11/4/856
https://www.mdpi.com/2227-7390/11/4/856
https://arxiv.org/pdf/2002.11835.pdf
https://arxiv.org/pdf/2002.11835.pdf
https://cdn.techscience.cn/uploads/attached/file/20191224/20191224030704_20162.pdf
https://cdn.techscience.cn/uploads/attached/file/20191224/20191224030704_20162.pdf
https://cdn.techscience.cn/uploads/attached/file/20191224/20191224030704_20162.pdf
https://arxiv.org/pdf/2107.03436.pdf
https://arxiv.org/pdf/2107.03436.pdf
https://arxiv.org/pdf/2107.03436.pdf
https://arxiv.org/pdf/2107.03436.pdf

