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Abstract
Implantation failure refers to the inability of a fertilized egg, or embryo, to successfully implant itself in the endometrial lining 
of the uterus, leading to pregnancy loss. The repeated failure of good quality embryo implantation is referred to as recurrent 
implantation failure (RIF). This can occur for a variety of reasons, including chromosomal abnormalities in the embryo, problems 
with the endometrium, or issues with the immune system. Factors such as advanced maternal age, obesity, smoking, and certain 
medical conditions can also increase the risk of implantation failure. While treatment such as in vitro fertilization (IVF) can 
help to improve the chances of successful implantation, there is currently no definite way to prevent or treat implantation failure. 
Patients and healthcare professionals have substantial diagnostic and treatment hurdles as a result of many etiological factors 
and lack of knowledge about RIF. Numerous investigations have revealed a relationship between hormone level imbalance, 
perturbations of angiogenic and immunomodulatory factors, certain genetic polymorphisms, and the incidence of RIF, but still, 
the precise multifactorial pathophysiology of RIF is unknown. However, many studies are ongoing in this field to understand the 
underlying causes and to find new ways to help couples achieve pregnancy. This review article is a detailed discussion on the 
different molecular and genetic aspects for the improvement of diagnosis and treatment of implantation failure.
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1. Introduction
In mammals, implantation is a critical stage of pregnancy, implying 
not only the success of the pregnancy but also the health of the 
progeny [1]. Implantation can only take place in a receptive uterus 
[2]. Hoozemans et al. defined implantation as “a coordination event 
that involves both embryonic and maternal active participation” 
[3]. Makrigiannakis also described that “implantation is the stage 
in an embryonic development, in which the blastocyst apposes, 
attaches and finally invades the underlying endometrial surface of 
the female's uterus” [4]. Sharkey & Smith defined implantation 
as “the process by which the free-floating blastocyst attaches to 
the endometrium, invades into the stroma and establishes the 
placenta” [5]. Hoozemans et al. explained that, “the implantation 
process contains three stages, apposition, attachment and invasion 
into the endometrium” [3].

Ashary et al. noticed that, “implantation is the first stage of 
gestation, the endometrium is to implant the embryo and nourish 
it to ensure pregnancy” [6]. The process involves coordination 
between an implanted embryo and an endometrium. Santos et al. 
estimated that, “in humans, reproductive efficiency has been shown 
to be rather low, with a probability to achieve pregnancy estimated 
to 20–30%” [7]. Moreover, Fleming et al. added that, “apart from 
endogenous factors (such as genetic mutations) that could be 
detrimental for pregnancy development, various environmental 
insults (nutrition, pollution and endocrine disruptors, infections 
stress) have been identified as factors that may affect gamete quality 
and fertilization, journey of the early embryo through the oviduct, 
cellular interactions between endometrium and hatched blastocyst 
or conceptus, foeto-placental development and parturition” [8]. 
Since 80% of pregnancies end in miscarriage in the first trimester, 
it has been hypothesized that an error in embryo implantation is 
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the main reason for failed pregnancies [9].

Gene mutations and alterations in methylation have an ambiguous 
effect on RIF in the absence of chromosomal euploidy. Implantation 
failure in mice has been linked to certain gene abnormalities that 
cause the loss or lack of endometrial factors, such as cytokines and 
transcription factors [10,11]. The endometrium becomes receptive 
for a limited period of time under the influence of steroid hormones 
and paracrine signals from the developing embryo [5]. Murphy 
noted that “the endometrium is receptive to implantation during 
the window of implantation (WOI), a spatially and temporally 
restricted phase that is complex and multifactorial, during which 
changes occur at the molecular, cellular and tissue levels'' [12].

From the clinical point of view, RIF refers to the repeated failure 
of good quality embryo implantation [13]. According to Garneau 
& Young, “RIF is the unsuccessful implantation after repeated 
transfers of morphologically good quality embryos into a normal 
uterus” [14]. Cimadomo et al. refers to RIF as the failure of the 
embryo to reach a stage when an intrauterine gestational sac is 
recognized by ultrasonography [15]. In a study done by Maesawa 
et al., “biochemical pregnancy is actually not uncommon, and its 
reported incidence varies from 8 to 33% in the general population, 
including those who spontaneously conceived” [16]. Hoozemans 
et al. stated that, “for successful implantation, embryo maturation 
and uterine receptivity must occur in concert such that a window 
of implantation is open for 48 hours, 7–10 days after ovulation’’ 
[3]. In a study done by Coughlan et al, the term “implantation 
failure” states in two different types of cases, those in whom there 
has no evidence of implantation and those who have evidence of 
implantation, and in fact both the cases depend on the presence 
of Human chorionic gonadotropin (hCG) [17]. RIF is usually 
determined by considering two criteria: the number of good 
quality embryos transferred and the number of embryo transfer 
(ET) procedures performed with good quality embryos [18].

Implantation failure is due to several factors including maternal 
factors as well as embryonic causes. Simon & Laufer mentioned 
that, “maternal factors include uterine anatomical abnormalities, 
thrombophilia, non-receptive endometrium and immunological 
factors” [19]. Franasiak et al. mentioned that, “embryonic causes 
include either genetic abnormalities or other factors essential 
to the embryo that impair its ability to develop in the uterus, 
to hatch and to implant” [20]. Margalioth et al denoted that 
“chromosomal abnormalities in embryos are one of the possible 
causes of implantation failure” [21]. Franasiak et al. added that, 
“chromosomal abnormalities, such as aneuploidy or chromosome 
rearrangements affect the implantation [20]. In the year 1999, 
Stern also noted that “an increased prevalence of chromosomal 
structural abnormalities has been documented in RIF patients”. 
The most common fetal chromosomal abnormalities are caused by 
meiotic nondisjunction like trisomy and monosomy, and structural 
chromosomal abnormalities (balanced translocation or inversions). 
According to Brosens, “maternal age is the main risk factor for 
embryonic aneuploidy” [22].

Hoozemans et al. observed that, “the immunological action 
against the embryo is the maternal restraint, it may cause 
implantation failure or failure of adequate placentation [3]. Hence 
immunomodulation is necessary to prevent the maternal immune 
system rejecting the embryonic transplant”. Maternal age plays a 
crucial role in the quality of the embryos that are used for IVF [17]. 
Salumets et al. found that “the major predictive factor contributing 
to pregnancy outcome in frozen embryo transfer, specifically with 
Intracytoplasmic Sperm Injection (ICSI) technique, was maternal 
age” [23]. Increased body mass index (BMI) (> 25 kg/m2) has also 
been shown to impact implantation rate [24].

When compared to non-smoking individuals receiving artificial 
reproductive technology (ART), smoking has been demonstrated 
to dramatically increase the probability of miscarriage (time 
undefined) for each pregnancy [25]. Cigarette toxins might play a 
role in disrupting corpus luteum formation and implantation of the 
embryo [26]. Maternal smoking was shown to be more frequently 
associated with spontaneous miscarriage with normal foetal 
karyotype than with defective foetal karyotype, indicating that the 
toxic effects of carbon monoxide and nicotine may be the primary 
causes of harm  [27]. Cortisol synthesis in the body increases in 
response to psychological, immunological, and other stresses, 
implying that it functions as a marker warning to the female body 
that it is not in optimal reproductive condition [28]. 

Healthy embryos and a functional endometrium is essential for 
successful implantation. The cross-talk between the embryo and the 
endometrium, which is essential for successful implantation, can be 
negatively impacted by issues arising from the host environment, 
such as aberrant uterine anatomy, non-receptive endometrium, the 
mother's health, and other genetic variables. Repeated implantation 
failure is a challenge for any IVF clinic since the infertile couples 
who have unsuccessful IVF/ET treatments are put through a great 
deal of psychological, emotional, and financial stress, and the 
medical professionals who are trying to assist them are frustrated. 
In this study, an effort was made to categorize the many different 
causes of RIF provided with the following RIF kinds with the hope 
that it would enable couples who have implantation failure after 
embryo transfer to receive the appropriate care.

2. The Embryo in Implantation Failure
Global gene analysis of the dormant versus active blastocysts 
demonstrates that heparin-binding epidermal growth factor 
(EGF)-like growth factor (HB-EGF) encoded by Hbegf gene is 
significantly up-regulated during blastocyst activation [29]. One 
of the most important factors is the embryo's quality. Following 
the transfer of 2, 3, 4, 5, 6, and 7 embryos, the odds of all 
embryos failing to implant are 0.81, 0.73, 0.66, 0.59, 0.53, and 
0.48, respectively, assuming that the likelihood of successful 
implantation is decreased to 0.10. In other words, all seven 
embryos have a 48% probability of failing to implant. 

As a result, in order to arrive at a therapeutically meaningful 
definition, several researchers specified that good-quality embryos 
had been transplanted [20]. Poor embryo quality is considered to 
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be the major cause of implantation failure [30]. Coughlan noted 
that, “enhancing the quality of the transferred embryo and the 
endometrium's receptivity is the main treatment plan for couples 
who experience implantation failure” [31]. Proteomic studies 
indicated that the embryonic secretome may differ between those 
that implant and those that fail, although prospective validation 
studies are as yet lacking [32].

2.1 Quality of the Embryo
 Successful implantation is a complex process that involves multiple 
factors, including genetic factors, oocyte quality, and uterine 
receptivity. Any defects or abnormalities in any of these factors 
can lead to implantation failure and recurrent pregnancy loss. It 
is essential to understand these mechanisms and their interactions 
to develop effective treatments for couples experiencing infertility 
or recurrent implantation failure. Assisted reproduction techniques 
require careful evaluation of gametes and embryos. According 
to the embryo quality, the implantation rate was highest for “top 
quality embryos”, which were 8-cell embryos on day 3 with 
symmetrical blastomeres, less than or equal to 10% fragmentation, 
and no multinucleated blastomeres [33]. Embryo quality depends 
on gamete quality and culture conditions. Various grading systems 
evaluate embryos at different stages. Selecting the embryo with 
the highest potential reduces the number transferred without 
compromising success. Invasive and non-invasive methods, such 
as preimplantation genetic testing and morphokinetics, aid in 
selection. This review compares effective evaluation and selection 
methods.

Oocyte quality is also a crucial factor in successful implantation. 
Identifying oocyte maturity is crucial for optimal fertilization 
timing. Morphology assessment predicts future development and 
implantation potential. Oocyte quality can be influenced by various 
factors, including maternal age, lifestyle, and environmental 
factors. When there is a poor response to ovarian stimulation with 
fewer oocytes retrieved, a large proportion of immature oocytes, 
a lowered fertilisation rate, and a low embryo utilisation rate, 
compromised oocyte quality is frequently suggested as a cause 
of RIF [34]. Age-related decline in oocyte quality is associated 
with increased chromosomal nondisjunction resulting in aneuploid 
embryos, decrease in mitochondrial membrane potential and 
increase of mitochondrial DNA damage. 

The two primary local growth factor systems, namely the bone 
morphogenetic system and the insulin-like growth factors (IGF) 
system, are affected by both gonadotropins (luteinizing hormone 
[LH] and follicle stimulating hormone [FSH]), which in turn impact 
oocyte competence [35]. Hernandez-Gonzalez et al. recognized that 
“not only the oocyte but the cumulus cells (CCs) play an important 
role in the implantation process [36]. The cumulus oophorus is 
a mass of granulosa cells (GCs) associated with the oocyte from 
the antral follicle stage to fertilization and until early embryo 
development”. The nurturing of oocyte growth, development, and 
acquisition of developmental competence is primarily facilitated 
by the ovarian follicular microenvironment and maternal signals, 
which are transmitted through GCs and CCs [37].

Sperm quality can play a crucial role in successful implantation, 
as it affects the ability of the sperm to fertilize the egg and 
support early embryonic development. Sperm count, motility, and 
morphology are some of the key factors that can influence sperm 
quality. The ability of sperm to fertilize decreases when there are 
abnormalities in their genomic material. Poor-quality spermatozoa 
may also result in the generation of poor-quality embryos. It is 
commonly acknowledged that standard sperm analysis criteria do 
not adequately indicate sperm quality. Cigarette smoking, genital 
tract infection, and past chemotherapy or radiation are all factors 
that lead to sperm DNA damage.

Bashiri et al. found that, “damaged DNA of sperm has been 
correlated with poor fertilization, reduced implantation and 
pregnancy rates, and increased production of aneuploid embryos” 
[38]. Over the past decades, there have been many reports of 
inverse correlations between genetic abnormalities in sperm and 
male infertility, as well as the success of assisted reproductive 
treatments (ART). Shamsi et al. showed that, “birth of offspring 
with use of sperm with DNA damage results in increased chances 
of morbidity and childhood cancer” [39]. According to a 2004 
study done by Bungum et al., 30% of men choosing ART have a 
significant percentage of sperm with DNA breaks. Studies done 
by Shamsi et al. observed that 40.06 percent of sperm in infertile 
males with severe sperm pathologies had DNA damage, compared 
to 47.7% of sperm with high DNA damage in male partners of 
couples who had miscarriages [40].

3. The Mother in Implantation Failure
Maternal age plays a crucial role in pregnancy rates as well as the 
quality of embryos used for IVF. Many difficulties that emerge 
clinically in the first trimester, such as miscarriage, or in the 
second half of pregnancy, such as preeclampsia, preterm birth 
(PTB), foetal growth restriction (FGR), and gestational diabetes 
(GDM), have their origins in implantation and placentation 
disorders [41]. Gellersen et al. stated that the endometrium is a 
multi-layered, dynamic mucosa that overlays the myometrium of 
the uterus [42]. It comprises a variety of cells, including luminal 
and glandular epithelial cells, stromal fibroblasts, and vascular 
and immune cells. During a menstrual cycle, dramatic changes 
occur in both the phenotype and abundance of many of these 
cells, especially in the superficial endometrial layer. Takano et 
al. observed that, “endometrial growth is dependent on estrogen 
stimulation whereas the postovulatory rise in progesterone levels 
triggers a coordinated programme of differentiation, characterized 
by proliferative arrest and secretory transformation of the epithelial 
cells, transient oedema, in- flux of uterine natural cells (uNK), 
vascular remodeling, and differentiation of stromal fibroblasts into 
specialized decidual cells” [43].

3.1 Receptivity of the Endometrium
The primary role of the endometrium is to collaborate with the 
myometrium in accepting the embryo during implantation, 
supporting its development, and guaranteeing a punctual delivery 
of the fully-formed fetus. Being able to identify a uterus that is 
receptive can play a crucial role in avoiding reproductive failures 
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and can also be a determining factor in the success of ART. 
Endometrial receptivity is a result of effects provided by ovarian 
steroid hormones, and is synchronized with fertilization and 
embryo development [44]. Teh et al. also added that, “after being 
exposed to estrogen and progesterone in sequence, the human 
endometrium attains its receptive state” [45]. Paulson mentioned 
that, “estrogen and progesterone are the two key hormones required 
for preparation of the human endometrium for implantation” [46].

Studies have shown new functions for the decidualized 
endometrium as a biosensor of embryo quality, with the embryo 
itself accounting for just around 30% of implantation failures and 
insufficient uterine receptivity accounting for roughly 70% [47]. 
The receptivity of the endometrium may be adversely affected 
by ovarian hyperstimulation, leading to a discordant maturation 
between the embryo and the endometrium which may result in failed 
implantation [33]. Roque et al. explained that, “reduced endometrial 
receptivity brought on by supraphysiological hormone levels 
during the follicular phase of controlled ovarian stimulation may 
have a negative impact on the rate of implantation and pregnancy” 
[48]. The occurrence of an early increase in progesterone levels 
during the follicular phase in ovarian stimulation is linked to 
decreased rates of implantation and pregnancy. This is thought to 
be a result of an unresponsive endometrium and possibly lower 
quality oocytes embryos.

3.2 Implantation Failure and Genetics
Genetic factors are vital in successful implantation to occur. 
The presence of abnormal genetic material in the embryo or/and 
endometrium will cause the implantation to fail. There is also 
growing evidence that genetic factors regulating invasion and 
endometrial angiogenesis is essential for embryo implantation 
[49]. Maruyama & Yoshimura suggested that, “there are overlaps 
between the genetic variables that cause recurrent spontaneous 
abortion and infertility and those that cause implantation 
failure” [50]. Chromosomal abnormalities, such as aneuploidy 
or chromosome rearrangements, are well known to cause early 
pregnancy failure and recurrent pregnancy loss (RPL) [20]. For 
successful implantation, embryo maturation and uterine receptivity 
must occur in concert such that a “WOI” is open for 48 hours, 7–10 
days after ovulation [3]. 

The crucial stage of embryo implantation is influenced by a 
range of genetic factors, and a number of single-nucleotide 
polymorphisms (SNPs) have been linked to RIF [51]. Chen et al. 
noted that, “microRNAs are known to regulate various functions 
and have the ability to influence the expression of multiple genes 
that are crucial for fetal and placental development during the peri-
implantation period [52]. However, these same factors may also be 
closely linked to the development of recurrent implantation failure 
(IVF) and recurrent pregnancy loss (RPL)”. 

Multiple studies have demonstrated that having an inherited 
predisposition to thrombophilia may increase the likelihood 
of experiencing repeated failures in achieving a successful 
pregnancy after recurrent implantation failure. During pregnancy, 
the haemostatic system undergoes changes that lead to a state of 
increased blood clotting, which becomes more pronounced as the 
pregnancy progresses and reaches its peak towards the end. The 
most significant change is observed in the coagulation process, 
which shows higher levels of activity in factors VII, VIII, X, and 
von Willebrand factor, as well as a marked increase in fibrinogen 
[53]. Kamel et al. mentioned that, “alterations in the blood 
clotting system serve as a natural protective mechanism during the 
peripartum phase, but may increase the likelihood of complications 
for both the mother and fetus throughout the gestational period 
[54]. The mother is at risk of such complications from the moment 
of conception until after delivery”.

Arachchillage & Makris defined thrombophilia as “a 
predisposition to form clots inappropriately [55]. This condition 
increases the development of venous thromboembolism (VTE) 
and thromboembolic disease, which can be acquired or inherited”. 
Stevens et al. denoted that, “inherited or hereditary thrombophilia 
commonly implies the conditions in which a genetic mutation 
affects the amount or function of a protein in the coagulation 
system” [56]. Activated immune conditions including elevated 
proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8), aberrant 
alloimmunity and presence of autoantibodies may contribute to 
thrombosis as well [57]. It is clear that vascular thrombosis can 
be attributed to inherited thrombophilia, however, the impact of 
inherited thrombophilia on women experiencing RIF remains a 
topic of debate. 

Thrombophilia type Description Gene location Association with RIF References
Factor V Leiden 
(Homozygous & 
Heterozygous)

Genetic mutation that affects 
blood clotting; common 
cause of abnormal clotting; 
homozygous Factor V Leiden 
carriers have higher clotting 
risk than heterozygous carriers.

F5 gene on   
Chromosome 1

High risk factor for 
infertility and RIF

Kujovich, 2011

Prothrombin Gene 
Variant G20210A 
(Heterozygous)

Genetic mutation that affects 
the prothrombin; dominant 
autosomal trait.

F2 gene on 
Chromosome 11

3–8 times higher risk 
than homozygous type

Kozma et al., 
2015
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MTHFR C677T/ 
MTHFR gene mutations

Genetic mutation 
in the MTHFR 
(methylenetetrahydrofolate 
reductase) gene; inherited in an 
autosomal recessive pattern.

Chromosome 1, 
specifically on the long 
(q) arm at position 36.3

Higher fetal loss at early 
stages of pregnancy

Altomare et al., 
2007

Antithrombin Deficiency Genetic disorder affecting 
blood clotting regulation.

Chromosome 1 
q25.1-q25.2

High risk of 
maternal venous 
thromboembolism

Bravo-Pérez et 
al., 2019

Protein C Deficiency Rare genetic disorder that 
affects the body's ability 
to regulate blood clotting; 
autosomal dominant trait.

Chromosome 2 q13-q14 Pregnancy increases 
risk of venous 
thromboembolism by 
7.8%

Croles et al., 
2017

Protein S Deficiency Autosomal incomplete 
dominant genetic disease; 
loss-of-function mutations in 
the PS coding gene PROS1; 
More common than protein C 
deficiency

PROS1 gene near 
the centromere on 
chromosome 3 at 3q11.2

Increases the risk of 
recurrent pregnancy loss 
by 15-fold.

Lalan et al., 
2012; Zhang et 
al., 2022

Table 1: Inherited Thrombophilia and Its Association with Pregnancy Related Issues

Inherited thrombophilia is believed to play a role in recurrent 
implantation failure after IVF treatments, and has been the 
subject of research efforts. Factors are recruited to promote 
haemostasis, which involves increased expression of tissue factor, 
the main initiator of haemostasis through thrombin generation, 
and plasminogen activator inhibitor type 1 (PAI1, SERPINE 
1), which deactivates tissue-type plasminogen activator (t-
PA, PLAT), the primary agent in fibrinolysis. Nelson & Greer 
has been hypothesised that invasion of maternal vessels by 
syncytiotrophoblast can be affected by localised thrombosis at the 
implantation site, leading to IVF failure [58]. Simcox et al. also 
hypothesised that thrombophilia may cause placental insufficiency 
due to placental vascular thrombosis [59].

Furthermore, the thrombomodulin-protein C mechanism plays 
a crucial role in inhibiting coagulation and fibrinolysis to avoid 
excessive production of tissue factors. This, in turn, prevents the 
formation of thrombin and the generation of fibrin degradation 
products that can be harmful to trophoblast cells [60]. The 
significant function of the haemostatic system in the implantation 
process is highlighted by the possibility of heparin's favorable 
impact [61]. Overall, understanding the genetic factors and 
haemostatic system's role in implantation can aid in identifying and 
treating factors contributing to implantation failure and improving 
outcomes for couples seeking to conceive.

3.3 Molecular Aspects of Implantation Failure
Dey & colleagues reported that, “molecular and genetic evidence 
indicates that ovarian hormones together with locally produced 
signaling molecules, including cytokines, growth factors, 
homeobox transcription factors, lipid mediators and morphogen 
genes, function through autocrine, paracrine and juxtacrine 
interactions to specify the complex process of implantation” [62]. 
However, more studies were done by on the hierarchical structure of 
the molecular signaling pathways that control interactions between 

the uterus and the embryo in the first trimester of pregnancy [63]. 
Canfield et al. explained that, “implantation is considered to occur 
when a blastocyst breaches the luminal endometrial epithelium 
[64]. However, determining precisely when this occurs in the 
human being is complicated. The only established clinical marker 
of implantation is hCG”. 

Progesterone is widely acknowledged to be necessary for embryo 
implantation in almost all of the species investigated, but the 
significance of the two estrogen surges that occur during the pro-
estrous and luteal phases prior to embryo implantation is still 
controversial [62,65,2]. IL-6 is minimally expressed in human 
endometrium throughout the proliferative phase but has significant 
immunoreactivity during the mid-secretory phase, primarily in 
glandular and luminal epithelial cells [66,67]. Therefore, a role 
in human implantation could also be postulated for this cytokine, 
as for leukemia inhibitory factor (LIF) and interleukin (IL)-11, 
since IL-6 has some functional redundancy with IL-11 and LIF. 
There is growing proof that IL-11 plays a significant role in 
human implantation. Recent studies have shown that the human 
endometrium contains IL-11 and its receptor (IL-11R) [68,69]. 
Koler et al. showed that, “RIF patients show deregulated gene 
expression during the receptive phase compared to controls” [70]. 

Bashiri et al. identified that, “implantation failure is diagnosed 
as a lack of ultrasound signs of pregnancy in the uterine cavity 
[26]. In several studies, a biochemical pregnancy was included (an 
increase in β-hCG without any ultrasound sign of pregnancy) to 
the definition of RIF [26]. Moreover, Coughlan et al. pointed out 
that, “implantation process is complex, the assessment of causes of 
RIF should be performed on several levels [17]. The most common 
analyses are chromosomal testing of both parents, the estimation 
of ovarian function (FSH, LH, anti-mullerian hormone (AMH) 
measurement) in women, and sperm DNA fragmentation in men, 
as well as assessment of uterine pathologies and fallopian tube 
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permeability (hysterosalpingogram, laparoscopy)”.

RIF patients show deregulated gene expression during the receptive 
phase compared to controls [70]. Studies focusing on p53 tumour 
suppressor gene, which regulates cell apoptosis, angiogenesis 
and is a potential mediator of pregnancy show significantly more 
homozygous genotypes in RIF patients [71]. The human LIF gene, 
which is required for implantation, has been discovered as a p53 
target gene. Through direct sequence specific DNA binding and 
transcriptional activation, p53 controls both basal and inducible 
LIF transcription [72]. Hu et al. studied LIF as a gene target for p53, 
which increases its expression [72]. The molecule p53 binds to the 
p53-binding element in the first intron and alters the expression of 
LIF in different tissues, including endometrial tissue. The absence 
of p53 leads to the reduction in LIF and thereby impairing the 
implantation process. 

4. Polymorphism of Genes and Implantation Failure
Genetic factors play an important role in the success of implantation. 
Recent research has demonstrated that genetic variables, including 
polymorphisms in certain genes, might affect the implantation 
process and cause RIF. Polymorphisms are differences in a gene's 
DNA sequence that happen in a population at a frequency of at 
least 1%. They have been linked to a number of diseases and 
conditions, including infertility and RIF, and can affect the gene's 
expression or function. The success of implantation and pregnancy 
may depend on a number of genes, including those that control 
metabolism, immunological function, coagulation, and hormone 
signalling. Implantation failure can result from changed gene 
function or expression caused by polymorphisms in these genes, 
which can disturb the delicate balance of the implantation process. 

The abnormal genetic material in the endometrium can lead to 
implantation failure [73]. Numerous findings from recent studies 
suggest that genetic variables controlling angiogenesis and 
invasion processes play a significant role in embryo implantation. 
Studies in the literature demonstrate that implantation failure can 
result from genetic flaws, including genetic polymorphisms of the 
genes involved in these processes [74]. The genetic variables that 
cause implantation failure coincide with those that cause recurrent 
spontaneous abortion and infertility [75].

4.1 LIF Gene
Steck et al. states that leukaemia inhibitory factor (LIF) is a 
glycoprotein that plays an important role in reproduction, with 
particular relevance in the regulation of implantation, but also has 
a variety of functions in different organ systems” [76]. Cullinan 
et al. studied that “the expression of LIF, related members of this 
group of cytokines, oncostatin M and ciliary neurotrophic factor, 
and the LIF receptor j3 and glycoprotein gpl30 in normal human 
tissues and in the endometrium of fertile women” [77]. Fenwick 
et al. explained that “LIF protein and mRNA are detectable in the 
human endometrial system only during the secretory phase of the 
menstrual cycle” [78]. Le´de´e-Bataille et al. reported that low 
concentrations of LIF in uterine flushings at day 26 were highly 
predictive of subsequent implantation [79]. 

Hambartsoumian demonstrated that low uterine concentrations of 
LIF protein in the secretory menstrual phase has been reported to 
be associated with a high risk of implantation failure after embryo 
transfer and in unexplained infertility [80]. He also states that 
LIF secretion found in the proliferative phase of the menstrual 
cycle and that LIF secretion in endometrial explant cultures was 
different between fertile and infertile women. In fertile women, the 
endometrial LIF secretion was 2.2-fold higher in the secretory than 
in the proliferative phase, whereas infertile women did not exhibit 
such an elevation of LIF production in the luteal phase. 

LIF concentration in uterine flushings of fertile women on days 18–
21 of the menstrual cycle was 3.5-fold higher than in infertile women 
with recurrent IVF failure, and 2.2 times higher than in infertile 
women without multiple failure of implantation. Mikolajczyk et 
al. also states that “LIF overexpression in uterine secretions may 
be used as a potential indicator of uterine receptivity in fertile 
women” [81]. Chen et al. noted that “the majority of unexplained 
infertile women show significant decrease in LIF expression level, 
signifying the importance of LIF in implantation” [82]. Recently 
Hu et al. identified that “p53 has a specific binding site on LIF 
promoter and regulates both basal and inducible transcription of 
LIF” [72].

4.2 p53
Phylogenetic research on p53 revealed that it is an evolutionarily 
conserved gene and that p53-like transcriptional factors exist in 
invertebrates that do not have adult malignancies. These findings 
imply that p53 might be involved earlier in these species [83]. A 
genetic polymorphism known as polymorphism of p53 codon 72 
is being explored extensively for its significance in reproductive 
medicine. However, Razieh et al. noted that the results on the 
correlation between polymorphism and abnormalities, recurrent 
pregnancy loss and RIF, are still inconclusive [84]. The p53 gene 
(17q13) has 11 exons with a single nucleotide polymorphism 
(SNP) at codon 72, which results in a proline instead of an 
arginine substitution by changing G to C. One of the p53 
protein's gene targets is leukemia inhibitory factor (LIF), which 
regulates lymphocyte differentiation and proliferation by secreting 
cytokines [85]. The p53 protein, containing an arginine at codon 
72, induces apoptosis, LIF expression, and cellular transformation 
considerably more efficiently [86]. 

Kang et al. denoted that, “the p53 allele encoding proline at codon 72 
(P72) was significantly enriched over the allele encoding arginine 
(R72) among patients undergoing in vitro fertilization (IVF)” [71]. 
The P72 allele is a risk factor for unsuccessful implantation. LIF 
levels are considerably lower in cells with the P72 allele than in 
cells with the R72 allele, which would explain why the P72 variant 
is related to poor implantation and fertility. Zhang et al. stated that, 
“the p53 plays an important role in controlling female reproduction 
and blastocyst implantation owing to true-life” [63]. 
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Gene Location Polymorphism Encoding protein function Polymorphism results 
in

References

LIF 22q12.2 rs929271, rs7832768 Leukemia inhibitory factor; 
promotes embryo implantation 
by signaling to the endometrium

Polymorphisms in LIF 
have been associated 
with RIF and recurrent 
miscarriage

Vagnini et al., 2019; 
Salleh & Giribabu, 
2014

Tp53 17p13.1 rs1042522 (Arg72Pro) Tumor protein 53; role in 
regulating the cell cycle, DNA 
repair, and apoptosis

Associated with 
infertility, recurrent 
miscarriage

Mohammadzadeh et 
al., 2019

ESR1 6q25.1 rs2234693 (PvuII) Estrogen receptor alpha; plays 
a role in uterine receptivity and 
embryo implantation

Associated with 
infertility and failure 
of IVF

Vagnini et al., 2019; 
Paskulin et al., 2013

MTHFR 1p36.3 rs1801133 (C677T), 
rs1801131 (A1298C)

Methylenetetrahydrofolate 
reductase; key enzyme for folic 
acid metabolism

Associated with 
RIF, causing 
hyperhomocysteinemia

Zeng et al., 2021

KIR 19q13.4 KIR2DS1, KIR2DS5, 
KIR3DL2, KIR3DL3, 
KIR3DS1

Killer cell immunoglobulin-
like receptors; important for 
maternal-fetal immune tolerance 
and implantation success.

Associated with 
recurrent miscarriage 
and implantation failure

Piekarska et al., 
2022

IL-10 1q31-32 rs1800896, rs1800871, 
rs1800872

Interleukin 10; for successful 
implantation and maintenance of 
embryo during pregnancy

Associated with 
spontaneous abortion 

Vidyadhari et al., 
2017

HLA-G 6p21.3 rs1632947 Human leukocyte antigen G; 
plays a role in immune tolerance 
and maternal-fetal interactions. 

Associated with 
recurrent implantation 
failure and recurrent 
miscarriage.

Fan et al., 2017

Table 2: Gene, its polymorphism and association with RIF

4.3 MUC-1
MUC-1 (Mucin-1) is a glycoprotein expressed on the epithelial 
surface of different types of tissues, including the endometrium 
[87]. One proposal is that in mice MUC-1 mucin forms an 
anti-adhesive barrier, and its downregulation after ovulation is 
necessary for embryo attachment. Conversely, in man, rabbits, and 
baboons, MUC-1 mucin concentrations increase after ovulation 
and persist during implantation [87]. Women with recurrent 
pregnancy loss (RPL) were shown to express reduced endometrial 
MUC-1, as compared with a normal group of patients [88]. Wu et 
al. demonstrated that MUC-1, a highly glycosylated polymorphic 
mucin-like protein secreted by the endometrial luminal epithelium 
is considered a “barrier to implantation” [89]. In humans, MUC-
1 is expressed in the luteal and pre-implantation phases in a 
progesterone-dependent manner. 

Alterations in the internal structure of MUC-1 Variable Number 
of Tandem Repeats (VNTR) have the potential to impact the 
quantity of core protein O-glycosylation sites, thereby affecting 
the immunogenicity of the molecule and potentially contributing 
to pregnancy loss [90]. However, the studies done by Dentillo et 
al. suggested that the number of VNTR repeats in MUC-1 is not 
linked to implantation failure in women experiencing recurrent 
abortion [9].

4.4 MTHFR Gene
The human Methylenetetrahydrofolate Reductase (MTHFR) 
gene, which consists of 11 exons, is found on the short arm of 
chromosome 1 (1p36.22). The MTHFR enzyme is crucial for 
cell division, embryo development and early pregnancy. It also 
plays a crucial function in the metabolism of folate. The MTHFR 
gene's two most prevalent variants are MTHFR A1298C and 
MTHFR C677T. Oocyte and embryo development are negatively 
impacted by decreased MTHFR activity [91]. Evidence suggested 
a connection between MTHFR 677C>T and ovarian reserve, 
oocyte maturation, and embryo aneuploidy. The MTHFR gene 
polymorphism might play a role in the etiology of patients with 
recurrent miscarriage (RM) or RIF [92]. 

In a study by Choi et al., the findings showed that the combination 
MTHFR 677/MTHFR 1298 genotype might be linked to an elevated 
risk of RIF [93]. Enciso et al. explained that, “the elevated rates of 
RM and IF are caused by MTHFR mutations, which also affect the 
aneuploidy levels of the embryo” [94]. In a study done by Rotondo 
et al., it was observed that idiopathic infertile women exhibit an 
increased frequency of MTHFR 677C>T polymorphisms when 
compared to the control women of that study [95]. Safdarian et 
al. also found that recurrent IVF failures were associated with 
homozygous MTHFR C677T mutations [96]. Guo et al. revealed 
that the MTHFR 677 T genotype was associated with a higher 
incidence of trisomies in chromosomes 18 and 21 [97].
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4.5 Human Progesterone Receptor (hPR) Gene
Kastner et al. describe another critical genetic variation in the 
human progesterone receptor gene that is associated with the 
probability of implantation failure [98]. The human progesterone 
receptor (hPR) gene is a dual function gene that encodes two 
distinct isoforms with distinct transcriptional factor activity, hPR-A 
and hPR-B. Sartorius et al. states that “the longer isoform, hPR-A, 
has 165 additional amino acid residues on its amino terminus end, 
which leads to the change of hPR-B conformation and significant 
difference between the target genes and physiologic effects of 
the two isoforms” [99]. Cramer et al. noted that “the imbalance 
between these isoforms’ expression leads to severe abnormalities 
in ovarian and uterine function and defective implantation” [100].

4.6 HLA-G Gene
The non-classical HLA class Ib protein known as human leukocyte 
antigen (HLA-G) is essential for the mother to accept the semi-
allogeneic fetus is located within the major histocompatibility 
complex (MHC) at 6p21.3 [101,102]. In contrast to the highly 
variable conventional HLA Ia genes, the HLA-G gene has limited 
tissue expression and modest allelic variation. HLA-G is mostly 
expressed in immunological organs and in the maternal-fetal 
interface [103]. The suppression of cytolysis by natural killer (NK) 
cells, enrichment of regulatory T (Treg) cells, and encouragement 
of a switch from a T-helper (Th)1 to a Th2 cytokine profile are 
all crucial roles of HLA-G at the fetal-maternal interface [104]. 
Hackmon et al. denoted that, “higher expression of HLA-G by 
blastocysts has a significant concordance with a higher success 
rate of implantation” [105]. HLA-G is essential for immunological 
tolerance at the maternal-fetal interface. 

The crucial component determining embryo implantation is 
maternal immunological tolerance, which is brought on by 
interactions between soluble HLA-G and uterine lymphocytes. 
It is necessary for embryo implantation that HLA-G be soluble. 
However, research on the function of parental sHLA-G expression 
before conception is limited [106,107]. The study done by Lashley 
et al. showed that, although 14-bp ins/del polymorphism is linked 
to recurrent implantation failure, the immunological role of 
HLA-G and its genetic impact are unclear [108]. According to a 
meta-analysis by Fan et al., the HLA-G 14-bp insertion allele may 
enhance the incidence of RIF in Caucasians [109]. Implantation 
failure may be attributed to the high expression of sHLA-Gtot 
and sHLA-GEV as well as the 14-bp deletion allele [110]. In the 
study of Lashley et al., it was shown that “the −14bp/+14bp or 
+14bp/+14bp genotype was more common in women with RIF, 
nearly 92% compared to 64.6% in the IVF control (sIVF) and 
58% in the fertile control (SP) group” [109]. Enghelabifar et al. 
confirmed the relationship between ins/del HLA-G genotype and 
increased risk of implantation failure [111].

5. Treatment Strategies
Once an anomaly related with implantation failure is identified, 
therapeutic options such as uterine septectomy, intra-uterine 
adhesion removal, endometrial polypectomy or myomectomy 
(particularly the submucous variety), and hydrosalpinx excision 

should be considered [19]. It is believed that intrauterine injection of 
a patient's own lymphocytes may increase endometrial receptivity 
and implantation rates while restoring the immunological balance 
in individuals with RIF, who may be unable to recruit the requisite 
lymphocytes for successful implantation [112]. New research on 
intrauterine infusion of platelet-rich plasma has also demonstrated 
a benefit in IVF transfers for women with thin endometriums 
[113,114,115]. Granulocyte colony-stimulating factor has been 
investigated as an in vitro fertilization adjunct treatment given 
locally or systemically to women with a thin endometrial lining, a 
history of recurrent pregnancy loss (RPL), or RIF [116,117,118]. 
Other immune therapies for RIF under investigation include 
intrauterine hCG infusion, intravenous immunoglobulin (IVIG), 
intravenous intralipid therapy and heparin [119]. The above 
reports signify the various treatment strategies available to achieve 
a successful pregnancy [120-139].

6. Conclusion
Recurrent implantation failure is the process of failure to attain 
a pregnancy following 2-6 IVF cycles, in which more than 10 
high-grade embryos were transferred to the uterus. There are 
several factors that cause failure of implantation, especially the 
genetics of parents and the embryo. There is growing evidence that 
genetic variables governing invasion and angiogenesis processes 
are important in embryo implantation. The present review is a 
pointer of various research studies and genetic factors involved 
in implantation failure. The review also highlights invasion and 
angiogenesis as a critical process behind implantation failure. 
By genotyping RIF suffered couples, the reasons and risk of IVF 
failure can be predicted in order to provide appropriate therapeutic 
options. The review also emphasizes further in-depth clinical trials 
on IVF to overcome infertility in the near future.
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