
 Volume 2 | Issue 4 | 1 Int Internal Med J, 2024

Heart Disease Prediction: A Machine Learning Approach with Higher Accuracy
Research Article

Nahid Hosain Likhon, Farhan Bhuyian, Sihab Bhuiyan, Monjurul Aziz Fahim, Rayhanul Islam Sony and Amzad
Hossain*

*Corresponding Author
Amzad Hossain, Electrical and Computer Engineering, North South
University, Bashundhara, Dhaka-1229, Bangladesh.

Submitted: 2024, Feb 29; Accepted: 2024, Mar 21; Published: 2024, Apr 01

Citation: Likhon, N. H., Bhuyian, F., Bhuiyan, S., Fahim, M. A., Sony, R. I., et al. (2024). Heart Disease Prediction: A Machine
Learning Approach with Higher Accuracy. Int Internal Med J, 2(4), 01-10.

Abstract
Heart disease, a prevalent cardiovascular condition, poses significant health risks and affects millions worldwide. The alarming
rise in heart disease cases in recent years demands proactive measures, making early prediction of these conditions crucial
and concerning. By employing machine learning techniques, this study aims to identify patients who are more susceptible to
heart disease based on diverse medical attributes. The Heart Disease Dataset from Kaggle, consisting of 1025 samples and
14 features, was incorporated into this investigation. And after preprocessing the dataset by removing duplicate and null
values and implementing statistical imputation and several data graphs, like a scatter plot, box plot, histogram, etc., we split
it into training and testing datasets and apply SMOTE technique on the training one. Various machinelearning approaches
were used in this study, out of which the optimized decision tree gave the best accuracy of 98.96%.

International Internal Medicine Journal

Electrical and Computer Engineering, North South University,
Bashundhara, Dhaka-1229, Bangladesh

Keywords: Artificial Intelligence, Machine Learning, Explainable AI, Heart Disease, Dataset.

ISSN: 2837-4835

1. Introduction
Heart disease is a major global health concern, responsible for
around 70% of all deaths worldwide [1,2]. Heart disease refers
to a spectrum of conditions that impact the structure and function
of the heart. Numerous factors, including genetics, lifestyle, and
underlying medical conditions including high blood pressure,
high cholesterol, and diabetes, play a role in its development.
There are numerous varieties of heart disease, each with its
distinct characteristics and effects on our health. Coronary artery
disease, arrhythmias, heart failure, and valve disease are the
most prevalent forms of heart disease [2,3]. By 2030, around
23.6 million lives will be lost each year, making heart attacks
one of the leading causes of death globally, if not already [4].
Preventing heart disease requires adopting a healthy lifestyle,
including proper nutrition, exercise, and avoiding tobacco and
alcohol. Although traditional methods like physical examination,
ECG, CT, or MRI scans could be beneficial in diagnosing heart
disease, it is high time we also depend on a different approach,
something like machine learning technology, as it has shown
great promise in predicting heart disease by analyzing large
datasets and making accurate predictions.

In modern times, heart disease is a progressive condition that
typically causes suffering and mortality. Numerous studies and
machine learning algorithms have been utilized extensively to
predict and characterize this disease [5–9].

For instance, Singh anticipated cardiac disease at an early stage

[5]. The Cleveland database and the Statlog Heart Disease
repository at the University of California, Irvine (UCI) provided
them with a standard dataset of 13 features for this purpose. On
that dataset, many machine learning models were applied and
compared. Using the random forest classifier yielded the highest
accuracy at 93.02 percent.

Using six machine learning algorithms, research attempted to
predict heart disease [6]. On two heart disease datasets, the
authors evaluated six distinct models and achieved an accuracy
of 87.91% for SVM and 98.90% for XGBoost classifier with
customized hyperparameters.

The UCI Heart Disease Prediction Benchmark Dataset was
utilized in the research, which comprises 14 distinct factors
linked to heart disease and several machine learning models
trained with that dataset [7]. According to their research, in
comparison to other machine learning algorithms, Random
Forest gives greater accuracy with less forecast time.

Jindat et al. predicted heart disease prediction using machine
learning algorithms [8]. The authors used the UCI repository
with patients’ medical histories and attributes. 13 medical
characteristics from 304 individuals in their dataset served as
a detection tool. The KNN model had the highest accuracy of
88.52% among the classifiers the authors examined, making it
the most effective one.

 Volume 2 | Issue 4 | 2 Int Internal Med J, 2024

Various machine-learning models were utilized by Karthick
and his colleagues to evaluate the probability of heart disease
occurrence from the available dataset [9]. The UCI ML
repository's Cleveland HD dataset, consisting of 303 data
samples and 13 features, was employed in this investigation.
In addition to statistical imputation and several data analysis
graphs, like scatter plots, this study also used 6 different machine
learning classifiers. Out of which, the random forest algorithm
provided better accuracy of 88.5% in prediction.

For our study, we implemented five distinct algorithms on a
dataset of 1,025 samples with 14 features. In this instance, we also
utilized dataset pre-processing, hyperparameter optimization,
class imbalance management, feature selection, and Explainable
AI LIME. Based on our analysis of various models, we used the
most accurate model to predict heart disease. Our system has the
potential to substantially benefit the medical field by detecting
and preventing heart disease.

The remaining sections of this work follow the same
organizational pattern, with Section II describing research
methods and tools, Section III presenting our system’s data
and findings alongside qualitative analysis, and Section IV
summarizing our goals and highlighting the significance of early
heart disease prediction.

2. Proposed System
Within this section, we present a summary of the dataset and
its characteristics, data preprocessing, and an overview of the
models, approaches, and resources used in this study.

2.1 Dataset
Our machine learning system utilized a Kaggle dataset with
1025 samples and 14 attributes related to heart disease age, sex,
cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca,
thal and target [10]. The dataset had no null values but exhibited
outliers. Fig. 1 shows an overview of the dataset.

2.1 Dataset: Our machine learning system utilized a Kaggle
dataset with 1025 samples and 14 attributes related to heart
disease age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang,
oldpeak, slope, ca, thal and target [10]. The dataset had no null
values but exhibited outliers. Fig. 1 shows an overview of the
dataset.

Fig. 1. Heart disease dataset overview.

2.2 Exploratory Data Analysis: Exploratory Data Analysis is
a quick and efficient technique that employs static and
dynamic visualizations to analyze large volumes of data in a
given context. It aids in identifying data patterns, associations,
and preprocessing needs, allowing for a rapid evaluation of the
alignment between characteristics and desired outcomes.
Counter, His, KDE and box plot of some features from
exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of
individuals based on the sex attribute. It displays the number
of each sex.

Fig. 2. Counterplot of sex attribute.

Using his plot, Fig. 3 depicts the number of individuals
based on the cp attribute. It displays the number of each cp
with the target variable.

Fig. 3. His plot of the cp attribute.

Using a KDE plot, Fig. 4 illustrates the fbs attribute
visualization of the probability density function of a
continuous variable, showing insights into the underlying
distribution of the data.

Fig. 4. KDE plot of fbs attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier
in the age attribute. It displays the number of outliers.

Fig. 5. Boxplot of age attribute.

2.3 Data preprocessing: For machine learning to be
successful, data preparation is crucial since it guarantees
improved model performance. Fortunately, there are no
concerns with categorical feature issues, class imbalance, or
null values in our dataset. However, we need to preprocess our
dataset using the SMOTE technique, feature selection, data
standardization, and outlier removal. We used a dataset with
14 characteristics for our study. From null value checking, it
was found that null values weren't present. After confirming
the outlier using boxplots, we removed it from our dataset
since it was relatively insignificant. After that, we employed a
standard scaler strategy to standardize our data. The standard
scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard
scaler,

 𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎 (1)

where μ denotes mean of the feature values and 𝜎𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold
approach was used to discover any redundant or duplicate
features, and we also utilized the Pearson correlation
technique to determine the correlation in our dataset. These
two strategies are termed feature selection techniques." By
employing those strategies, we found that we had no

2.1 Dataset: Our machine learning system utilized a Kaggle
dataset with 1025 samples and 14 attributes related to heart
disease age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang,
oldpeak, slope, ca, thal and target [10]. The dataset had no null
values but exhibited outliers. Fig. 1 shows an overview of the
dataset.

Fig. 1. Heart disease dataset overview.

2.2 Exploratory Data Analysis: Exploratory Data Analysis is
a quick and efficient technique that employs static and
dynamic visualizations to analyze large volumes of data in a
given context. It aids in identifying data patterns, associations,
and preprocessing needs, allowing for a rapid evaluation of the
alignment between characteristics and desired outcomes.
Counter, His, KDE and box plot of some features from
exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of
individuals based on the sex attribute. It displays the number
of each sex.

Fig. 2. Counterplot of sex attribute.

Using his plot, Fig. 3 depicts the number of individuals
based on the cp attribute. It displays the number of each cp
with the target variable.

Fig. 3. His plot of the cp attribute.

Using a KDE plot, Fig. 4 illustrates the fbs attribute
visualization of the probability density function of a
continuous variable, showing insights into the underlying
distribution of the data.

Fig. 4. KDE plot of fbs attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier
in the age attribute. It displays the number of outliers.

Fig. 5. Boxplot of age attribute.

2.3 Data preprocessing: For machine learning to be
successful, data preparation is crucial since it guarantees
improved model performance. Fortunately, there are no
concerns with categorical feature issues, class imbalance, or
null values in our dataset. However, we need to preprocess our
dataset using the SMOTE technique, feature selection, data
standardization, and outlier removal. We used a dataset with
14 characteristics for our study. From null value checking, it
was found that null values weren't present. After confirming
the outlier using boxplots, we removed it from our dataset
since it was relatively insignificant. After that, we employed a
standard scaler strategy to standardize our data. The standard
scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard
scaler,

 𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎 (1)

where μ denotes mean of the feature values and 𝜎𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold
approach was used to discover any redundant or duplicate
features, and we also utilized the Pearson correlation
technique to determine the correlation in our dataset. These
two strategies are termed feature selection techniques." By
employing those strategies, we found that we had no

 Figure 1: Heart Disease Dataset Overview

2.2 Exploratory Data Analysis
Exploratory Data Analysis is a quick and efficient technique
that employs static and dynamic visualizations to analyze large
volumes of data in a given context. It aids in identifying data
patterns, associations, and preprocessing needs, allowing for a
rapid evaluation of the alignment between characteristics and

desired outcomes. Counter, His, KDE and box plot of some
features from exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of individuals
based on the sex attribute. It displays the number of each sex.

Figure 2: Counterplot of Sex Attribute

Using his plot, Fig. 3 depicts the number of individuals based on the cp attribute. It displays the number of each cp with the target
variable.

 Volume 2 | Issue 4 | 3 Int Internal Med J, 2024

2.1 Dataset: Our machine learning system utilized a Kaggle
dataset with 1025 samples and 14 attributes related to heart
disease age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang,
oldpeak, slope, ca, thal and target [10]. The dataset had no null
values but exhibited outliers. Fig. 1 shows an overview of the
dataset.

Fig. 1. Heart disease dataset overview.

2.2 Exploratory Data Analysis: Exploratory Data Analysis is
a quick and efficient technique that employs static and
dynamic visualizations to analyze large volumes of data in a
given context. It aids in identifying data patterns, associations,
and preprocessing needs, allowing for a rapid evaluation of the
alignment between characteristics and desired outcomes.
Counter, His, KDE and box plot of some features from
exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of
individuals based on the sex attribute. It displays the number
of each sex.

Fig. 2. Counterplot of sex attribute.

Using his plot, Fig. 3 depicts the number of individuals
based on the cp attribute. It displays the number of each cp
with the target variable.

Fig. 3. His plot of the cp attribute.

Using a KDE plot, Fig. 4 illustrates the fbs attribute
visualization of the probability density function of a
continuous variable, showing insights into the underlying
distribution of the data.

Fig. 4. KDE plot of fbs attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier
in the age attribute. It displays the number of outliers.

Fig. 5. Boxplot of age attribute.

2.3 Data preprocessing: For machine learning to be
successful, data preparation is crucial since it guarantees
improved model performance. Fortunately, there are no
concerns with categorical feature issues, class imbalance, or
null values in our dataset. However, we need to preprocess our
dataset using the SMOTE technique, feature selection, data
standardization, and outlier removal. We used a dataset with
14 characteristics for our study. From null value checking, it
was found that null values weren't present. After confirming
the outlier using boxplots, we removed it from our dataset
since it was relatively insignificant. After that, we employed a
standard scaler strategy to standardize our data. The standard
scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard
scaler,

 𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎 (1)

where μ denotes mean of the feature values and 𝜎𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold
approach was used to discover any redundant or duplicate
features, and we also utilized the Pearson correlation
technique to determine the correlation in our dataset. These
two strategies are termed feature selection techniques." By
employing those strategies, we found that we had no

2.1 Dataset: Our machine learning system utilized a Kaggle
dataset with 1025 samples and 14 attributes related to heart
disease age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang,
oldpeak, slope, ca, thal and target [10]. The dataset had no null
values but exhibited outliers. Fig. 1 shows an overview of the
dataset.

Fig. 1. Heart disease dataset overview.

2.2 Exploratory Data Analysis: Exploratory Data Analysis is
a quick and efficient technique that employs static and
dynamic visualizations to analyze large volumes of data in a
given context. It aids in identifying data patterns, associations,
and preprocessing needs, allowing for a rapid evaluation of the
alignment between characteristics and desired outcomes.
Counter, His, KDE and box plot of some features from
exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of
individuals based on the sex attribute. It displays the number
of each sex.

Fig. 2. Counterplot of sex attribute.

Using his plot, Fig. 3 depicts the number of individuals
based on the cp attribute. It displays the number of each cp
with the target variable.

Fig. 3. His plot of the cp attribute.

Using a KDE plot, Fig. 4 illustrates the fbs attribute
visualization of the probability density function of a
continuous variable, showing insights into the underlying
distribution of the data.

Fig. 4. KDE plot of fbs attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier
in the age attribute. It displays the number of outliers.

Fig. 5. Boxplot of age attribute.

2.3 Data preprocessing: For machine learning to be
successful, data preparation is crucial since it guarantees
improved model performance. Fortunately, there are no
concerns with categorical feature issues, class imbalance, or
null values in our dataset. However, we need to preprocess our
dataset using the SMOTE technique, feature selection, data
standardization, and outlier removal. We used a dataset with
14 characteristics for our study. From null value checking, it
was found that null values weren't present. After confirming
the outlier using boxplots, we removed it from our dataset
since it was relatively insignificant. After that, we employed a
standard scaler strategy to standardize our data. The standard
scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard
scaler,

 𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎 (1)

where μ denotes mean of the feature values and 𝜎𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold
approach was used to discover any redundant or duplicate
features, and we also utilized the Pearson correlation
technique to determine the correlation in our dataset. These
two strategies are termed feature selection techniques." By
employing those strategies, we found that we had no

2.1 Dataset: Our machine learning system utilized a Kaggle
dataset with 1025 samples and 14 attributes related to heart
disease age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang,
oldpeak, slope, ca, thal and target [10]. The dataset had no null
values but exhibited outliers. Fig. 1 shows an overview of the
dataset.

Fig. 1. Heart disease dataset overview.

2.2 Exploratory Data Analysis: Exploratory Data Analysis is
a quick and efficient technique that employs static and
dynamic visualizations to analyze large volumes of data in a
given context. It aids in identifying data patterns, associations,
and preprocessing needs, allowing for a rapid evaluation of the
alignment between characteristics and desired outcomes.
Counter, His, KDE and box plot of some features from
exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of
individuals based on the sex attribute. It displays the number
of each sex.

Fig. 2. Counterplot of sex attribute.

Using his plot, Fig. 3 depicts the number of individuals
based on the cp attribute. It displays the number of each cp
with the target variable.

Fig. 3. His plot of the cp attribute.

Using a KDE plot, Fig. 4 illustrates the fbs attribute
visualization of the probability density function of a
continuous variable, showing insights into the underlying
distribution of the data.

Fig. 4. KDE plot of fbs attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier
in the age attribute. It displays the number of outliers.

Fig. 5. Boxplot of age attribute.

2.3 Data preprocessing: For machine learning to be
successful, data preparation is crucial since it guarantees
improved model performance. Fortunately, there are no
concerns with categorical feature issues, class imbalance, or
null values in our dataset. However, we need to preprocess our
dataset using the SMOTE technique, feature selection, data
standardization, and outlier removal. We used a dataset with
14 characteristics for our study. From null value checking, it
was found that null values weren't present. After confirming
the outlier using boxplots, we removed it from our dataset
since it was relatively insignificant. After that, we employed a
standard scaler strategy to standardize our data. The standard
scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard
scaler,

 𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎 (1)

where μ denotes mean of the feature values and 𝜎𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold
approach was used to discover any redundant or duplicate
features, and we also utilized the Pearson correlation
technique to determine the correlation in our dataset. These
two strategies are termed feature selection techniques." By
employing those strategies, we found that we had no

Figure 3: His Plot of the CP Attribute

Using a KDE plot, Fig. 4 illustrates the fbs attribute visualization of the probability density function of a continuous variable,
showing insights into the underlying distribution of the data.

Figure 4: KDE Plot of FBS Attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier in the age attribute. It displays the number of outliers.

Figure 5: Boxplot of Age Attribute

2.3 Data Pre-Processing
For machine learning to be successful, data preparation is crucial
since it guarantees improved model performance. Fortunately,
there are no concerns with categorical feature issues, class
imbalance, or null values in our dataset. However, we need to
pre-process our dataset using the SMOTE technique, feature
selection, data standardization, and outlier removal. We used a
dataset with 14 characteristics for our study. From null value

checking, it was found that null values weren't present. After
confirming the outlier using boxplots, we removed it from
our dataset since it was relatively insignificant. After that, we
employed a standard scaler strategy to standardize our data. The
standard scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard scaler,

 Volume 2 | Issue 4 | 4 Int Internal Med J, 2024

2.1 Dataset: Our machine learning system utilized a Kaggle
dataset with 1025 samples and 14 attributes related to heart
disease age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang,
oldpeak, slope, ca, thal and target [10]. The dataset had no null
values but exhibited outliers. Fig. 1 shows an overview of the
dataset.

Fig. 1. Heart disease dataset overview.

2.2 Exploratory Data Analysis: Exploratory Data Analysis is
a quick and efficient technique that employs static and
dynamic visualizations to analyze large volumes of data in a
given context. It aids in identifying data patterns, associations,
and preprocessing needs, allowing for a rapid evaluation of the
alignment between characteristics and desired outcomes.
Counter, His, KDE and box plot of some features from
exploratory data analysis is given below.

Using a counterplot, Fig. 2 depicts the number of
individuals based on the sex attribute. It displays the number
of each sex.

Fig. 2. Counterplot of sex attribute.

Using his plot, Fig. 3 depicts the number of individuals
based on the cp attribute. It displays the number of each cp
with the target variable.

Fig. 3. His plot of the cp attribute.

Using a KDE plot, Fig. 4 illustrates the fbs attribute
visualization of the probability density function of a
continuous variable, showing insights into the underlying
distribution of the data.

Fig. 4. KDE plot of fbs attribute

Using a boxplot, Fig. 5 depicts the presence of an outlier
in the age attribute. It displays the number of outliers.

Fig. 5. Boxplot of age attribute.

2.3 Data preprocessing: For machine learning to be
successful, data preparation is crucial since it guarantees
improved model performance. Fortunately, there are no
concerns with categorical feature issues, class imbalance, or
null values in our dataset. However, we need to preprocess our
dataset using the SMOTE technique, feature selection, data
standardization, and outlier removal. We used a dataset with
14 characteristics for our study. From null value checking, it
was found that null values weren't present. After confirming
the outlier using boxplots, we removed it from our dataset
since it was relatively insignificant. After that, we employed a
standard scaler strategy to standardize our data. The standard
scaler normalizes a feature by subtracting the mean and
scaling to unit variance. Unit variance implies dividing all the
values by the standard deviation. Equation (1) of standard
scaler,

 𝑋𝑋′ = 𝑋𝑋−𝜇𝜇
𝜎𝜎 (1)

where μ denotes mean of the feature values and 𝜎𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold
approach was used to discover any redundant or duplicate
features, and we also utilized the Pearson correlation
technique to determine the correlation in our dataset. These
two strategies are termed feature selection techniques." By
employing those strategies, we found that we had no

where μ denotes the mean of the feature values and 𝜎 indicates
the standard deviation.

After standardizing the data, the variance threshold approach
was used to discover any redundant or duplicate features, and

we also utilized the Pearson correlation technique to determine
the correlation in our dataset. These two strategies are termed
feature selection techniques." By employing those strategies,
we found that we had no redundant or duplicate features. Fig. 6
displays the association of characteristics using a heat map. redundant or duplicate features. Fig. 6 displays the association

of characteristics using a heat map.

Fig. 6. Correlations of features.

Lastly, we used the SMOTE approach on our data. It is a
strategy that removes class imbalances in machine learning
datasets by providing synthetic instances of the minority class.
Even though we had no concerns with class imbalance, we
utilized it to strengthen the model. Fig. 7 depicts the number
of individuals with and without cardiac disease before the
implementation of SMOTE.

Fig. 7. Status of heart disease before SMOTE.

Fig. 8 depicts the number of individuals with and without
cardiac disease after the implementation of SMOTE.

Fig. 8. Status of heart disease after applying SMOTE technique.

2.4 Data splitting: The training-test split is a method
frequently employed for training and evaluating models. The

dataset is divided into a training set and a test set; the model is
then trained using the training set and evaluated using data it
has never seen before. Typically, a ratio of 80% to 20% is
utilized, with 80% of the data used for training and 20% for
assessment. Using this method, we can evaluate the model's
efficacy using new, unverified data.

2.5 Applied Model

2.5.1 Decision Tree Model: In machine learning, a
decision tree model is a kind of algorithm that employs a tree
structure to draw conclusions or make predictions. It is a kind
of supervised learning in which a model constructs a decision
tree based on a set of labeled training instances. Fig. 9 depicts
each node within the tree represents a feature or characteristic,
while each branch represents a possible outcome or value for
that property. One advantage of decision tree models is their
interpretability and transparency in representing the decision-
making process.

Fig. 9. The decision tree basic architecture.

2.5.2 Random Forest Model: Popular machine learning
approach Random Forest creates a more robust and accurate
model by combining decision trees. Figure 10 displays the
Random Forest approach, which uses a forest of decision trees,
each of which is trained on a distinct subset of the data and
then votes based on the majority's forecast. The random forest
approach has gained popularity because to its ability to handle
noisy and high-dimensional data, as well as its ease of
application and analysis. Random Forest can handle numerical
and categorical information, and it overfits less than individual
decision trees.

Fig. 10. The random forest basic architecture.

2.5.3 XGBoost Model: XGBoost is an open-source
gradient-enhancing software library. It is used for tasks such
as classification, regression, ranking, and clustering in
machine learning. XGBoost is a decision tree-based algorithm
that employs gradient boosting to enhance the model's
accuracy. A strong model is created by merging the basic
model with only incorrectly predicted data from previous
iterations, as shown in Fig. 11. It has been demonstrated that

redundant or duplicate features. Fig. 6 displays the association
of characteristics using a heat map.

Fig. 6. Correlations of features.

Lastly, we used the SMOTE approach on our data. It is a
strategy that removes class imbalances in machine learning
datasets by providing synthetic instances of the minority class.
Even though we had no concerns with class imbalance, we
utilized it to strengthen the model. Fig. 7 depicts the number
of individuals with and without cardiac disease before the
implementation of SMOTE.

Fig. 7. Status of heart disease before SMOTE.

Fig. 8 depicts the number of individuals with and without
cardiac disease after the implementation of SMOTE.

Fig. 8. Status of heart disease after applying SMOTE technique.

2.4 Data splitting: The training-test split is a method
frequently employed for training and evaluating models. The

dataset is divided into a training set and a test set; the model is
then trained using the training set and evaluated using data it
has never seen before. Typically, a ratio of 80% to 20% is
utilized, with 80% of the data used for training and 20% for
assessment. Using this method, we can evaluate the model's
efficacy using new, unverified data.

2.5 Applied Model

2.5.1 Decision Tree Model: In machine learning, a
decision tree model is a kind of algorithm that employs a tree
structure to draw conclusions or make predictions. It is a kind
of supervised learning in which a model constructs a decision
tree based on a set of labeled training instances. Fig. 9 depicts
each node within the tree represents a feature or characteristic,
while each branch represents a possible outcome or value for
that property. One advantage of decision tree models is their
interpretability and transparency in representing the decision-
making process.

Fig. 9. The decision tree basic architecture.

2.5.2 Random Forest Model: Popular machine learning
approach Random Forest creates a more robust and accurate
model by combining decision trees. Figure 10 displays the
Random Forest approach, which uses a forest of decision trees,
each of which is trained on a distinct subset of the data and
then votes based on the majority's forecast. The random forest
approach has gained popularity because to its ability to handle
noisy and high-dimensional data, as well as its ease of
application and analysis. Random Forest can handle numerical
and categorical information, and it overfits less than individual
decision trees.

Fig. 10. The random forest basic architecture.

2.5.3 XGBoost Model: XGBoost is an open-source
gradient-enhancing software library. It is used for tasks such
as classification, regression, ranking, and clustering in
machine learning. XGBoost is a decision tree-based algorithm
that employs gradient boosting to enhance the model's
accuracy. A strong model is created by merging the basic
model with only incorrectly predicted data from previous
iterations, as shown in Fig. 11. It has been demonstrated that

redundant or duplicate features. Fig. 6 displays the association
of characteristics using a heat map.

Fig. 6. Correlations of features.

Lastly, we used the SMOTE approach on our data. It is a
strategy that removes class imbalances in machine learning
datasets by providing synthetic instances of the minority class.
Even though we had no concerns with class imbalance, we
utilized it to strengthen the model. Fig. 7 depicts the number
of individuals with and without cardiac disease before the
implementation of SMOTE.

Fig. 7. Status of heart disease before SMOTE.

Fig. 8 depicts the number of individuals with and without
cardiac disease after the implementation of SMOTE.

Fig. 8. Status of heart disease after applying SMOTE technique.

2.4 Data splitting: The training-test split is a method
frequently employed for training and evaluating models. The

dataset is divided into a training set and a test set; the model is
then trained using the training set and evaluated using data it
has never seen before. Typically, a ratio of 80% to 20% is
utilized, with 80% of the data used for training and 20% for
assessment. Using this method, we can evaluate the model's
efficacy using new, unverified data.

2.5 Applied Model

2.5.1 Decision Tree Model: In machine learning, a
decision tree model is a kind of algorithm that employs a tree
structure to draw conclusions or make predictions. It is a kind
of supervised learning in which a model constructs a decision
tree based on a set of labeled training instances. Fig. 9 depicts
each node within the tree represents a feature or characteristic,
while each branch represents a possible outcome or value for
that property. One advantage of decision tree models is their
interpretability and transparency in representing the decision-
making process.

Fig. 9. The decision tree basic architecture.

2.5.2 Random Forest Model: Popular machine learning
approach Random Forest creates a more robust and accurate
model by combining decision trees. Figure 10 displays the
Random Forest approach, which uses a forest of decision trees,
each of which is trained on a distinct subset of the data and
then votes based on the majority's forecast. The random forest
approach has gained popularity because to its ability to handle
noisy and high-dimensional data, as well as its ease of
application and analysis. Random Forest can handle numerical
and categorical information, and it overfits less than individual
decision trees.

Fig. 10. The random forest basic architecture.

2.5.3 XGBoost Model: XGBoost is an open-source
gradient-enhancing software library. It is used for tasks such
as classification, regression, ranking, and clustering in
machine learning. XGBoost is a decision tree-based algorithm
that employs gradient boosting to enhance the model's
accuracy. A strong model is created by merging the basic
model with only incorrectly predicted data from previous
iterations, as shown in Fig. 11. It has been demonstrated that

Figure 6: Correlations of Features

Lastly, we used the SMOTE approach on our data. It is a strategy
that removes class imbalances in machine learning datasets by
providing synthetic instances of the minority class. Even though
we had no concerns with class imbalance, we utilized it to

strengthen the model. Fig. 7 depicts the number of individuals
with and without cardiac disease before the implementation of
SMOTE.

Figure 7: Status of Heart Disease Before SMOTE

Fig. 8 depicts the number of individuals with and without cardiac disease after the implementation of SMOTE.

Figure 8: Status of Heart Disease After Applying SMOTE Technique

 Volume 2 | Issue 4 | 5 Int Internal Med J, 2024

2.4 Data Splitting
The training-test split is a method frequently employed for
training and evaluating models. The dataset is divided into a
training set and a test set; the model is then trained using the
training set and evaluated using data it has never seen before.
Typically, a ratio of 80% to 20% is utilized, with 80% of the data
used for training and 20% for assessment. Using this method,
we can evaluate the model's efficacy using new, unverified data.

2.5 Applied Model
2.5.1 Decision Tree Model
In machine learning, a decision tree model is a kind of algorithm
that employs a tree structure to draw conclusions or make
predictions. It is a kind of supervised learning in which a model
constructs a decision tree based on a set of labeled training
instances. Fig. 9 depicts each node within the tree represents
a feature or characteristic, while each branch represents a
possible outcome or value for that property. One advantage of
decision tree models is their interpretability and transparency in
representing the decision-making process.

redundant or duplicate features. Fig. 6 displays the association
of characteristics using a heat map.

Fig. 6. Correlations of features.

Lastly, we used the SMOTE approach on our data. It is a
strategy that removes class imbalances in machine learning
datasets by providing synthetic instances of the minority class.
Even though we had no concerns with class imbalance, we
utilized it to strengthen the model. Fig. 7 depicts the number
of individuals with and without cardiac disease before the
implementation of SMOTE.

Fig. 7. Status of heart disease before SMOTE.

Fig. 8 depicts the number of individuals with and without
cardiac disease after the implementation of SMOTE.

Fig. 8. Status of heart disease after applying SMOTE technique.

2.4 Data splitting: The training-test split is a method
frequently employed for training and evaluating models. The

dataset is divided into a training set and a test set; the model is
then trained using the training set and evaluated using data it
has never seen before. Typically, a ratio of 80% to 20% is
utilized, with 80% of the data used for training and 20% for
assessment. Using this method, we can evaluate the model's
efficacy using new, unverified data.

2.5 Applied Model

2.5.1 Decision Tree Model: In machine learning, a
decision tree model is a kind of algorithm that employs a tree
structure to draw conclusions or make predictions. It is a kind
of supervised learning in which a model constructs a decision
tree based on a set of labeled training instances. Fig. 9 depicts
each node within the tree represents a feature or characteristic,
while each branch represents a possible outcome or value for
that property. One advantage of decision tree models is their
interpretability and transparency in representing the decision-
making process.

Fig. 9. The decision tree basic architecture.

2.5.2 Random Forest Model: Popular machine learning
approach Random Forest creates a more robust and accurate
model by combining decision trees. Figure 10 displays the
Random Forest approach, which uses a forest of decision trees,
each of which is trained on a distinct subset of the data and
then votes based on the majority's forecast. The random forest
approach has gained popularity because to its ability to handle
noisy and high-dimensional data, as well as its ease of
application and analysis. Random Forest can handle numerical
and categorical information, and it overfits less than individual
decision trees.

Fig. 10. The random forest basic architecture.

2.5.3 XGBoost Model: XGBoost is an open-source
gradient-enhancing software library. It is used for tasks such
as classification, regression, ranking, and clustering in
machine learning. XGBoost is a decision tree-based algorithm
that employs gradient boosting to enhance the model's
accuracy. A strong model is created by merging the basic
model with only incorrectly predicted data from previous
iterations, as shown in Fig. 11. It has been demonstrated that

redundant or duplicate features. Fig. 6 displays the association
of characteristics using a heat map.

Fig. 6. Correlations of features.

Lastly, we used the SMOTE approach on our data. It is a
strategy that removes class imbalances in machine learning
datasets by providing synthetic instances of the minority class.
Even though we had no concerns with class imbalance, we
utilized it to strengthen the model. Fig. 7 depicts the number
of individuals with and without cardiac disease before the
implementation of SMOTE.

Fig. 7. Status of heart disease before SMOTE.

Fig. 8 depicts the number of individuals with and without
cardiac disease after the implementation of SMOTE.

Fig. 8. Status of heart disease after applying SMOTE technique.

2.4 Data splitting: The training-test split is a method
frequently employed for training and evaluating models. The

dataset is divided into a training set and a test set; the model is
then trained using the training set and evaluated using data it
has never seen before. Typically, a ratio of 80% to 20% is
utilized, with 80% of the data used for training and 20% for
assessment. Using this method, we can evaluate the model's
efficacy using new, unverified data.

2.5 Applied Model

2.5.1 Decision Tree Model: In machine learning, a
decision tree model is a kind of algorithm that employs a tree
structure to draw conclusions or make predictions. It is a kind
of supervised learning in which a model constructs a decision
tree based on a set of labeled training instances. Fig. 9 depicts
each node within the tree represents a feature or characteristic,
while each branch represents a possible outcome or value for
that property. One advantage of decision tree models is their
interpretability and transparency in representing the decision-
making process.

Fig. 9. The decision tree basic architecture.

2.5.2 Random Forest Model: Popular machine learning
approach Random Forest creates a more robust and accurate
model by combining decision trees. Figure 10 displays the
Random Forest approach, which uses a forest of decision trees,
each of which is trained on a distinct subset of the data and
then votes based on the majority's forecast. The random forest
approach has gained popularity because to its ability to handle
noisy and high-dimensional data, as well as its ease of
application and analysis. Random Forest can handle numerical
and categorical information, and it overfits less than individual
decision trees.

Fig. 10. The random forest basic architecture.

2.5.3 XGBoost Model: XGBoost is an open-source
gradient-enhancing software library. It is used for tasks such
as classification, regression, ranking, and clustering in
machine learning. XGBoost is a decision tree-based algorithm
that employs gradient boosting to enhance the model's
accuracy. A strong model is created by merging the basic
model with only incorrectly predicted data from previous
iterations, as shown in Fig. 11. It has been demonstrated that

Figure 9: The Decision Tree Basic Architecture

2.5.2 Random Forest Model
Popular machine learning approach Random Forest creates a
more robust and accurate model by combining decision trees.
Figure 10 displays the Random Forest approach, which uses a
forest of decision trees, each of which is trained on a distinct
subset of the data and then votes based on the majority's forecast.

The random forest approach has gained popularity because to
its ability to handle noisy and high-dimensional data, as well as
its ease of application and analysis. Random Forest can handle
numerical and categorical information, and it overfits less than
individual decision trees.

Figure 10: The Random Forest Basic Architecture

2.5.3 XGBoost Model
XGBoost is an open-source gradient-enhancing software library.
It is used for tasks such as classification, regression, ranking, and
clustering in machine learning. XGBoost is a decision tree-based
algorithm that employs gradient boosting to enhance the model's

accuracy. A strong model is created by merging the basic model
with only incorrectly predicted data from previous iterations, as
shown in Fig. 11. It has been demonstrated that XG Boost is
highly effective for a variety of machine-learning tasks, and it is
among the most popular machine-learning libraries.

 Volume 2 | Issue 4 | 6 Int Internal Med J, 2024

XGBoost is highly effective for a variety of machine-learning
tasks, and it is among the most popular machine-learning
libraries.

Fig. 11. The XGBoost basic architecture.

2.5.4 KNN Model: K-nearest neighbors (KNN) is a
classification algorithm for machine learning that uses a
distance metric to designate a new data point belonging to the
majority class among its k-nearest neighbors shown in Fig. 12.
It is a straightforward yet efficient classification algorithm.
The K-nearest neighbors (KNN) algorithm has the advantages
of being easy to implement and effective at solving multiclass
classification problems. A benefit of the K-Nearest Neighbors
(KNN) model is its simplicity and ease of implementation, as
it requires few assumptions or intricate parameter tuning.

Fig. 12. The KNN basic architecture.

2.5.5 SVM Model: In machine learning, support vector
machines (SVMs) are used to classify data by locating the
optimal hyperplane in a multidimensional space. The
hyperplane, margin, and support vector that make up the SVM
margin are shown in Fig. 13. Its advantages include the
effective handling of high-dimensional data and the ability to
handle non-linear data through kernel functions.

Fig. 13. The SVM basic architecture.

2.6 Libraries: Libraries play a crucial role in the development
of our system, from dataset upload to model implementation
and assessment. We used Pandas to analyze the data and
convert it into a data frame. Scikit was used to analyze and
produce the confusion matrices, accuracy scores, loss scores,
and dataset partitioning. Seaborn was used to perform
visualization methods such as graphical charting. These
libraries provided high-performance data structures, data
analysis tools, and visualization capabilities, allowing us to
effectively conduct research and design our system.

2.7 Confusion Matrix: A confusion matrix is a table used to
evaluate classification models in machine learning. It explains
true positives, true negatives, false positives, and false
negatives. The rows indicate predicted classes, the columns
represent actual classes, and the cells reflect sample counts.
Figure 14 depicts the confusion matrix structure.

Fig. 14. Confusion matrix diagram

2.8 System Block Diagram: The process of our system, as
shown in Fig. 15, involves using historical data for prediction.
EDA is used to determine the need for preprocessing and
detecting outliers. Preprocessing includes handling nulls,
duplicate values, outliers, and class imbalance handling. The
dataset is then separated into testing and training data, with 20%
for testing and 80% for training. The selected model is trained
and tested using these datasets, and accuracy, precision, recall,
f1-score, and confusion matrix are evaluated to select the best
model. The chosen model is then used for accurate outcome
prediction with an explanation using LIME.

Fig. 15. System block diagram.

III. RESULTS AND DISCUSSION
In our study, Google Colab was used for dataset upload,

exploratory data analysis (EDA), preprocessing, train-test
split, and model training/testing. Google Collab is a cloud-

XGBoost is highly effective for a variety of machine-learning
tasks, and it is among the most popular machine-learning
libraries.

Fig. 11. The XGBoost basic architecture.

2.5.4 KNN Model: K-nearest neighbors (KNN) is a
classification algorithm for machine learning that uses a
distance metric to designate a new data point belonging to the
majority class among its k-nearest neighbors shown in Fig. 12.
It is a straightforward yet efficient classification algorithm.
The K-nearest neighbors (KNN) algorithm has the advantages
of being easy to implement and effective at solving multiclass
classification problems. A benefit of the K-Nearest Neighbors
(KNN) model is its simplicity and ease of implementation, as
it requires few assumptions or intricate parameter tuning.

Fig. 12. The KNN basic architecture.

2.5.5 SVM Model: In machine learning, support vector
machines (SVMs) are used to classify data by locating the
optimal hyperplane in a multidimensional space. The
hyperplane, margin, and support vector that make up the SVM
margin are shown in Fig. 13. Its advantages include the
effective handling of high-dimensional data and the ability to
handle non-linear data through kernel functions.

Fig. 13. The SVM basic architecture.

2.6 Libraries: Libraries play a crucial role in the development
of our system, from dataset upload to model implementation
and assessment. We used Pandas to analyze the data and
convert it into a data frame. Scikit was used to analyze and
produce the confusion matrices, accuracy scores, loss scores,
and dataset partitioning. Seaborn was used to perform
visualization methods such as graphical charting. These
libraries provided high-performance data structures, data
analysis tools, and visualization capabilities, allowing us to
effectively conduct research and design our system.

2.7 Confusion Matrix: A confusion matrix is a table used to
evaluate classification models in machine learning. It explains
true positives, true negatives, false positives, and false
negatives. The rows indicate predicted classes, the columns
represent actual classes, and the cells reflect sample counts.
Figure 14 depicts the confusion matrix structure.

Fig. 14. Confusion matrix diagram

2.8 System Block Diagram: The process of our system, as
shown in Fig. 15, involves using historical data for prediction.
EDA is used to determine the need for preprocessing and
detecting outliers. Preprocessing includes handling nulls,
duplicate values, outliers, and class imbalance handling. The
dataset is then separated into testing and training data, with 20%
for testing and 80% for training. The selected model is trained
and tested using these datasets, and accuracy, precision, recall,
f1-score, and confusion matrix are evaluated to select the best
model. The chosen model is then used for accurate outcome
prediction with an explanation using LIME.

Fig. 15. System block diagram.

III. RESULTS AND DISCUSSION
In our study, Google Colab was used for dataset upload,

exploratory data analysis (EDA), preprocessing, train-test
split, and model training/testing. Google Collab is a cloud-

XGBoost is highly effective for a variety of machine-learning
tasks, and it is among the most popular machine-learning
libraries.

Fig. 11. The XGBoost basic architecture.

2.5.4 KNN Model: K-nearest neighbors (KNN) is a
classification algorithm for machine learning that uses a
distance metric to designate a new data point belonging to the
majority class among its k-nearest neighbors shown in Fig. 12.
It is a straightforward yet efficient classification algorithm.
The K-nearest neighbors (KNN) algorithm has the advantages
of being easy to implement and effective at solving multiclass
classification problems. A benefit of the K-Nearest Neighbors
(KNN) model is its simplicity and ease of implementation, as
it requires few assumptions or intricate parameter tuning.

Fig. 12. The KNN basic architecture.

2.5.5 SVM Model: In machine learning, support vector
machines (SVMs) are used to classify data by locating the
optimal hyperplane in a multidimensional space. The
hyperplane, margin, and support vector that make up the SVM
margin are shown in Fig. 13. Its advantages include the
effective handling of high-dimensional data and the ability to
handle non-linear data through kernel functions.

Fig. 13. The SVM basic architecture.

2.6 Libraries: Libraries play a crucial role in the development
of our system, from dataset upload to model implementation
and assessment. We used Pandas to analyze the data and
convert it into a data frame. Scikit was used to analyze and
produce the confusion matrices, accuracy scores, loss scores,
and dataset partitioning. Seaborn was used to perform
visualization methods such as graphical charting. These
libraries provided high-performance data structures, data
analysis tools, and visualization capabilities, allowing us to
effectively conduct research and design our system.

2.7 Confusion Matrix: A confusion matrix is a table used to
evaluate classification models in machine learning. It explains
true positives, true negatives, false positives, and false
negatives. The rows indicate predicted classes, the columns
represent actual classes, and the cells reflect sample counts.
Figure 14 depicts the confusion matrix structure.

Fig. 14. Confusion matrix diagram

2.8 System Block Diagram: The process of our system, as
shown in Fig. 15, involves using historical data for prediction.
EDA is used to determine the need for preprocessing and
detecting outliers. Preprocessing includes handling nulls,
duplicate values, outliers, and class imbalance handling. The
dataset is then separated into testing and training data, with 20%
for testing and 80% for training. The selected model is trained
and tested using these datasets, and accuracy, precision, recall,
f1-score, and confusion matrix are evaluated to select the best
model. The chosen model is then used for accurate outcome
prediction with an explanation using LIME.

Fig. 15. System block diagram.

III. RESULTS AND DISCUSSION
In our study, Google Colab was used for dataset upload,

exploratory data analysis (EDA), preprocessing, train-test
split, and model training/testing. Google Collab is a cloud-

Figure 11: The XG Boost Basic Architecture

2.5.4 KNN Model
K-nearest neighbors (KNN) is a classification algorithm for
machine learning that uses a distance metric to designate a new
data point belonging to the majority class among its k-nearest
neighbors shown in Fig. 12. It is a straightforward yet efficient
classification algorithm. The K-nearest neighbors (KNN)

algorithm has the advantages of being easy to implement and
effective at solving multiclass classification problems. A benefit
of the K-Nearest Neighbours (KNN) model is its simplicity
and ease of implementation, as it requires few assumptions or
intricate parameter tuning.

Figure 12: The KNN Basic Architecture

2.5.5 SVM Model
In machine learning, support vector machines (SVMs) are
used to classify data by locating the optimal hyperplane in a
multidimensional space. The hyperplane, margin, and support

vector that make up the SVM margin are shown in Fig. 13. Its
advantages include the effective handling of high-dimensional
data and the ability to handle non-linear data through kernel
functions.

Figure 13: The SVM Basic Architecture

2.6 Libraries
Libraries play a crucial role in the development of our system,
from dataset upload to model implementation and assessment.
We used Pandas to analyze the data and convert it into a data
frame. Scikit was used to analyze and produce the confusion

matrices, accuracy scores, loss scores, and dataset partitioning.
Seaborn was used to perform visualization methods such as
graphical charting. These libraries provided high-performance
data structures, data analysis tools, and visualization capabilities,
allowing us to effectively conduct research and design our

 Volume 2 | Issue 4 | 7 Int Internal Med J, 2024

system.

2.7 Confusion Matrix
A confusion matrix is a table used to evaluate classification
models in machine learning. It explains true positives, true

negatives, false positives, and false negatives. The rows indicate
predicted classes, the columns represent actual classes, and the
cells reflect sample counts. Figure 14 depicts the confusion
matrix structure.

XGBoost is highly effective for a variety of machine-learning
tasks, and it is among the most popular machine-learning
libraries.

Fig. 11. The XGBoost basic architecture.

2.5.4 KNN Model: K-nearest neighbors (KNN) is a
classification algorithm for machine learning that uses a
distance metric to designate a new data point belonging to the
majority class among its k-nearest neighbors shown in Fig. 12.
It is a straightforward yet efficient classification algorithm.
The K-nearest neighbors (KNN) algorithm has the advantages
of being easy to implement and effective at solving multiclass
classification problems. A benefit of the K-Nearest Neighbors
(KNN) model is its simplicity and ease of implementation, as
it requires few assumptions or intricate parameter tuning.

Fig. 12. The KNN basic architecture.

2.5.5 SVM Model: In machine learning, support vector
machines (SVMs) are used to classify data by locating the
optimal hyperplane in a multidimensional space. The
hyperplane, margin, and support vector that make up the SVM
margin are shown in Fig. 13. Its advantages include the
effective handling of high-dimensional data and the ability to
handle non-linear data through kernel functions.

Fig. 13. The SVM basic architecture.

2.6 Libraries: Libraries play a crucial role in the development
of our system, from dataset upload to model implementation
and assessment. We used Pandas to analyze the data and
convert it into a data frame. Scikit was used to analyze and
produce the confusion matrices, accuracy scores, loss scores,
and dataset partitioning. Seaborn was used to perform
visualization methods such as graphical charting. These
libraries provided high-performance data structures, data
analysis tools, and visualization capabilities, allowing us to
effectively conduct research and design our system.

2.7 Confusion Matrix: A confusion matrix is a table used to
evaluate classification models in machine learning. It explains
true positives, true negatives, false positives, and false
negatives. The rows indicate predicted classes, the columns
represent actual classes, and the cells reflect sample counts.
Figure 14 depicts the confusion matrix structure.

Fig. 14. Confusion matrix diagram

2.8 System Block Diagram: The process of our system, as
shown in Fig. 15, involves using historical data for prediction.
EDA is used to determine the need for preprocessing and
detecting outliers. Preprocessing includes handling nulls,
duplicate values, outliers, and class imbalance handling. The
dataset is then separated into testing and training data, with 20%
for testing and 80% for training. The selected model is trained
and tested using these datasets, and accuracy, precision, recall,
f1-score, and confusion matrix are evaluated to select the best
model. The chosen model is then used for accurate outcome
prediction with an explanation using LIME.

Fig. 15. System block diagram.

III. RESULTS AND DISCUSSION
In our study, Google Colab was used for dataset upload,

exploratory data analysis (EDA), preprocessing, train-test
split, and model training/testing. Google Collab is a cloud-

XGBoost is highly effective for a variety of machine-learning
tasks, and it is among the most popular machine-learning
libraries.

Fig. 11. The XGBoost basic architecture.

2.5.4 KNN Model: K-nearest neighbors (KNN) is a
classification algorithm for machine learning that uses a
distance metric to designate a new data point belonging to the
majority class among its k-nearest neighbors shown in Fig. 12.
It is a straightforward yet efficient classification algorithm.
The K-nearest neighbors (KNN) algorithm has the advantages
of being easy to implement and effective at solving multiclass
classification problems. A benefit of the K-Nearest Neighbors
(KNN) model is its simplicity and ease of implementation, as
it requires few assumptions or intricate parameter tuning.

Fig. 12. The KNN basic architecture.

2.5.5 SVM Model: In machine learning, support vector
machines (SVMs) are used to classify data by locating the
optimal hyperplane in a multidimensional space. The
hyperplane, margin, and support vector that make up the SVM
margin are shown in Fig. 13. Its advantages include the
effective handling of high-dimensional data and the ability to
handle non-linear data through kernel functions.

Fig. 13. The SVM basic architecture.

2.6 Libraries: Libraries play a crucial role in the development
of our system, from dataset upload to model implementation
and assessment. We used Pandas to analyze the data and
convert it into a data frame. Scikit was used to analyze and
produce the confusion matrices, accuracy scores, loss scores,
and dataset partitioning. Seaborn was used to perform
visualization methods such as graphical charting. These
libraries provided high-performance data structures, data
analysis tools, and visualization capabilities, allowing us to
effectively conduct research and design our system.

2.7 Confusion Matrix: A confusion matrix is a table used to
evaluate classification models in machine learning. It explains
true positives, true negatives, false positives, and false
negatives. The rows indicate predicted classes, the columns
represent actual classes, and the cells reflect sample counts.
Figure 14 depicts the confusion matrix structure.

Fig. 14. Confusion matrix diagram

2.8 System Block Diagram: The process of our system, as
shown in Fig. 15, involves using historical data for prediction.
EDA is used to determine the need for preprocessing and
detecting outliers. Preprocessing includes handling nulls,
duplicate values, outliers, and class imbalance handling. The
dataset is then separated into testing and training data, with 20%
for testing and 80% for training. The selected model is trained
and tested using these datasets, and accuracy, precision, recall,
f1-score, and confusion matrix are evaluated to select the best
model. The chosen model is then used for accurate outcome
prediction with an explanation using LIME.

Fig. 15. System block diagram.

III. RESULTS AND DISCUSSION
In our study, Google Colab was used for dataset upload,

exploratory data analysis (EDA), preprocessing, train-test
split, and model training/testing. Google Collab is a cloud-

Figure 14: Confusion Matrix Diagram

2.8 System Block Diagram
The process of our system, as shown in Fig. 15, involves using
historical data for prediction. EDA is used to determine the
need for pre-processing and detecting outliers. Pre-processing
includes handling nulls, duplicate values, outliers, and class
imbalance handling. The dataset is then separated into testing

and training data, with 20% for testing and 80% for training.
The selected model is trained and tested using these datasets,
and accuracy, precision, recall, f1-score, and confusion matrix
are evaluated to select the best model. The chosen model is then
used for accurate outcome prediction with an explanation using
LIME.

Figure 15: System Block Diagram

3. Results and Discussion
In our study, Google Colab was used for dataset upload,
exploratory data analysis (EDA), preprocessing, train-test split,
and model training/testing. Google Collab is a cloud-based
platform by Google for developing, running, and collaborating
on Python code through a web browser interface. It provides a
Jupyter Notebook-like environment and free access to computing
resources, including GPUs and CPUs. These resources enable
faster execution of machine learning models and data analysis
tasks, allowing users to train complex models and analyze

large datasets more efficiently without expensive hardware or
infrastructure. To evaluate the accuracy of our model, we divided
the dataset into 80% for training and 20% for testing. We trained
different models using these datasets for classification purposes.
Finally, we compared the accuracy of the five models derived
from the training and testing datasets.

Table I shows the optimized hypermeters of different models
from Random Search CV and Grid Search CV.

 Volume 2 | Issue 4 | 8 Int Internal Med J, 2024

based platform by Google for developing, running, and
collaborating on Python code through a web browser interface.
It provides a Jupyter Notebook-like environment and free
access to computing resources, including GPUs and CPUs.
These resources enable faster execution of machine learning
models and data analysis tasks, allowing users to train
complex models and analyze large datasets more efficiently
without expensive hardware or infrastructure. To evaluate the
accuracy of our model, we divided the dataset into 80% for
training and 20% for testing. We trained different models
using these datasets for classification purposes. Finally, we
compared the accuracy of the five models derived from the
training and testing datasets.

Table I shows the optimized hypermeters of different
models from Random Search CV and Grid Search CV.

TABLE I. OPTIMIZED HYPERPARAMETER VALUES FOR VARIOUS
ML MODELS

Model
Random Search CV

Optimized
Hyperparameters

Grid Search CV
Optimized

Hyperparameters

Decision
Tree

min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: sqrt,
 max_depth: 670,

 criterion: gini

max_depth: 670,
max_features: sqrt,
min_samples_split:

3

Random
Forest

n_estimators: 1600,
 min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: log2,

 max_depth: 890,
 criterion: gini

max_depth: 890,
max_features: log2,
n_estimators: 1400

XGBoost

n_estimators: 1600,
 min_child_weight: 1,

 max_depth: 4,
 learning_rate: 0.05,

 gamma: 0.1,
 colsample_bytree: 0.4

colsample_bytree:
0.7,

 gamma: 0.1,
 learning_rate: 0.1,

 max_depth: 5,
 min_child_weight:

6,
 n_estimators: 1100

KNN

weights: distance,
 n_neighbors: 25,

 metric: manhattan,
 leaf_size: 30,

 algorithm: auto

leaf_size: 28,
metric: manhattan,
n_neighbors: 26,
weights: distance

SVM

kernel: poly,
 gamma: scale,

 degree: 3,
 decision_function_shape: ovr,

 C: 4

Kernel: poly,
gamma: scale,

 degree: 3,
decision_function_

shape: ovr,
C: 5

Table II illustrates the score of performance metrics for
ML models with default hyperparameters.

TABLE II. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH DEFAULT HYPERPARAMETERS

Model Accuracy Precision Recall F1-score
Decision Tree 96.37 % 0.97 0.96 0.96

Random
Forest 94.3 % 0.94 0.94 0.94

XGBoost 98.45 % 0.98 0.98 0.98
KNN 88.08 % 0.88 0.88 0.88
SVM 93.78 % 0.94 0.94 0.94

From Table II, XGBoost has the highest performance
score with an accuracy of 98.45%.

Table III illustrates the score of performance metrics for
ML models with optimized hyperparameters by random
search CV.

TABLE III. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY RANDOM SEARCH

CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.45 % 0.99 0.98 0.98

Random
Forest 98.45 % 0.99 0.98 0.98

XGBoost 98.45 % 0.99 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 95.85 % 0.96 0.96 0.96

From Table III, the decision tree, random forest, and
XGBoost have the highest performance metrics with an
accuracy of 98.45%.

Table IV illustrates the score of performance metrics for
ML models with optimized hyperparameters by grid search
CV.

TABLE IV: PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY GRID SEARCH CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.96 % 0.99 0.99 0.99
Random Forest 98.45 % 0.98 0.98 0.98

XGBoost 98.45 % 0.98 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 96.37 % 0.96 0.96 0.96

According to Table IV, the decision tree has the best

performance metrics, with a 98.96% accuracy rate.

From Tables II, III and IV we obtained the highest
accuracy from Table IV. That is decision tree hyperparameter
optimization by grid search cv.

Explainable AI LIME is applied on the highest accuracy
model decision tree. LIME will clarify the decision or
prediction made by the model. Fig. 16 illustrates the
explanation of the model decision of a sample using LIME.

Fig. 16. Explanation of Model decision using LIME.

based platform by Google for developing, running, and
collaborating on Python code through a web browser interface.
It provides a Jupyter Notebook-like environment and free
access to computing resources, including GPUs and CPUs.
These resources enable faster execution of machine learning
models and data analysis tasks, allowing users to train
complex models and analyze large datasets more efficiently
without expensive hardware or infrastructure. To evaluate the
accuracy of our model, we divided the dataset into 80% for
training and 20% for testing. We trained different models
using these datasets for classification purposes. Finally, we
compared the accuracy of the five models derived from the
training and testing datasets.

Table I shows the optimized hypermeters of different
models from Random Search CV and Grid Search CV.

TABLE I. OPTIMIZED HYPERPARAMETER VALUES FOR VARIOUS
ML MODELS

Model
Random Search CV

Optimized
Hyperparameters

Grid Search CV
Optimized

Hyperparameters

Decision
Tree

min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: sqrt,
 max_depth: 670,

 criterion: gini

max_depth: 670,
max_features: sqrt,
min_samples_split:

3

Random
Forest

n_estimators: 1600,
 min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: log2,

 max_depth: 890,
 criterion: gini

max_depth: 890,
max_features: log2,
n_estimators: 1400

XGBoost

n_estimators: 1600,
 min_child_weight: 1,

 max_depth: 4,
 learning_rate: 0.05,

 gamma: 0.1,
 colsample_bytree: 0.4

colsample_bytree:
0.7,

 gamma: 0.1,
 learning_rate: 0.1,

 max_depth: 5,
 min_child_weight:

6,
 n_estimators: 1100

KNN

weights: distance,
 n_neighbors: 25,

 metric: manhattan,
 leaf_size: 30,

 algorithm: auto

leaf_size: 28,
metric: manhattan,
n_neighbors: 26,
weights: distance

SVM

kernel: poly,
 gamma: scale,

 degree: 3,
 decision_function_shape: ovr,

 C: 4

Kernel: poly,
gamma: scale,

 degree: 3,
decision_function_

shape: ovr,
C: 5

Table II illustrates the score of performance metrics for
ML models with default hyperparameters.

TABLE II. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH DEFAULT HYPERPARAMETERS

Model Accuracy Precision Recall F1-score
Decision Tree 96.37 % 0.97 0.96 0.96

Random
Forest 94.3 % 0.94 0.94 0.94

XGBoost 98.45 % 0.98 0.98 0.98
KNN 88.08 % 0.88 0.88 0.88
SVM 93.78 % 0.94 0.94 0.94

From Table II, XGBoost has the highest performance
score with an accuracy of 98.45%.

Table III illustrates the score of performance metrics for
ML models with optimized hyperparameters by random
search CV.

TABLE III. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY RANDOM SEARCH

CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.45 % 0.99 0.98 0.98

Random
Forest 98.45 % 0.99 0.98 0.98

XGBoost 98.45 % 0.99 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 95.85 % 0.96 0.96 0.96

From Table III, the decision tree, random forest, and
XGBoost have the highest performance metrics with an
accuracy of 98.45%.

Table IV illustrates the score of performance metrics for
ML models with optimized hyperparameters by grid search
CV.

TABLE IV: PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY GRID SEARCH CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.96 % 0.99 0.99 0.99
Random Forest 98.45 % 0.98 0.98 0.98

XGBoost 98.45 % 0.98 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 96.37 % 0.96 0.96 0.96

According to Table IV, the decision tree has the best

performance metrics, with a 98.96% accuracy rate.

From Tables II, III and IV we obtained the highest
accuracy from Table IV. That is decision tree hyperparameter
optimization by grid search cv.

Explainable AI LIME is applied on the highest accuracy
model decision tree. LIME will clarify the decision or
prediction made by the model. Fig. 16 illustrates the
explanation of the model decision of a sample using LIME.

Fig. 16. Explanation of Model decision using LIME.

based platform by Google for developing, running, and
collaborating on Python code through a web browser interface.
It provides a Jupyter Notebook-like environment and free
access to computing resources, including GPUs and CPUs.
These resources enable faster execution of machine learning
models and data analysis tasks, allowing users to train
complex models and analyze large datasets more efficiently
without expensive hardware or infrastructure. To evaluate the
accuracy of our model, we divided the dataset into 80% for
training and 20% for testing. We trained different models
using these datasets for classification purposes. Finally, we
compared the accuracy of the five models derived from the
training and testing datasets.

Table I shows the optimized hypermeters of different
models from Random Search CV and Grid Search CV.

TABLE I. OPTIMIZED HYPERPARAMETER VALUES FOR VARIOUS
ML MODELS

Model
Random Search CV

Optimized
Hyperparameters

Grid Search CV
Optimized

Hyperparameters

Decision
Tree

min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: sqrt,
 max_depth: 670,

 criterion: gini

max_depth: 670,
max_features: sqrt,
min_samples_split:

3

Random
Forest

n_estimators: 1600,
 min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: log2,

 max_depth: 890,
 criterion: gini

max_depth: 890,
max_features: log2,
n_estimators: 1400

XGBoost

n_estimators: 1600,
 min_child_weight: 1,

 max_depth: 4,
 learning_rate: 0.05,

 gamma: 0.1,
 colsample_bytree: 0.4

colsample_bytree:
0.7,

 gamma: 0.1,
 learning_rate: 0.1,

 max_depth: 5,
 min_child_weight:

6,
 n_estimators: 1100

KNN

weights: distance,
 n_neighbors: 25,

 metric: manhattan,
 leaf_size: 30,

 algorithm: auto

leaf_size: 28,
metric: manhattan,
n_neighbors: 26,
weights: distance

SVM

kernel: poly,
 gamma: scale,

 degree: 3,
 decision_function_shape: ovr,

 C: 4

Kernel: poly,
gamma: scale,

 degree: 3,
decision_function_

shape: ovr,
C: 5

Table II illustrates the score of performance metrics for
ML models with default hyperparameters.

TABLE II. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH DEFAULT HYPERPARAMETERS

Model Accuracy Precision Recall F1-score
Decision Tree 96.37 % 0.97 0.96 0.96

Random
Forest 94.3 % 0.94 0.94 0.94

XGBoost 98.45 % 0.98 0.98 0.98
KNN 88.08 % 0.88 0.88 0.88
SVM 93.78 % 0.94 0.94 0.94

From Table II, XGBoost has the highest performance
score with an accuracy of 98.45%.

Table III illustrates the score of performance metrics for
ML models with optimized hyperparameters by random
search CV.

TABLE III. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY RANDOM SEARCH

CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.45 % 0.99 0.98 0.98

Random
Forest 98.45 % 0.99 0.98 0.98

XGBoost 98.45 % 0.99 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 95.85 % 0.96 0.96 0.96

From Table III, the decision tree, random forest, and
XGBoost have the highest performance metrics with an
accuracy of 98.45%.

Table IV illustrates the score of performance metrics for
ML models with optimized hyperparameters by grid search
CV.

TABLE IV: PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY GRID SEARCH CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.96 % 0.99 0.99 0.99
Random Forest 98.45 % 0.98 0.98 0.98

XGBoost 98.45 % 0.98 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 96.37 % 0.96 0.96 0.96

According to Table IV, the decision tree has the best

performance metrics, with a 98.96% accuracy rate.

From Tables II, III and IV we obtained the highest
accuracy from Table IV. That is decision tree hyperparameter
optimization by grid search cv.

Explainable AI LIME is applied on the highest accuracy
model decision tree. LIME will clarify the decision or
prediction made by the model. Fig. 16 illustrates the
explanation of the model decision of a sample using LIME.

Fig. 16. Explanation of Model decision using LIME.

Table I: Optimized Hyperparameter Values For Various ML Models

Table II illustrates the score of performance metrics for ML models with default hyperparameters.

Table II: Performance Metrics Of Various ML Models With Default Hyperparameters

From Table II, XGBoost has the highest performance score with an accuracy of 98.45%.
Table III illustrates the score of performance metrics for ML models with optimized hyperparameters by random search CV.

Table III: Performance Metrics of Various ML Models With Optimized Hyperparameters By Random Search CV

From Table III, the decision tree, random forest, and XGBoost
have the highest performance metrics with an accuracy of
98.45%.

Table IV illustrates the score of performance metrics for ML
models with optimized hyperparameters by grid search CV.

 Volume 2 | Issue 4 | 9 Int Internal Med J, 2024

based platform by Google for developing, running, and
collaborating on Python code through a web browser interface.
It provides a Jupyter Notebook-like environment and free
access to computing resources, including GPUs and CPUs.
These resources enable faster execution of machine learning
models and data analysis tasks, allowing users to train
complex models and analyze large datasets more efficiently
without expensive hardware or infrastructure. To evaluate the
accuracy of our model, we divided the dataset into 80% for
training and 20% for testing. We trained different models
using these datasets for classification purposes. Finally, we
compared the accuracy of the five models derived from the
training and testing datasets.

Table I shows the optimized hypermeters of different
models from Random Search CV and Grid Search CV.

TABLE I. OPTIMIZED HYPERPARAMETER VALUES FOR VARIOUS
ML MODELS

Model
Random Search CV

Optimized
Hyperparameters

Grid Search CV
Optimized

Hyperparameters

Decision
Tree

min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: sqrt,
 max_depth: 670,

 criterion: gini

max_depth: 670,
max_features: sqrt,
min_samples_split:

3

Random
Forest

n_estimators: 1600,
 min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: log2,

 max_depth: 890,
 criterion: gini

max_depth: 890,
max_features: log2,
n_estimators: 1400

XGBoost

n_estimators: 1600,
 min_child_weight: 1,

 max_depth: 4,
 learning_rate: 0.05,

 gamma: 0.1,
 colsample_bytree: 0.4

colsample_bytree:
0.7,

 gamma: 0.1,
 learning_rate: 0.1,

 max_depth: 5,
 min_child_weight:

6,
 n_estimators: 1100

KNN

weights: distance,
 n_neighbors: 25,

 metric: manhattan,
 leaf_size: 30,

 algorithm: auto

leaf_size: 28,
metric: manhattan,
n_neighbors: 26,
weights: distance

SVM

kernel: poly,
 gamma: scale,

 degree: 3,
 decision_function_shape: ovr,

 C: 4

Kernel: poly,
gamma: scale,

 degree: 3,
decision_function_

shape: ovr,
C: 5

Table II illustrates the score of performance metrics for
ML models with default hyperparameters.

TABLE II. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH DEFAULT HYPERPARAMETERS

Model Accuracy Precision Recall F1-score
Decision Tree 96.37 % 0.97 0.96 0.96

Random
Forest 94.3 % 0.94 0.94 0.94

XGBoost 98.45 % 0.98 0.98 0.98
KNN 88.08 % 0.88 0.88 0.88
SVM 93.78 % 0.94 0.94 0.94

From Table II, XGBoost has the highest performance
score with an accuracy of 98.45%.

Table III illustrates the score of performance metrics for
ML models with optimized hyperparameters by random
search CV.

TABLE III. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY RANDOM SEARCH

CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.45 % 0.99 0.98 0.98

Random
Forest 98.45 % 0.99 0.98 0.98

XGBoost 98.45 % 0.99 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 95.85 % 0.96 0.96 0.96

From Table III, the decision tree, random forest, and
XGBoost have the highest performance metrics with an
accuracy of 98.45%.

Table IV illustrates the score of performance metrics for
ML models with optimized hyperparameters by grid search
CV.

TABLE IV: PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY GRID SEARCH CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.96 % 0.99 0.99 0.99
Random Forest 98.45 % 0.98 0.98 0.98

XGBoost 98.45 % 0.98 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 96.37 % 0.96 0.96 0.96

According to Table IV, the decision tree has the best

performance metrics, with a 98.96% accuracy rate.

From Tables II, III and IV we obtained the highest
accuracy from Table IV. That is decision tree hyperparameter
optimization by grid search cv.

Explainable AI LIME is applied on the highest accuracy
model decision tree. LIME will clarify the decision or
prediction made by the model. Fig. 16 illustrates the
explanation of the model decision of a sample using LIME.

Fig. 16. Explanation of Model decision using LIME.

based platform by Google for developing, running, and
collaborating on Python code through a web browser interface.
It provides a Jupyter Notebook-like environment and free
access to computing resources, including GPUs and CPUs.
These resources enable faster execution of machine learning
models and data analysis tasks, allowing users to train
complex models and analyze large datasets more efficiently
without expensive hardware or infrastructure. To evaluate the
accuracy of our model, we divided the dataset into 80% for
training and 20% for testing. We trained different models
using these datasets for classification purposes. Finally, we
compared the accuracy of the five models derived from the
training and testing datasets.

Table I shows the optimized hypermeters of different
models from Random Search CV and Grid Search CV.

TABLE I. OPTIMIZED HYPERPARAMETER VALUES FOR VARIOUS
ML MODELS

Model
Random Search CV

Optimized
Hyperparameters

Grid Search CV
Optimized

Hyperparameters

Decision
Tree

min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: sqrt,
 max_depth: 670,

 criterion: gini

max_depth: 670,
max_features: sqrt,
min_samples_split:

3

Random
Forest

n_estimators: 1600,
 min_samples_split: 2,
 min_samples_leaf: 1,
 max_features: log2,

 max_depth: 890,
 criterion: gini

max_depth: 890,
max_features: log2,
n_estimators: 1400

XGBoost

n_estimators: 1600,
 min_child_weight: 1,

 max_depth: 4,
 learning_rate: 0.05,

 gamma: 0.1,
 colsample_bytree: 0.4

colsample_bytree:
0.7,

 gamma: 0.1,
 learning_rate: 0.1,

 max_depth: 5,
 min_child_weight:

6,
 n_estimators: 1100

KNN

weights: distance,
 n_neighbors: 25,

 metric: manhattan,
 leaf_size: 30,

 algorithm: auto

leaf_size: 28,
metric: manhattan,
n_neighbors: 26,
weights: distance

SVM

kernel: poly,
 gamma: scale,

 degree: 3,
 decision_function_shape: ovr,

 C: 4

Kernel: poly,
gamma: scale,

 degree: 3,
decision_function_

shape: ovr,
C: 5

Table II illustrates the score of performance metrics for
ML models with default hyperparameters.

TABLE II. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH DEFAULT HYPERPARAMETERS

Model Accuracy Precision Recall F1-score
Decision Tree 96.37 % 0.97 0.96 0.96

Random
Forest 94.3 % 0.94 0.94 0.94

XGBoost 98.45 % 0.98 0.98 0.98
KNN 88.08 % 0.88 0.88 0.88
SVM 93.78 % 0.94 0.94 0.94

From Table II, XGBoost has the highest performance
score with an accuracy of 98.45%.

Table III illustrates the score of performance metrics for
ML models with optimized hyperparameters by random
search CV.

TABLE III. PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY RANDOM SEARCH

CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.45 % 0.99 0.98 0.98

Random
Forest 98.45 % 0.99 0.98 0.98

XGBoost 98.45 % 0.99 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 95.85 % 0.96 0.96 0.96

From Table III, the decision tree, random forest, and
XGBoost have the highest performance metrics with an
accuracy of 98.45%.

Table IV illustrates the score of performance metrics for
ML models with optimized hyperparameters by grid search
CV.

TABLE IV: PERFORMANCE METRICS OF VARIOUS ML MODELS
WITH OPTIMIZED HYPERPARAMETERS BY GRID SEARCH CV

Model Accuracy Precision Recall F1-score
Decision Tree 98.96 % 0.99 0.99 0.99
Random Forest 98.45 % 0.98 0.98 0.98

XGBoost 98.45 % 0.98 0.98 0.98
KNN 92.75 % 0.93 0.93 0.93
SVM 96.37 % 0.96 0.96 0.96

According to Table IV, the decision tree has the best

performance metrics, with a 98.96% accuracy rate.

From Tables II, III and IV we obtained the highest
accuracy from Table IV. That is decision tree hyperparameter
optimization by grid search cv.

Explainable AI LIME is applied on the highest accuracy
model decision tree. LIME will clarify the decision or
prediction made by the model. Fig. 16 illustrates the
explanation of the model decision of a sample using LIME.

Fig. 16. Explanation of Model decision using LIME.

Table IV: Performance Metrics Of Various ML Models with Optimized Hyperparameters by GRID Search CV

According to Table IV, the decision tree has the best performance
metrics, with a 98.96% accuracy rate.
From Tables II, III, and IV we obtained the highest accuracy
from Table IV. That is decision tree hyperparameter optimization
by grid search cv.

Explainable AI LIME is applied on the highest accuracy model
decision tree. LIME will clarify the decision or prediction made
by the model. Fig. 16 illustrates the explanation of the model
decision of a sample using LIME.

Figure 16: Explanation of Model Decision Using LIME

3.1 Comparative Analysis
The features and structures of the previous research are examined in Table V for comparison. Compared to past testing, this will
enhance the system.

3.1 Comparative Analysis: The features and structures of the
previous research are examined in Table V for comparison.
Compared to past testing, this will enhance the system.

TABLE V. COMPARISON ANALYSIS

Reference Main parameters Result

[4] Random Forest Accuracy: 93.02%

[5] XGBoost Accuracy: 98.90%

[7] KNN Accuracy: 88.52%

[8] Random Forest Accuracy: 88.50%

Our System Grid Search CV
Optimized

Decision Tree

Accuracy: 98.96%,

IV. CONCLUSIONS
The purpose of our work is the early prediction of cardiac

disease using machine learning techniques. We employed five
alternative models to perform our analysis on a dataset with
1024 data points and 14 attributes. After preprocessing the
dataset, we trained our models, tweaked the hyperparameters
of the models, and reached the best accuracy, with an
optimized decision tree at 98.96 percent, and other models
also delivered very reasonable accuracy. Our model exceeded
earlier research in terms of accuracy. The dataset we used had
several outliers and duplicate values. If we have a dataset that
has no difficulties with outliers, duplicates, or additional data,
it might further increase accuracy. In the future, we may
incorporate an IoT device to automatically acquire heart
characteristics from patients for forecasts. Our study's method
has the potential to enhance heart disease prevention, decrease
risks related to unhealthy habits and diets, and improve patient
safety by predicting heart disease risk early.

REFERENCES
[1] K. Drożdż, K. Nabrdalik, H. Kwiendacz, M. Hendel, A. Olejarz, A.

Tomasik, W. Bartman, J. Nalepa, J. Gumprecht and G. Y. H. Lip, “Risk
factors for cardiovascular disease in patients with metabolic-associated
fatty liver disease: a machine learning approach,” Cardiovascular
Diabetology, vol. 21, pp. 1-12, 2022.

[2] A. Hossain, S. Uddin, P. Rahman, M. J. Anee, M. M. H. Rifat and M.
M. Uddin, "Wavelet and spectral analysis of normal and abnormal heart
sound for diagnosing cardiac disorders." BioMed Research
International 2022 (2022).

[3] S. Wadhawan and R. Maini, “A Systematic Review on Prediction
Techniques for Cardiac Disease,” International Journal of Information
Technologies and Systems Approach, vol. 15, pp. 1–33, 2021.

[4] C. D. Mathers and D. Loncar, “Projections of Global Mortality and
Burden of Disease from 2002 to 2030,” PLoS Medicine, vol. 3, pp. 1-
20, 2006.

[5] H. Singh, T. Gupta and J. Sidhu, "Prediction of Heart Disease using
Machine Learning Techniques," International Conference on Image
Information Processing, pp. 164-169, 2021.

[6] G. N. Ahamad, Shafiullah, H. Fatima, Imdadullah, S. M. Zakariya, M.
Abbas, M. S. Alqahtani and M. Usman, “Influence of Optimal
Hyperparameters on the Performance of Machine Learning Algorithms
for Predicting Heart Disease,” MDPI, vol. 11, pp. 734-762, 2023.

[7] V. Sharma, S. Yadav and M. Gupta, "Heart Disease Prediction using
Machine Learning Techniques," International Conference on Advances
in Computing, Communication Control and Networking, pp. 177-181,
2020.

[8] H. Jindat, “Heart disease prediction using machine learning
algorithms,” IOP Conference Series: Materials Science and
Engineering, vol. 1022, pp. 1-11, 2021.

[9] K. Karthick, S. K. Aruna, R. Samikannu, R. Kuppusamy, Y.
Teekaraman and A. R. Thelkar, "Implementation of a Heart Disease
Risk Prediction Model Using Machine Learning," Computational and
Mathematical Methods in Medicine, pp. 1-14, 2022.

[10] S. Hoque, S. S. Khatun, A. B. Khurshid, M. Peal and K. M. A. Salam,
"Prediction of Heart Disease Using Machine Learning," International
Conference on Recent Trends in Microelectronics, Automation,
Computing and Communications Systems, pp. 471-476, 2022.

Table V: Comparison Analysis

4. Conclusions
The purpose of our work is the early prediction of cardiac
disease using machine learning techniques. We employed five
alternative models to perform our analysis on a dataset with
1024 data points and 14 attributes. After pre-processing the
dataset, we trained our models, tweaked the hyperparameters of
the models, and reached the best accuracy, with an optimized
decision tree at 98.96 percent, and other models also delivered
very reasonable accuracy. Our model exceeded earlier research

in terms of accuracy. The dataset we used had several outliers and
duplicate values. If we have a dataset that has no difficulties with
outliers, duplicates, or additional data, it might further increase
accuracy. In the future, we may incorporate an IoT device to
automatically acquire heart characteristics from patients for
forecasts. Our study's method has the potential to enhance heart
disease prevention, decrease risks related to unhealthy habits
and diets, and improve patient safety by predicting heart disease
risk early.

 Volume 2 | Issue 4 | 10 Int Internal Med J, 2024

Copyright: ©2024 Amzad Hossain, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

https://opastpublishers.com

References
1.	 Drożdż, K., Nabrdalik, K., Kwiendacz, H., Hendel, M.,

Olejarz, A., Tomasik, A., ... & Lip, G. Y. (2022). Risk factors
for cardiovascular disease in patients with metabolic-
associated fatty liver disease: a machine learning approach.
Cardiovascular diabetology, 21(1), 240.

2.	 Hossain, A., Uddin, S., Rahman, P., Anee, M. J., Rifat,
M. M. H., & Uddin, M. M. (2022). Wavelet and spectral
analysis of normal and abnormal heart sound for diagnosing
cardiac disorders. BioMed Research International, 2022 .

3.	 Wadhawan, S., & Maini, R. (2022). A systematic review
on prediction techniques for cardiac disease. International
Journal of Information Technologies and Systems Approach
(IJITSA), 15(1), 1-33.

4.	 Mathers, C. D., & Loncar, D. (2006). Projections of global
mortality and burden of disease from 2002 to 2030. PLoS
medicine, 3(11), e442.

5.	 Singh, H., Gupta, T., & Sidhu, J. (2021, November).
Prediction of heart disease using machine learning
techniques. In 2021 Sixth International Conference on
Image Information Processing (ICIIP) (Vol. 6, pp. 164-
169). IEEE.

6.	 Ahamad, G. N., Shafiullah, Fatima, H., Imdadullah,
Zakariya, S. M., Abbas, M., ... & Usman, M. (2023).

Influence of optimal hyperparameters on the performance
of machine learning algorithms for predicting heart disease.
Processes, 11(3), 734.

7.	 Sharma, V., Yadav, S., & Gupta, M. (2020, December).
Heart disease prediction using machine learning techniques.
In 2020 2nd international conference on advances in
computing, communication control and networking
(ICACCCN) (pp. 177-181). IEEE.

8.	 H. Jindat, “Heart disease prediction using machine learning
algorithms,” IOP Conference Series: Materials Science and
Engineering, vol. 1022, pp. 1-11, 2021.

9.	 Karthick, K., Aruna, S., Samikannu, R., Kuppusamy, R.,
Teekaraman, Y., & Thelkar, A. R. (2022). Implementation
of a Heart Disease Risk Prediction Model Using Machine
Learning. Computational and Mathematical Methods in
Medicine, 2022, 1–14.

10.	 Hoque, S., Khatun, S. S., Khurshid, A. B., Peal, M. D., &
Salam, K. M. A. (2022, December). Prediction of Heart
Disease Using Machine Learning. In 2022 International
Conference on Recent Trends in Microelectronics,
Automation, Computing and Communications Systems
(ICMACC) (pp. 471-476). IEEE.

https://link.springer.com/article/10.1186/s12933-022-01672-9
https://link.springer.com/article/10.1186/s12933-022-01672-9
https://link.springer.com/article/10.1186/s12933-022-01672-9
https://link.springer.com/article/10.1186/s12933-022-01672-9
https://link.springer.com/article/10.1186/s12933-022-01672-9
https://www.hindawi.com/journals/bmri/2022/9092346/
https://www.hindawi.com/journals/bmri/2022/9092346/
https://www.hindawi.com/journals/bmri/2022/9092346/
https://www.hindawi.com/journals/bmri/2022/9092346/
https://www.igi-global.com/article/a-systematic-review-on-prediction-techniques-for-cardiac-disease/290001
https://www.igi-global.com/article/a-systematic-review-on-prediction-techniques-for-cardiac-disease/290001
https://www.igi-global.com/article/a-systematic-review-on-prediction-techniques-for-cardiac-disease/290001
https://www.igi-global.com/article/a-systematic-review-on-prediction-techniques-for-cardiac-disease/290001
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0030442&utmsource=example.com&utm_medium=link&utm_compaign=article
https://www.mdpi.com/2227-9717/11/3/734
https://www.mdpi.com/2227-9717/11/3/734
https://www.mdpi.com/2227-9717/11/3/734
https://www.mdpi.com/2227-9717/11/3/734
https://www.mdpi.com/2227-9717/11/3/734
https://ieeexplore.ieee.org/abstract/document/9362842/
https://ieeexplore.ieee.org/abstract/document/9362842/
https://ieeexplore.ieee.org/abstract/document/9362842/
https://ieeexplore.ieee.org/abstract/document/9362842/
https://ieeexplore.ieee.org/abstract/document/9362842/
https://www.hindawi.com/journals/cmmm/2022/6517716/
https://www.hindawi.com/journals/cmmm/2022/6517716/
https://www.hindawi.com/journals/cmmm/2022/6517716/
https://www.hindawi.com/journals/cmmm/2022/6517716/
https://www.hindawi.com/journals/cmmm/2022/6517716/
https://ieeexplore.ieee.org/abstract/document/10093246/
https://ieeexplore.ieee.org/abstract/document/10093246/
https://ieeexplore.ieee.org/abstract/document/10093246/
https://ieeexplore.ieee.org/abstract/document/10093246/
https://ieeexplore.ieee.org/abstract/document/10093246/
https://ieeexplore.ieee.org/abstract/document/10093246/

