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Abstract 
Heart disease, a prevalent cardiovascular condition, poses significant health risks and affects millions worldwide. The alarming 
rise in heart disease cases in recent years demands proactive measures, making early prediction of these conditions crucial 
and concerning. By employing machine learning techniques, this study aims to identify patients who are more susceptible to 
heart disease based on diverse medical attributes. The Heart Disease Dataset from Kaggle, consisting of 1025 samples and 
14 features, was incorporated into this investigation. And after preprocessing the dataset by removing duplicate and null 
values and implementing statistical imputation and several data graphs, like a scatter plot, box plot, histogram, etc., we split 
it into training and testing datasets and apply SMOTE technique on the training one. Various machinelearning approaches 
were used in this study, out of which the optimized decision tree gave the best accuracy of 98.96%. 
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1. Introduction 
Heart disease is a major global health concern, responsible for 
around 70% of all deaths worldwide [1,2]. Heart disease refers 
to a spectrum of conditions that impact the structure and function 
of the heart. Numerous factors, including genetics, lifestyle, and 
underlying medical conditions including high blood pressure, 
high cholesterol, and diabetes, play a role in its development. 
There are numerous varieties of heart disease, each with its 
distinct characteristics and effects on our health. Coronary artery 
disease, arrhythmias, heart failure, and valve disease are the 
most prevalent forms of heart disease [2,3]. By 2030, around 
23.6 million lives will be lost each year, making heart attacks 
one of the leading causes of death globally, if not already [4]. 
Preventing heart disease requires adopting a healthy lifestyle, 
including proper nutrition, exercise, and avoiding tobacco and 
alcohol. Although traditional methods like physical examination, 
ECG, CT, or MRI scans could be beneficial in diagnosing heart 
disease, it is high time we also depend on a different approach, 
something like machine learning technology, as it has shown 
great promise in predicting heart disease by analyzing large 
datasets and making accurate predictions. 

In modern times, heart disease is a progressive condition that 
typically causes suffering and mortality. Numerous studies and 
machine learning algorithms have been utilized extensively to 
predict and characterize this disease [5–9].

For instance, Singh anticipated cardiac disease at an early stage 

[5]. The Cleveland database and the Statlog Heart Disease 
repository at the University of California, Irvine (UCI) provided 
them with a standard dataset of 13 features for this purpose. On 
that dataset, many machine learning models were applied and 
compared. Using the random forest classifier yielded the highest 
accuracy at 93.02 percent.  

Using six machine learning algorithms, research attempted to 
predict heart disease [6]. On two heart disease datasets, the 
authors evaluated six distinct models and achieved an accuracy 
of 87.91% for SVM and 98.90% for XGBoost classifier with 
customized hyperparameters. 

The UCI Heart Disease Prediction Benchmark Dataset was 
utilized in the research, which comprises 14 distinct factors 
linked to heart disease and several machine learning models 
trained with that dataset [7].  According to their research, in 
comparison to other machine learning algorithms, Random 
Forest gives greater accuracy with less forecast time.  

Jindat et al. predicted heart disease prediction using machine 
learning algorithms [8]. The authors used the UCI repository 
with patients’ medical histories and attributes. 13 medical 
characteristics from 304 individuals in their dataset served as 
a detection tool. The KNN model had the highest accuracy of 
88.52% among the classifiers the authors examined, making it 
the most effective one.  
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Various machine-learning models were utilized by Karthick 
and his colleagues  to evaluate the probability of heart disease 
occurrence from the available dataset [9]. The UCI ML 
repository's Cleveland HD dataset, consisting of 303 data 
samples and 13 features, was employed in this investigation. 
In addition to statistical imputation and several data analysis 
graphs, like scatter plots, this study also used 6 different machine 
learning classifiers. Out of which, the random forest algorithm 
provided better accuracy of 88.5% in prediction. 

For our study, we implemented five distinct algorithms on a 
dataset of 1,025 samples with 14 features. In this instance, we also 
utilized dataset pre-processing, hyperparameter optimization, 
class imbalance management, feature selection, and Explainable 
AI LIME. Based on our analysis of various models, we used the 
most accurate model to predict heart disease. Our system has the 
potential to substantially benefit the medical field by detecting 
and preventing heart disease. 

The remaining sections of this work follow the same 
organizational pattern, with Section II describing research 
methods and tools, Section III presenting our system’s data 
and findings alongside qualitative analysis, and Section IV 
summarizing our goals and highlighting the significance of early 
heart disease prediction.    

2. Proposed System 
Within this section, we present a summary of the dataset and 
its characteristics, data preprocessing, and an overview of the 
models, approaches, and resources used in this study. 

2.1 Dataset
Our machine learning system utilized a Kaggle dataset with 
1025 samples and 14 attributes related to heart disease age, sex, 
cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, 
thal and target [10]. The dataset had no null values but exhibited 
outliers. Fig. 1 shows an overview of the dataset. 
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2.2 Exploratory Data Analysis:  Exploratory Data Analysis is 
a quick and efficient technique that employs static and 
dynamic visualizations to analyze large volumes of data in a 
given context. It aids in identifying data patterns, associations, 
and preprocessing needs, allowing for a rapid evaluation of the 
alignment between characteristics and desired outcomes. 
Counter, His, KDE and box plot of some features from 
exploratory data analysis is given below. 

Using a counterplot, Fig. 2 depicts the number of 
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of each sex. 
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2.3 Data preprocessing: For machine learning to be 
successful, data preparation is crucial since it guarantees 
improved model performance. Fortunately, there are no 
concerns with categorical feature issues, class imbalance, or 
null values in our dataset. However, we need to preprocess our 
dataset using the SMOTE technique, feature selection, data 
standardization, and outlier removal. We used a dataset with 
14 characteristics for our study. From null value checking, it 
was found that null values weren't present. After confirming 
the outlier using boxplots, we removed it from our dataset 
since it was relatively insignificant. After that, we employed a 
standard scaler strategy to standardize our data. The standard 
scaler normalizes a feature by subtracting the mean and 
scaling to unit variance. Unit variance implies dividing all the 
values by the standard deviation. Equation (1) of standard 
scaler, 

                        𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎                                                  (1) 

where μ denotes mean of the feature values and 𝜎𝜎 indicates 
the standard deviation. 

After standardizing the data, the variance threshold 
approach was used to discover any redundant or duplicate 
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technique to determine the correlation in our dataset. These 
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2.3 Data Pre-Processing
For machine learning to be successful, data preparation is crucial 
since it guarantees improved model performance. Fortunately, 
there are no concerns with categorical feature issues, class 
imbalance, or null values in our dataset. However, we need to 
pre-process our dataset using the SMOTE technique, feature 
selection, data standardization, and outlier removal. We used a 
dataset with 14 characteristics for our study. From null value 
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each node within the tree represents a feature or characteristic, 
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possible outcome or value for that property. One advantage of 
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2.5.2 Random Forest Model
Popular machine learning approach Random Forest creates a 
more robust and accurate model by combining decision trees. 
Figure 10 displays the Random Forest approach, which uses a 
forest of decision trees, each of which is trained on a distinct 
subset of the data and then votes based on the majority's forecast. 

The random forest approach has gained popularity because to 
its ability to handle noisy and high-dimensional data, as well as 
its ease of application and analysis. Random Forest can handle 
numerical and categorical information, and it overfits less than 
individual decision trees. 

Figure 10: The Random Forest Basic Architecture

2.5.3 XGBoost Model 
XGBoost is an open-source gradient-enhancing software library. 
It is used for tasks such as classification, regression, ranking, and 
clustering in machine learning. XGBoost is a decision tree-based 
algorithm that employs gradient boosting to enhance the model's 

accuracy. A strong model is created by merging the basic model 
with only incorrectly predicted data from previous iterations, as 
shown in Fig. 11. It has been demonstrated that XG Boost is 
highly effective for a variety of machine-learning tasks, and it is 
among the most popular machine-learning libraries. 
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2.5.4 KNN Model
K-nearest neighbors (KNN) is a classification algorithm for 
machine learning that uses a distance metric to designate a new 
data point belonging to the majority class among its k-nearest 
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classification algorithm. The K-nearest neighbors (KNN) 
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2.6 Libraries
Libraries play a crucial role in the development of our system, 
from dataset upload to model implementation and assessment. 
We used Pandas to analyze the data and convert it into a data 
frame. Scikit was used to analyze and produce the confusion 

matrices, accuracy scores, loss scores, and dataset partitioning. 
Seaborn was used to perform visualization methods such as 
graphical charting. These libraries provided high-performance 
data structures, data analysis tools, and visualization capabilities, 
allowing us to effectively conduct research and design our 
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system. 

2.7 Confusion Matrix
A confusion matrix is a table used to evaluate classification 
models in machine learning. It explains true positives, true 

negatives, false positives, and false negatives. The rows indicate 
predicted classes, the columns represent actual classes, and the 
cells reflect sample counts. Figure 14 depicts the confusion 
matrix structure. 

XGBoost is highly effective for a variety of machine-learning 
tasks, and it is among the most popular machine-learning 
libraries. 

 
Fig. 11. The XGBoost basic architecture. 

2.5.4 KNN Model: K-nearest neighbors (KNN) is a 
classification algorithm for machine learning that uses a 
distance metric to designate a new data point belonging to the 
majority class among its k-nearest neighbors shown in Fig. 12. 
It is a straightforward yet efficient classification algorithm. 
The K-nearest neighbors (KNN) algorithm has the advantages 
of being easy to implement and effective at solving multiclass 
classification problems. A benefit of the K-Nearest Neighbors 
(KNN) model is its simplicity and ease of implementation, as 
it requires few assumptions or intricate parameter tuning. 

 
Fig. 12. The KNN basic architecture. 

2.5.5 SVM Model: In machine learning, support vector 
machines (SVMs) are used to classify data by locating the 
optimal hyperplane in a multidimensional space. The 
hyperplane, margin, and support vector that make up the SVM 
margin are shown in Fig. 13. Its advantages include the 
effective handling of high-dimensional data and the ability to 
handle non-linear data through kernel functions. 

 
Fig. 13. The SVM basic architecture. 

2.6 Libraries: Libraries play a crucial role in the development 
of our system, from dataset upload to model implementation 
and assessment. We used Pandas to analyze the data and 
convert it into a data frame. Scikit was used to analyze and 
produce the confusion matrices, accuracy scores, loss scores, 
and dataset partitioning. Seaborn was used to perform 
visualization methods such as graphical charting. These 
libraries provided high-performance data structures, data 
analysis tools, and visualization capabilities, allowing us to 
effectively conduct research and design our system. 

2.7 Confusion Matrix: A confusion matrix is a table used to 
evaluate classification models in machine learning. It explains 
true positives, true negatives, false positives, and false 
negatives. The rows indicate predicted classes, the columns 
represent actual classes, and the cells reflect sample counts. 
Figure 14 depicts the confusion matrix structure. 

 
Fig. 14. Confusion matrix diagram 

2.8 System Block Diagram:  The process of our system, as 
shown in Fig. 15, involves using historical data for prediction. 
EDA is used to determine the need for preprocessing and 
detecting outliers. Preprocessing includes handling nulls, 
duplicate values, outliers, and class imbalance handling. The 
dataset is then separated into testing and training data, with 20% 
for testing and 80% for training. The selected model is trained 
and tested using these datasets, and accuracy, precision, recall, 
f1-score, and confusion matrix are evaluated to select the best 
model. The chosen model is then used for accurate outcome 
prediction with an explanation using LIME. 

 
Fig. 15. System block diagram. 

III. RESULTS AND DISCUSSION 
In our study, Google Colab was used for dataset upload, 

exploratory data analysis (EDA), preprocessing, train-test 
split, and model training/testing. Google Collab is a cloud-

XGBoost is highly effective for a variety of machine-learning 
tasks, and it is among the most popular machine-learning 
libraries. 

 
Fig. 11. The XGBoost basic architecture. 

2.5.4 KNN Model: K-nearest neighbors (KNN) is a 
classification algorithm for machine learning that uses a 
distance metric to designate a new data point belonging to the 
majority class among its k-nearest neighbors shown in Fig. 12. 
It is a straightforward yet efficient classification algorithm. 
The K-nearest neighbors (KNN) algorithm has the advantages 
of being easy to implement and effective at solving multiclass 
classification problems. A benefit of the K-Nearest Neighbors 
(KNN) model is its simplicity and ease of implementation, as 
it requires few assumptions or intricate parameter tuning. 

 
Fig. 12. The KNN basic architecture. 

2.5.5 SVM Model: In machine learning, support vector 
machines (SVMs) are used to classify data by locating the 
optimal hyperplane in a multidimensional space. The 
hyperplane, margin, and support vector that make up the SVM 
margin are shown in Fig. 13. Its advantages include the 
effective handling of high-dimensional data and the ability to 
handle non-linear data through kernel functions. 

 
Fig. 13. The SVM basic architecture. 

2.6 Libraries: Libraries play a crucial role in the development 
of our system, from dataset upload to model implementation 
and assessment. We used Pandas to analyze the data and 
convert it into a data frame. Scikit was used to analyze and 
produce the confusion matrices, accuracy scores, loss scores, 
and dataset partitioning. Seaborn was used to perform 
visualization methods such as graphical charting. These 
libraries provided high-performance data structures, data 
analysis tools, and visualization capabilities, allowing us to 
effectively conduct research and design our system. 

2.7 Confusion Matrix: A confusion matrix is a table used to 
evaluate classification models in machine learning. It explains 
true positives, true negatives, false positives, and false 
negatives. The rows indicate predicted classes, the columns 
represent actual classes, and the cells reflect sample counts. 
Figure 14 depicts the confusion matrix structure. 

 
Fig. 14. Confusion matrix diagram 

2.8 System Block Diagram:  The process of our system, as 
shown in Fig. 15, involves using historical data for prediction. 
EDA is used to determine the need for preprocessing and 
detecting outliers. Preprocessing includes handling nulls, 
duplicate values, outliers, and class imbalance handling. The 
dataset is then separated into testing and training data, with 20% 
for testing and 80% for training. The selected model is trained 
and tested using these datasets, and accuracy, precision, recall, 
f1-score, and confusion matrix are evaluated to select the best 
model. The chosen model is then used for accurate outcome 
prediction with an explanation using LIME. 

 
Fig. 15. System block diagram. 

III. RESULTS AND DISCUSSION 
In our study, Google Colab was used for dataset upload, 

exploratory data analysis (EDA), preprocessing, train-test 
split, and model training/testing. Google Collab is a cloud-
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2.8 System Block Diagram 
The process of our system, as shown in Fig. 15, involves using 
historical data for prediction. EDA is used to determine the 
need for pre-processing and detecting outliers. Pre-processing 
includes handling nulls, duplicate values, outliers, and class 
imbalance handling. The dataset is then separated into testing 

and training data, with 20% for testing and 80% for training. 
The selected model is trained and tested using these datasets, 
and accuracy, precision, recall, f1-score, and confusion matrix 
are evaluated to select the best model. The chosen model is then 
used for accurate outcome prediction with an explanation using 
LIME. 

Figure 15: System Block Diagram

3. Results and Discussion 
In our study, Google Colab was used for dataset upload, 
exploratory data analysis (EDA), preprocessing, train-test split, 
and model training/testing. Google Collab is a cloud-based 
platform by Google for developing, running, and collaborating 
on Python code through a web browser interface. It provides a 
Jupyter Notebook-like environment and free access to computing 
resources, including GPUs and CPUs. These resources enable 
faster execution of machine learning models and data analysis 
tasks, allowing users to train complex models and analyze 

large datasets more efficiently without expensive hardware or 
infrastructure. To evaluate the accuracy of our model, we divided 
the dataset into 80% for training and 20% for testing. We trained 
different models using these datasets for classification purposes. 
Finally, we compared the accuracy of the five models derived 
from the training and testing datasets. 

Table I shows the optimized hypermeters of different models 
from Random Search CV and Grid Search CV. 
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models and data analysis tasks, allowing users to train 
complex models and analyze large datasets more efficiently 
without expensive hardware or infrastructure. To evaluate the 
accuracy of our model, we divided the dataset into 80% for 
training and 20% for testing. We trained different models 
using these datasets for classification purposes. Finally, we 
compared the accuracy of the five models derived from the 
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weights: distance 
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kernel: poly, 
 gamma: scale, 

 degree: 3, 
 decision_function_shape: ovr, 

 C: 4 

Kernel: poly, 
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 degree: 3, 
decision_function_

shape: ovr, 
C: 5 

 
 

Table II illustrates the score of performance metrics for 
ML models with default hyperparameters.    

TABLE II. PERFORMANCE METRICS OF VARIOUS ML MODELS 
WITH DEFAULT HYPERPARAMETERS 

Model Accuracy Precision Recall F1-score 
Decision Tree 96.37 % 0.97 0.96 0.96 

Random 
Forest 94.3 % 0.94 0.94 0.94 

XGBoost 98.45 % 0.98 0.98 0.98 
KNN 88.08 % 0.88 0.88 0.88 
SVM 93.78 % 0.94 0.94 0.94 

 

From Table II, XGBoost has the highest performance 
score with an accuracy of 98.45%. 
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ML models with optimized hyperparameters by random 
search CV.    
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XGBoost have the highest performance metrics with an 
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According to Table IV, the decision tree has the best 

performance metrics, with a 98.96% accuracy rate. 

From Tables II, III and IV we obtained the highest 
accuracy from Table IV. That is decision tree hyperparameter 
optimization by grid search cv. 

Explainable AI LIME is applied on the highest accuracy 
model decision tree. LIME will clarify the decision or 
prediction made by the model. Fig. 16 illustrates the 
explanation of the model decision of a sample using LIME. 
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According to Table IV, the decision tree has the best performance 
metrics, with a 98.96% accuracy rate. 
From Tables II, III, and IV we obtained the highest accuracy 
from Table IV. That is decision tree hyperparameter optimization 
by grid search cv. 

Explainable AI LIME is applied on the highest accuracy model 
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by the model. Fig. 16 illustrates the explanation of the model 
decision of a sample using LIME. 
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3.1 Comparative Analysis
The features and structures of the previous research are examined in Table V for comparison. Compared to past testing, this will 
enhance the system. 

3.1 Comparative Analysis: The features and structures of the 
previous research are examined in Table V for comparison. 
Compared to past testing, this will enhance the system. 

TABLE V. COMPARISON ANALYSIS 

Reference Main parameters Result 

[4] Random Forest Accuracy: 93.02% 
 

[5] XGBoost Accuracy: 98.90% 
 

[7] KNN Accuracy: 88.52% 
 

[8] Random Forest Accuracy: 88.50% 

Our System Grid Search CV 
Optimized 

Decision Tree 

 
Accuracy: 98.96%, 

 
 

IV. CONCLUSIONS 
The purpose of our work is the early prediction of cardiac 

disease using machine learning techniques. We employed five 
alternative models to perform our analysis on a dataset with 
1024 data points and 14 attributes. After preprocessing the 
dataset, we trained our models, tweaked the hyperparameters 
of the models, and reached the best accuracy, with an 
optimized decision tree at 98.96 percent, and other models 
also delivered very reasonable accuracy. Our model exceeded 
earlier research in terms of accuracy. The dataset we used had 
several outliers and duplicate values. If we have a dataset that 
has no difficulties with outliers, duplicates, or additional data, 
it might further increase accuracy. In the future, we may 
incorporate an IoT device to automatically acquire heart 
characteristics from patients for forecasts. Our study's method 
has the potential to enhance heart disease prevention, decrease 
risks related to unhealthy habits and diets, and improve patient 
safety by predicting heart disease risk early. 
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Table V: Comparison Analysis

4. Conclusions 
The purpose of our work is the early prediction of cardiac 
disease using machine learning techniques. We employed five 
alternative models to perform our analysis on a dataset with 
1024 data points and 14 attributes. After pre-processing the 
dataset, we trained our models, tweaked the hyperparameters of 
the models, and reached the best accuracy, with an optimized 
decision tree at 98.96 percent, and other models also delivered 
very reasonable accuracy. Our model exceeded earlier research 

in terms of accuracy. The dataset we used had several outliers and 
duplicate values. If we have a dataset that has no difficulties with 
outliers, duplicates, or additional data, it might further increase 
accuracy. In the future, we may incorporate an IoT device to 
automatically acquire heart characteristics from patients for 
forecasts. Our study's method has the potential to enhance heart 
disease prevention, decrease risks related to unhealthy habits 
and diets, and improve patient safety by predicting heart disease 
risk early. 
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