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Abstract
In this work, we present a quantum control methodology to create multi-particle entangled states of two typical 
classes, the W and the Greenberger-Horne-Zeilinger (GHZ). The methodology is demonstrated on a generation 
of the W and GHZ three-atomic states via the mechanism of two-photon passage using overlapping chirped 
pulses and the interplay of the chirp rate, the one-photon and two-photon detuning, the peak Rabi frequency and 
the strength of the Rydberg-Rydberg interactions. A chain of N alkali 87Rb atoms in an optical lattice interacting 
with two laser fields is modeled within a semi-classical theory. The strategy to create different classes of multi-
particle entangled states was revealed through performed dressed state analysis.
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1. Introduction
Ultracold physics with atoms in optical lattices opened up abun-
dant opportunities for studies of quantum many-body phenom-
ena due to a tunable structure of the optical potentials. Atoms 
placed in such potential and excited to the Rydberg states inter-
act through the long-range interactions, which are of dipole-di-
pole or the van der Waals type depending on the interatomic 
distance. Modern control techniques permit manipulations of 
collective excitations of trapped atoms to Rydberg states aim-
ing at a generation of different types of entangled states - the 
workhorse of quantum enabled tasks. Here, we present a robust 
quantum control methodology to selectively excite collective 
states in systems of few atoms leading to a generation of dif-
ferent types of entangled states within collective spin systems 
involving Rydberg atoms.

There are three major classes of multiparticle entangled states: 
the GHZ states, the W states, and the cluster states [1-3]. No-
tably, these classes of states are non-separable and cannot be 
transformed into each other by local quantum operations [4]. 
The GHZ state represents a maximally entangled state, while 
the W state is unique in that a single-particle measurement of the 
state only collapses it by one order. GHZ states are best utilized 
as quantum channels for teleportation, while W states are neces-
sary for secure quantum communication [5, 6]. In order to take 
advantage of the properties of multiparticle entangled states, it 
is important to be able to generate these states on demand. There 
has been a significant effort regarding preparation of the GHZ 
and the W states using various platforms, from atomic systems 
to quantum dots to superconducting qubits [7-9].

In this paper, the present a method for a preparation of the GHZ 
and the W multiparticle entangled states for an arbitrary num-
ber of atoms having the energy gaps in the many-body spectrum 
greater than the τ-1, where τ is the chirped pulse duration. We 
demonstrate a high-fidelity of these states’ generation and a fast 
time scale.

The methodology to generate entangled states is based on us-
ing circularly polarized and linearly chirped µs laser pulses and 
carefully chosen field parameters, namely the peak Rabi fre-
quency, the chirp rate and the detuning. A generation of the de-
sired states is expected to be robust. Thus, we were seeking an 
adiabatic passage type of solutions. The roots to these solutions 
may be revealed through the dressed state analysis, which also 
suggests the limitations of adiabatic regime for certain types of 
entanglement.

We use a model system of a chain of alkali 87Rb atoms in an op-
tical lattice, where each atom is considered as a system of effec-
tive spin states, arranged in the three-level ladder configuration 
having the ground spin state ǀg⟩, the intermediate spin state ǀe⟩, 
and the excited Rydberg spin state ǀr⟩, shown in Figure 1. The 
GHZ state is known to be a superposition state of all atoms in 
the ground state and all atoms in the  excited, e.g., Rydberg state. 
For a triatomic configuration, the GHZ state reads

Generation of the GHZ and W state in a series of Rydberg atoms trapped in optical
lattices

Aneesh Ramaswamy, Albert F. Latypov†, and Svetlana A. Malinovskaya
Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07030 USA

†Institute of Theoretical an Applied Mechanics, Siberian Division,
Russian Academy of Sciences, Novosibirsk, 630090 Russia

(Dated: June 11, 2022)

In this work, we present a quantum control methodology to create multi-particle entangled states
of two typical classes, the W and the Greenberg-Horne-Zeilinger (GHZ). The methodology is demon-
strated on a generation of the W and GHZ three-atomic states via the mechanism of two-photon
passage using overlapping chirped pulses and the interplay of the chirp rate, the one-photon and
two-photon detunings, the peak Rabi frequency and the strength of the Rydberg-Rydberg interac-
tions. A chain of N alkali 87Rb atoms in an optical lattice interacting with two laser fields is modeled
within a semi-classical theory. The strategy to create different classes of multi-particle entangled
states was revealed through performed dressed state analysis.

I. INTRODUCTION

Ultracold physics with atoms in optical lattices opened
up abundant opportunities for studies of quantum many-
body phenomena due to a tunable structure of the optical
potentials. Atoms placed in such potential and excited
to the Rydberg states interact through the long range
interactions, which are of dipole-dipole or the van der
Waals type depending on the interatomic distance. Mod-
ern control techniques permit manipulations of collective
excitations of trapped atoms to Rydberg states aiming
at a generation of different types of entangled states -
the workhorse of quantum enabled tasks. In this work,
we present a robust quantum control methodology to se-
lectively excite collective states in systems of few atoms
leading to a generation of different types of entangled
states within collective spin systems involving Rydberg
atoms.

There are three major classes of multiparticle entan-
gled states: the GHZ states [1], the W states [2], and
the cluster states [3]. Notably, these classes of states are
non-separable and cannot be transformed into each other
by local quantum operations [4]. The GHZ state repre-
sents a maximally entangled state, while the W state is
unique in that a single-particle measurement of the state
only collapses it by one order. GHZ states are best uti-
lized as quantum channels for teleportation [5], while W
states are necessary for secure quantum communication
[6]. In order to take advantage of the properties of mul-
tiparticle entangled states it is important to be able to
generate these states on demand. There have been a sig-
nificant effort regarding preparation of the GHZ and the
W states using various platforms, from atomic systems
[7] to quantum dots [8] to superconducting qubits [9].

In this paper, the present a method for a preparation
of the GHZ and the W multiparticle entangled states for
an arbitrary number of atoms having the energy gaps in
the many-body spectrum greater than the τ−1, where τ
is the chirped pulse duration. We demonstrate a high
fidelity of these states generation and a fast time scale.

The methodology to generate entangled states is based
on using circularly polarized and linearly chirped µs laser
pulses and carefully chosen field parameters, namely the
peak Rabi frequency, the chirp rate and the detunings.
A generation of the desired states is expected to be ro-
bust. Thus, we were seeking an adiabatic passage type of
solutions. The roots to these solutions may be revealed
through the dressed state analysis, which also suggests
the limitations of adiabatic regime for certain types of
entanglement.
We use a model system of a chain of alkali 87Rb atoms

in an optical lattice where each atom is considered as a
system of effective spin states arranged in the three-level
ladder configuration having the ground spin state |g〉, the
intermediate spin state |e〉, and the excited Rydberg spin
state |r〉 shown in Fig.(1). The GHZ state is known to be
a superposition state of all atoms in the ground state and
all atoms in the excited Rydberg state. For a triatomic
configuration, the GHZ state reads

|GHZ〉 = |rrr〉+ |ggg〉√
2

. (1)

The W state is a quantum superposition of all possible
pure states in which one atom is in, e.g., the ground state,
while all others are in the Rydberg state. A triatomic W
state reads

|W 〉 = |grr〉+ |rgr〉+ |rrg〉√
3

. (2)

The energy of the GHZ and the W states depends on
the interaction strength between atoms, Vij , which is a
function of the distance between atoms rij in an optical
lattice. In the one dimensional case, the van der Waals
interaction is given as

Vij = C/r6ij = C/(s/(n− 1))6. (3)

Here, C is the van der Waals interaction constant, s is the
length of the optical lattice, and n is the number of min-
ima or, equivalently, the number of atoms. Due to the

(1)



   Volume 5 | Issue 3 | 477Adv Theo Comp Phy, 2022 www.opastonline.com

The W state is a quantum superposition of all possible pure states 
in which one atom is in, e.g., the ground state, while all others 
are in the Rydberg state. A triatomic W state reads

The energy of the GHZ and the W states depends on the inter-
action strength between atoms, Vij, which is a function of the 
distance between atoms rij in an optical lattice. In the one-dimen-
sional case, the van der Waals interaction is given as

Here, C is the van der Waals interaction constant, s is the length 
of the optical lattice, and n is the number of minima or, equiva-
lently, the number of atoms. Due to the fact that Vij is dependent 
on the positions of the atoms, it can be changed by manipulating 
the optical lattice. For a given Vij, we control the dynamics of 
a two-photon excitation of the chain of atoms by laser pulses, 
prepared based on the developed control schemes to produce 
transitions, that stir the multiparticle system into the desired en-
tangled state.

We justify the developed control schemes for the GHZ and the 
W states by demonstrating their generation in the framework of 
the exact time-dependent Schrödinger solution and a calculation 
of the fidelity of each state formation. The paper is arranged as 
follows. In Sections II and III, we derive the single-particle and 
the multiparticle Hamiltonian in the field-interaction representa-
tion; in Section IV, we discuss the quantum control methodology 
on an example of a three-atomic chain, demonstrate its deduc-
tion from an effective two-level approximation and introduce the 
entanglement fidelity for the GHZ and the W state; Section V is 
devoted to a numerical verification of the control mechanisms of 
the creation of the GHZ and the W states via fidelity as a func-
tion of the chirp rate and the peak Rabi frequency; Section VI 
summarizes findings. 

II. The Hamiltonian and the Equation of Motion for a 
Single Atom
We derive the Hamiltonian that describes the interaction of at-
oms with the laser field by first deriving the Hamiltonian of a 
single three-level atom and working up to the entangled triatom-
ic state. 

For an atom modeled by a three-level ladder system, shown in 
Figure 1, the field interaction Hamiltonian H describing the in-
teraction of the atom with two external fields reads

Figure 1: A schematic of a three-level atom where ǀg⟩ is the 
ground state energy, ǀe⟩ is the intermediate state energy, ǀr⟩ is the 
excited state energy, the Ω1(t) is the pump Rabi frequency and 
the Ω2(t) is the Stokes Rabi frequency, and the frequencies are 
time-dependent in a general case.

Here                 				             are the Rabi 
frequencies, and E1(t) and E2(t) are the laser pulses that couple 
the ground to the intermediate state,                  and the interme-
diate to the excited state,	              respectively; µij is the tran-
sition dipole moment matrix element on a respective transition. 
These fields are linearly chirped and can be written as

where α1 and α2 are linear chirp parameters, ωp and ωs are the 
applied pump and Stokes fields frequency. These frequencies are 
best defined by their relation to the one-photon detuning Δ and 
the two-photon detuning δ:

We define the wave function of the three-level ladder system in 
the Dirac notation as
where Ag(t), Ae(t) and Ar(t) are the probability amplitudes for 
the ground, the intermediate, and the excited state respectively 
in the Schrödinger representation. The Schrödinger equation for 
this system using the Hamiltonian in Eq. (4) reads

Expanding the Schrödinger Equation (7), we obtain the differen-
tial equations for probability amplitudes to see the evolution of 
the ladder system in the Schrödinger representation:

In order to make probability amplitudes time independent in the 
absence of the external fields, we move the system into the frame 
rotating with the fields by defining

where ag(t), ae(t) and ar(t) are the time-dependent probability am-
plitudes of the ground, the intermediate, and the excited state re-
spectively in the field interaction representation. This change of 
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is the chirped pulse duration. We demonstrate a high
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The methodology to generate entangled states is based
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pulses and carefully chosen field parameters, namely the
peak Rabi frequency, the chirp rate and the detunings.
A generation of the desired states is expected to be ro-
bust. Thus, we were seeking an adiabatic passage type of
solutions. The roots to these solutions may be revealed
through the dressed state analysis, which also suggests
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fact that Vij is dependent on the positions of the atoms,
it can be changed by manipulating the optical lattice.
For a given Vij , we control the dynamics of a two-photon
excitation of the chain of atoms by laser pulses prepared
based on the developed control schemes to produce tran-
sitions that stir the multiparticle system into the desired
entangled state.

We justify the developed control schemes for the GHZ
and the W states by demonstrating their generation in
the framework of the exact time-dependent Schrödinger
solution and a calculation of the fidelity of each state
formation. The paper is arranged as follows. In Sec-
tions II and III we derive the single-particle and the
multi-particle Hamiltonian in the field-interaction rep-
resentation; in Section IV we discuss the quantum con-
trol methodology on an example of a three-atomic chain,
demonstrate its deduction from an effective two-level ap-
proximation and introduce the entanglement fidelity for
the GHZ and the W state; Section V is devoted to a
numerical verification of the control mechanisms of the
creation of the GHZ and the W states via fidelity as a
function of the chirp rate and the peak Rabi frequency;
Section VI summarizes findings.

II. THE HAMILTONIAN AND THE
EQUATIONS OF MOTION FOR A SINGLE

ATOM

We derive the Hamiltonian that describes the inter-
action of atoms in the laser field by first deriving the
Hamiltonian of a single three-level atom and working up
to the entangled triatomic state.

For an atom modeled by a three-level ladder system,
shown in Fig(1), the field interaction Hamiltonian H de-
scribing the interaction of the atom with two external
fields reads

FIG. 1. A schematic of a three-level atom where |g〉 is the
ground state energy, |e〉 is the intermediate state energy, |r〉
is the excited state energy, the Ω1(t) is the pump Rabi fre-
quency and the Ω2(t) is the Stokes Rabi frequency, and the
frequencies are time-dependent in a general case.
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frequencies are best defined by their relation to the one-
photon detuning ∆ and the two-photon detuning δ:
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fact that Vij is dependent on the positions of the atoms,
it can be changed by manipulating the optical lattice.
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Ȧr(t)


 =

�
2

[
ωg Ω1(t) 0

Ω1(t) ωe Ω2(t)
0 Ω2(t) ωr

][
Ag(t)
Ae(t)
Ar(t)

]
. (7)

Expanding the Schrödinger Eq.(7), we obtain the dif-
ferential equations for probability amplitudes to see the
evolution of the ladder system in the Schrödinger repre-
sentation:
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formation. The paper is arranged as follows. In Sec-
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trol methodology on an example of a three-atomic chain,
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the GHZ and the W state; Section V is devoted to a
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Ȧr(t)


 =

�
2

[
ωg Ω1(t) 0

Ω1(t) ωe Ω2(t)
0 Ω2(t) ωr

][
Ag(t)
Ae(t)
Ar(t)

]
. (7)

Expanding the Schrödinger Eq.(7), we obtain the dif-
ferential equations for probability amplitudes to see the
evolution of the ladder system in the Schrödinger repre-
sentation:
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Ae(t)|e〉+Ar(t)|r〉, where Ag(t), Ae(t), and Ar(t) are the
probability amplitudes for the ground, the intermediate,
and the excited state respectively in the Schrödinger rep-
resentation. The Schrödinger equation for this system
using the Hamiltonian in Eq. (4) reads

i�



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Ȧg(t)
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fact that Vij is dependent on the positions of the atoms,
it can be changed by manipulating the optical lattice.
For a given Vij , we control the dynamics of a two-photon
excitation of the chain of atoms by laser pulses prepared
based on the developed control schemes to produce tran-
sitions that stir the multiparticle system into the desired
entangled state.

We justify the developed control schemes for the GHZ
and the W states by demonstrating their generation in
the framework of the exact time-dependent Schrödinger
solution and a calculation of the fidelity of each state
formation. The paper is arranged as follows. In Sec-
tions II and III we derive the single-particle and the
multi-particle Hamiltonian in the field-interaction rep-
resentation; in Section IV we discuss the quantum con-
trol methodology on an example of a three-atomic chain,
demonstrate its deduction from an effective two-level ap-
proximation and introduce the entanglement fidelity for
the GHZ and the W state; Section V is devoted to a
numerical verification of the control mechanisms of the
creation of the GHZ and the W states via fidelity as a
function of the chirp rate and the peak Rabi frequency;
Section VI summarizes findings.
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For an atom modeled by a three-level ladder system,
shown in Fig(1), the field interaction Hamiltonian H de-
scribing the interaction of the atom with two external
fields reads
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are the applied pump and Stokes fields frequency. These
frequencies are best defined by their relation to the one-
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iȦg(t) =
wg

2
Ag +

Ω10(t)

2
(e

iωpt+
iα1t

2

2 + e
−iωpt−

iα1t
2

2 )Ae
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For a given Vij , we control the dynamics of a two-photon
excitation of the chain of atoms by laser pulses prepared
based on the developed control schemes to produce tran-
sitions that stir the multiparticle system into the desired
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We justify the developed control schemes for the GHZ
and the W states by demonstrating their generation in
the framework of the exact time-dependent Schrödinger
solution and a calculation of the fidelity of each state
formation. The paper is arranged as follows. In Sec-
tions II and III we derive the single-particle and the
multi-particle Hamiltonian in the field-interaction rep-
resentation; in Section IV we discuss the quantum con-
trol methodology on an example of a three-atomic chain,
demonstrate its deduction from an effective two-level ap-
proximation and introduce the entanglement fidelity for
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numerical verification of the control mechanisms of the
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function of the chirp rate and the peak Rabi frequency;
Section VI summarizes findings.

II. THE HAMILTONIAN AND THE
EQUATIONS OF MOTION FOR A SINGLE

ATOM

We derive the Hamiltonian that describes the inter-
action of atoms in the laser field by first deriving the
Hamiltonian of a single three-level atom and working up
to the entangled triatomic state.

For an atom modeled by a three-level ladder system,
shown in Fig(1), the field interaction Hamiltonian H de-
scribing the interaction of the atom with two external
fields reads

FIG. 1. A schematic of a three-level atom where |g〉 is the
ground state energy, |e〉 is the intermediate state energy, |r〉
is the excited state energy, the Ω1(t) is the pump Rabi fre-
quency and the Ω2(t) is the Stokes Rabi frequency, and the
frequencies are time-dependent in a general case.

H =
�
2




ωg Ω1(t) 0
Ω1(t) ωe Ω2(t)
0 Ω2(t) ωr


 . (4)

Here Ω1(t) =
−µegE1(t)

�
and Ω2(t) =

−µreE2(t)

�
are

the Rabi frequencies, and E1(t) and E2(t) are the laser
pulses that couple the ground to the intermediate state,
|g〉 → |e〉, and the intermediate to the excited state,
|e〉 → |r〉, respectively; µij is the transition dipole mo-
ment matrix element on a respective transition. These
fields are linearly chirped and can be written as

E1(t) =
E10(t)

2
(e

iωpt+
iα1t

2

2 + e
−iωpt−

iα1t
2

2 )

E2(t) =
E20(t)

2
(e

iωst+
iα2t

2

2 + e
−iωst−

iα2t
2

2 ), (5)

where α1 and α2 are linear chirp parameters, ωp and ωs

are the applied pump and Stokes fields frequency. These
frequencies are best defined by their relation to the one-
photon detuning ∆ and the two-photon detuning δ:

∆ = ωe − ωp, δ = ωr − (ωp + ωs). (6)

We define the wave function of the three-level lad-
der system in the Dirac notation as |Ψ〉 = Ag(t)|g〉 +
Ae(t)|e〉+Ar(t)|r〉, where Ag(t), Ae(t), and Ar(t) are the
probability amplitudes for the ground, the intermediate,
and the excited state respectively in the Schrödinger rep-
resentation. The Schrödinger equation for this system
using the Hamiltonian in Eq. (4) reads

i�



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For a given Vij , we control the dynamics of a two-photon
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In order to make probability amplitudes time indepen-
dent in the absence of the external fields, we move the
system into the frame rotating with the fields by defining

Ag(t) = ag(t)

Ae(t) = ae(t)e
−iωpt−

iα1t
2

2

Ar(t) = ar(t)e
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iα1t
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2
−iωst−

iα2t
2

2 , (9)

where ag(t), ae(t) and ar(t) are the time-depepndent
probability amplitudes of the ground, the intermediate,
and the excited state respectively in the field interaction
representation. This change of representations aids in
revealing the mechanisms of light-matter interaction and
the quantum control strategy.

By substituting Eqs.(9) into Eqs.(8), taking derivatives
and applying the rotating wave approximation we arrive
at
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Applying Eq.(6) simplifies further this set of differen-
tial equations
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We can insert one additional simplification by stating the
ground state energy wg = 0. Having now arrived at our
goal we write the Hamiltonian for a single atom as

H =
1

2




0 Ω10(t) 0
Ω10(t) ∆− α1t Ω20(t)

0 Ω20(t) δ − (α1 + α2)t


 . (12)

At this point we could use the above Hamiltonian to
explore the population dynamics of a single atom in the
field interaction representation. However, our next goal
is to construct a collective spin Hamiltonian. In the next
section, we will create such a Hamiltonian for a chain of
three Rb atoms in a linear optical trap; we will refer to
the diagonal elements of the single atom Hamiltonian in
Eq.(12) as

w1 = 0, w2 = ∆− α1t, w3 = δ − (α1 + α2)t. (13)

III. THE COLLECTIVE FIELD-INTERACTION
HAMILTONIAN FOR A THREE-ATOMIC CHAIN

We apply the knowledge of the single atom Hamilto-
nian to create the Hamiltonian of a series of three inter-
acting atoms trapped in a periodic, one-dimensional op-
tical lattice and interacting via long-range interactions.
These atoms are described by a model of three, three-
level ladder subsystems interacting via the upper state,
shown in Fig.(2), by the van der Waals forces.

FIG. 2. The scheme of a series of three interacting atoms.

Such system is represented by a wave function |Ψ(t)〉 =∑
αi

Aαi(t)|α1α2α3〉 in the basis of collective states |ijk〉

where i, j, and k represent the energy level of the first, the
second and the third atom respectively. The dimension
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to 27 for the three-atomic configuration. Twelve different
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but since the Hamiltonian is Hermitian we only need to
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The diagonal matrix elements of this Hamiltonian are de-
termined from Eqs.(12,13) depending on what states are
present in the respective basis function, e.g., for the |reg〉,
the diagonal element is the bare state energy equal to
w2 +w3 in the field interaction representation, (here, w1

would also be present, but it has a value of zero). There
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in the same substate, such as, e.g., |rgg〉 = |grg〉 = |ggr〉
are all having energy w3 as shown in Fig. (3). The ex-
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iȧg =
wg

2
ag +

Ω10(t)

2
ae
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iȧr =
Ω20(t)

2
ae +

1

2
(δ − (α1 + α2)t)ar. (11)

We can insert one additional simplification by stating the
ground state energy wg = 0. Having now arrived at our
goal we write the Hamiltonian for a single atom as

H =
1

2




0 Ω10(t) 0
Ω10(t) ∆− α1t Ω20(t)

0 Ω20(t) δ − (α1 + α2)t


 . (12)

At this point we could use the above Hamiltonian to
explore the population dynamics of a single atom in the
field interaction representation. However, our next goal
is to construct a collective spin Hamiltonian. In the next
section, we will create such a Hamiltonian for a chain of
three Rb atoms in a linear optical trap; we will refer to
the diagonal elements of the single atom Hamiltonian in
Eq.(12) as

w1 = 0, w2 = ∆− α1t, w3 = δ − (α1 + α2)t. (13)
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tical lattice and interacting via long-range interactions.
These atoms are described by a model of three, three-
level ladder subsystems interacting via the upper state,
shown in Fig.(2), by the van der Waals forces.
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Such system is represented by a wave function |Ψ(t)〉 =∑
αi

Aαi(t)|α1α2α3〉 in the basis of collective states |ijk〉

where i, j, and k represent the energy level of the first, the
second and the third atom respectively. The dimension
of the collective matrix Hamiltonian is 3N and is equal
to 27 for the three-atomic configuration. Twelve different
cases leading to non-zero off-diagonal matrix elements of
the collective field-interaction Hamiltonian are present
but since the Hamiltonian is Hermitian we only need to
explain the six cases in the upper diagonals. These cases
read as

〈ijg|eji〉 = Ω10(t)

〈igk|kei〉 = Ω10(t)

〈gjk|kje〉 = Ω10(t)

〈ije|rji〉 = Ω20(t)

〈iek|kri〉 = Ω20(t)

〈ejk|kjr〉 = Ω20(t).

The diagonal matrix elements of this Hamiltonian are de-
termined from Eqs.(12,13) depending on what states are
present in the respective basis function, e.g., for the |reg〉,
the diagonal element is the bare state energy equal to
w2 +w3 in the field interaction representation, (here, w1

would also be present, but it has a value of zero). There
exist seven cases of degenerate states when two atoms are
in the same substate, such as, e.g., |rgg〉 = |grg〉 = |ggr〉
are all having energy w3 as shown in Fig. (3). The ex-
emption to this is when two atoms are in the Rydberg
state. Then an appropriate Rydberg-Rydberg interac-
tion must also be accounted for, e.g., for the basis state
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termined from Eqs.(12,13) depending on what states are
present in the respective basis function, e.g., for the |reg〉,
the diagonal element is the bare state energy equal to
w2 +w3 in the field interaction representation, (here, w1

would also be present, but it has a value of zero). There
exist seven cases of degenerate states when two atoms are
in the same substate, such as, e.g., |rgg〉 = |grg〉 = |ggr〉
are all having energy w3 as shown in Fig. (3). The ex-
emption to this is when two atoms are in the Rydberg
state. Then an appropriate Rydberg-Rydberg interac-
tion must also be accounted for, e.g., for the basis state

3

In order to make probability amplitudes time indepen-
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system into the frame rotating with the fields by defining
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2

2

Ar(t) = ar(t)e
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iα1t
2

2
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iα2t
2

2 , (9)

where ag(t), ae(t) and ar(t) are the time-depepndent
probability amplitudes of the ground, the intermediate,
and the excited state respectively in the field interaction
representation. This change of representations aids in
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Applying Eq.(6) simplifies further this set of differen-
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

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
 . (12)

At this point we could use the above Hamiltonian to
explore the population dynamics of a single atom in the
field interaction representation. However, our next goal
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the diagonal elements of the single atom Hamiltonian in
Eq.(12) as
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III. THE COLLECTIVE FIELD-INTERACTION
HAMILTONIAN FOR A THREE-ATOMIC CHAIN

We apply the knowledge of the single atom Hamilto-
nian to create the Hamiltonian of a series of three inter-
acting atoms trapped in a periodic, one-dimensional op-
tical lattice and interacting via long-range interactions.
These atoms are described by a model of three, three-
level ladder subsystems interacting via the upper state,
shown in Fig.(2), by the van der Waals forces.

FIG. 2. The scheme of a series of three interacting atoms.
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but since the Hamiltonian is Hermitian we only need to
explain the six cases in the upper diagonals. These cases
read as

〈ijg|eji〉 = Ω10(t)

〈igk|kei〉 = Ω10(t)

〈gjk|kje〉 = Ω10(t)

〈ije|rji〉 = Ω20(t)

〈iek|kri〉 = Ω20(t)

〈ejk|kjr〉 = Ω20(t).

The diagonal matrix elements of this Hamiltonian are de-
termined from Eqs.(12,13) depending on what states are
present in the respective basis function, e.g., for the |reg〉,
the diagonal element is the bare state energy equal to
w2 +w3 in the field interaction representation, (here, w1

would also be present, but it has a value of zero). There
exist seven cases of degenerate states when two atoms are
in the same substate, such as, e.g., |rgg〉 = |grg〉 = |ggr〉
are all having energy w3 as shown in Fig. (3). The ex-
emption to this is when two atoms are in the Rydberg
state. Then an appropriate Rydberg-Rydberg interac-
tion must also be accounted for, e.g., for the basis state
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|rrg〉 the diagonal matrix element is 2w3+2V23. The co-
efficient of 2 in front of the Rydberg-Rydberg interaction
comes as a result of the force on atom three from atom
two, V23, and vice versa. Since the Rydberg-Rydberg
matrix is also Hermitian, V23 = V32. The energy of state
|rgr〉 is different though, and equal to 2w3 + 2V13.
Then, the truncated matrix of the collective field-

interaction Hamiltonian H may be written as



0 Ω1 0 . . . 0 . . . 0
Ω1 w2 Ω2 . . . 0 . . . 0
0 Ω2 w3 . . . 0 . . . 0
...

...
...

. . .
... . . . 0

0 0 0 . . . 2w3 + 2V23 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 3w3 + 2Vmax




(14)

Because of a degeneracy of certain states there are
twelve unique energies dependent on the field parame-
ters. They read as follows

Eggg
1 (t) = 3ω1

Egeg,gge,egg
2 (t) = 2ω1 + ω2

Egee,eeg,ege
3 (t) = ω1 + 2ω2

Eeee
4 (t) = 3ω2

Egrg,rgg,ggr
5 (t) = 2ω1 + ω3

Eger,erg,rge,gre,egr,reg
6 (t) = ω1 + ω2 + ω3

Eere,eer,ree
7 (t) = 2ω2 + ω3

Egrr,rrg
8 (t) = ω1 + 2ω3 + 2V32

Ergr
9 (t) = ω1 + 2ω3 + 2V31

Eerr,rre
10 (t) = ω2 + 2ω3 + 2V32

Erer
11 (t) = ω2 + 2ω3 + 2V31

Errr
12 (t) = 3ω3 + 2Vmax. (15)

Here ω1 = 0, ω2 = ∆ − α1(t − tc) and ω3 = δ − (α1 +
α2)(t− tc), and Vmax = V21 + V32 + V31.

IV. DRESSED STATE ANALYSIS AS A TOOL
TO DESIGN THE CONTROL SCHEME FOR A

GENERATION OF MULTIPARTICLE
COHERENT SUPERPOSITION STATES

We refer to the dressed state picture aiming at the in-
vestigation of the dynamics of the collective spin states
subject to the incident fields. Within the adiabatic ap-
proximation, we focus only one the first, the adiabatic
term in the Schrödinger equation written in the dressed
state basis

i�Ċd = HdCd − i�TṪ†Cd. (16)

Here Cd = TC and Hd = T†HT, Cd is the vector of the
probability amplitudes of dressed states, C is that of the

FIG. 3. Energy of the relevant bare states in the field in-
teraction representation as a function of time. Emphasized
here are state |ggg〉 shown in black and state |rrr〉 shown in
red dashes, these states are necessary for the formation of the
GHZ state. States that contain w2 can be surpressed by ma-
nipulating the one photon detuning ∆ and are not shown as
they never interact with state |ggg〉.

bare states in the field interaction representation, and T
is the unitary transformation matrix. For example, for
a two-level atomic system, which will be addressed later,
the unitary transformation matrix is T(t) = I cosΘ(t)−
iσyΘ(t), and

cosΘ(t) =
(
1/2(1 + δ(t)/

√
Ω2

eff (t) + δ2(t))
)1/2

sinΘ(t) =
(
1/2(1− δ(t)/

√
Ω2

eff (t) + δ2(t))
)1/2

,(17)

where Ωeff (t) is the Rabi frequency, which couples the
ground and the excited states. Our approach implies a
variation of the field parameters to tune to a specific dy-
namics path by manipulating the desired avoided cross-
ings of the energy of the bare states, which result in a
predetermined superposition state by the end of pulse
duration within adiabatic approximation. If there are
more than one dressed state involved at the very end in
order to have a desired superposition state, we conclude
that non-adiabatic contribution cannot be neglected and
overall the dynamics is non-adiabatic. Because out of
twelve energy-unique states only the ground state is field
independent and is initially populated, any kind of popu-
lation transfer is possible only through the avoided cross-
ings. According to the functional dependence of the en-
ergy of the states and aiming at achieving avoided cross-
ings with the ground state, the following conditions have
to be satisfied: i) The one-photon and two-photon de-
tunings ∆ and δ must be negative in sign so that they
give the starting negative values of the collective state
energies; ii) Chirp rates α1 and α2 have to be negative
so that the energy slope is positive and the energies of
all the states relevant for a creation of the GHZ and the
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IV. Dressed State Analysis as A Tool to Design the Con-
trol Scheme for A Generation of Multiparticle Coher-
ent Superposition States
We refer to the dressed state picture aiming at the investigation 
of the dynamics of the collective spin states subject to the inci-
dent fields. Within the adiabatic approximation, we focus only 
one the first, the adiabatic term in the Schrödinger equation writ-
ten in the dressed state basis

Figure 3: Energy of the relevant bare states in the field interac-
tion representation as a function of time. Emphasized here are 
state |ggg⟩  shown in black and state |rrr⟩  shown in red dashes, 
these states are necessary for the formation of the GHZ state. 
States that contain ω2 can be suppressed by manipulating the 
one photon detuning Δ and are not shown as they never interact 
with state |ggg⟩ .

Here Cd = TC and Hd = T† HT, Cd is the vector of the probabili-
ty amplitudes of dressed states, C is that of the bare states in the 
field interaction representation, and T is the unitary transforma-
tion matrix. For example, for a two-level atomic system, which 
will be addressed later, and the unitary transformation matrix is 
T(t) = I cos Θ(t) − iσyΘ(t), and

where Ωeff (t) is the Rabi frequency, which couples the ground 
and the excited states. Our approach implies a variation of the 
field parameters to tune to a specific dynamics path by manip-
ulating the desired avoided crossings of the energy of the bare 
states, which result in a predetermined superposition state by the 
end of pulse duration within adiabatic approximation. If there 
are more than one dressed state involved at the very end in order 
to have a desired superposition state, we conclude that non-adi-
abatic contribution cannot be neglected and overall, the dynam-
ics is non-adiabatic. Because out of twelve energy-unique states 
only the ground state is field independent and is initially populat-
ed, any kind of population transfer is possible only through the 
avoided crossings. 

According to the functional dependence of the energy of the 
states and aiming at achieving avoided crossings with the ground 
state, the following conditions have to be satisfied: 

i) The one-photon and two-photon detuning Δ and δ must be 
negative in sign so that they give the starting negative values of 
the collective state energies;

 ii) Chirp rates α1 and α2 have to be negative so that the energy 
slope is positive and the energies of all the states relevant for a 
creation of the GHZ and the W states will cross the zero energy 
of the initial state |ggg⟩;

iii) The detuning must satisfy ǀΔǀ ≫ ǀδǀ so, that the transitional 
states dependent on Δ are significantly shifted and do not reso-
nate with |ggg⟩ during the pulse duration. This effectively means 
that any bare state containing an ω2 parameter can be avoided 
while any state containing only ω3 terms will cross and interact 
with the initial state |ggg⟩.

To stir the population to a desired superposition state we use 
two, equally chirped pulses with α1 = α2 = α and completely 
overlapping Rabi frequencies Ω1(t) and Ω2(t) based on the con-
trol scheme developed for a deterministic excitation of a single 
atom to the Rydberg state [10]. To begin with, we analyse the 
qualitative behaviour of the bare states' energy depending on the 
choice of the field parameters. Figure (3) shows the time evolu-
tion of the energy of the collective bare states which depend on 
the two-photon detuning and the chirp rate and due to a proxim-
ity to the ground state energy (zero energy state) may contribute 
to the population dynamics.

The all-Rydberg state |rrr⟩ inherently evolves the fastest due to 
three times doubled chirp rate in the energy 3(δ-2α(t-tc))+2Vmax 
which provides the leading crossing with the ground state. Thus, 
the desired avoided crossing is formed, which is the first within 
the pulse temporal evolution and the only one needed for the for-
mation of the GHZ state. The time of the resonance, when two 
energy lines cross, is determined from the equality of the respec-
tive state’s energy. Immediately after this resonance, the chirp 
must be turned off to prevent further approach of the lagging 
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|rrg〉 the diagonal matrix element is 2w3+2V23. The co-
efficient of 2 in front of the Rydberg-Rydberg interaction
comes as a result of the force on atom three from atom
two, V23, and vice versa. Since the Rydberg-Rydberg
matrix is also Hermitian, V23 = V32. The energy of state
|rgr〉 is different though, and equal to 2w3 + 2V13.
Then, the truncated matrix of the collective field-

interaction Hamiltonian H may be written as



0 Ω1 0 . . . 0 . . . 0
Ω1 w2 Ω2 . . . 0 . . . 0
0 Ω2 w3 . . . 0 . . . 0
...

...
...

. . .
... . . . 0

0 0 0 . . . 2w3 + 2V23 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 3w3 + 2Vmax




(14)

Because of a degeneracy of certain states there are
twelve unique energies dependent on the field parame-
ters. They read as follows

Eggg
1 (t) = 3ω1

Egeg,gge,egg
2 (t) = 2ω1 + ω2

Egee,eeg,ege
3 (t) = ω1 + 2ω2

Eeee
4 (t) = 3ω2

Egrg,rgg,ggr
5 (t) = 2ω1 + ω3

Eger,erg,rge,gre,egr,reg
6 (t) = ω1 + ω2 + ω3

Eere,eer,ree
7 (t) = 2ω2 + ω3

Egrr,rrg
8 (t) = ω1 + 2ω3 + 2V32

Ergr
9 (t) = ω1 + 2ω3 + 2V31

Eerr,rre
10 (t) = ω2 + 2ω3 + 2V32

Erer
11 (t) = ω2 + 2ω3 + 2V31

Errr
12 (t) = 3ω3 + 2Vmax. (15)

Here ω1 = 0, ω2 = ∆ − α1(t − tc) and ω3 = δ − (α1 +
α2)(t− tc), and Vmax = V21 + V32 + V31.

IV. DRESSED STATE ANALYSIS AS A TOOL
TO DESIGN THE CONTROL SCHEME FOR A

GENERATION OF MULTIPARTICLE
COHERENT SUPERPOSITION STATES

We refer to the dressed state picture aiming at the in-
vestigation of the dynamics of the collective spin states
subject to the incident fields. Within the adiabatic ap-
proximation, we focus only one the first, the adiabatic
term in the Schrödinger equation written in the dressed
state basis

i�Ċd = HdCd − i�TṪ†Cd. (16)

Here Cd = TC and Hd = T†HT, Cd is the vector of the
probability amplitudes of dressed states, C is that of the

FIG. 3. Energy of the relevant bare states in the field in-
teraction representation as a function of time. Emphasized
here are state |ggg〉 shown in black and state |rrr〉 shown in
red dashes, these states are necessary for the formation of the
GHZ state. States that contain w2 can be surpressed by ma-
nipulating the one photon detuning ∆ and are not shown as
they never interact with state |ggg〉.

bare states in the field interaction representation, and T
is the unitary transformation matrix. For example, for
a two-level atomic system, which will be addressed later,
the unitary transformation matrix is T(t) = I cosΘ(t)−
iσyΘ(t), and

cosΘ(t) =
(
1/2(1 + δ(t)/

√
Ω2

eff (t) + δ2(t))
)1/2

sinΘ(t) =
(
1/2(1− δ(t)/

√
Ω2

eff (t) + δ2(t))
)1/2

,(17)

where Ωeff (t) is the Rabi frequency, which couples the
ground and the excited states. Our approach implies a
variation of the field parameters to tune to a specific dy-
namics path by manipulating the desired avoided cross-
ings of the energy of the bare states, which result in a
predetermined superposition state by the end of pulse
duration within adiabatic approximation. If there are
more than one dressed state involved at the very end in
order to have a desired superposition state, we conclude
that non-adiabatic contribution cannot be neglected and
overall the dynamics is non-adiabatic. Because out of
twelve energy-unique states only the ground state is field
independent and is initially populated, any kind of popu-
lation transfer is possible only through the avoided cross-
ings. According to the functional dependence of the en-
ergy of the states and aiming at achieving avoided cross-
ings with the ground state, the following conditions have
to be satisfied: i) The one-photon and two-photon de-
tunings ∆ and δ must be negative in sign so that they
give the starting negative values of the collective state
energies; ii) Chirp rates α1 and α2 have to be negative
so that the energy slope is positive and the energies of
all the states relevant for a creation of the GHZ and the
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|rrg〉 the diagonal matrix element is 2w3+2V23. The co-
efficient of 2 in front of the Rydberg-Rydberg interaction
comes as a result of the force on atom three from atom
two, V23, and vice versa. Since the Rydberg-Rydberg
matrix is also Hermitian, V23 = V32. The energy of state
|rgr〉 is different though, and equal to 2w3 + 2V13.
Then, the truncated matrix of the collective field-

interaction Hamiltonian H may be written as



0 Ω1 0 . . . 0 . . . 0
Ω1 w2 Ω2 . . . 0 . . . 0
0 Ω2 w3 . . . 0 . . . 0
...

...
...

. . .
... . . . 0

0 0 0 . . . 2w3 + 2V23 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 3w3 + 2Vmax
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Because of a degeneracy of certain states there are
twelve unique energies dependent on the field parame-
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FIG. 3. Energy of the relevant bare states in the field in-
teraction representation as a function of time. Emphasized
here are state |ggg〉 shown in black and state |rrr〉 shown in
red dashes, these states are necessary for the formation of the
GHZ state. States that contain w2 can be surpressed by ma-
nipulating the one photon detuning ∆ and are not shown as
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bare states in the field interaction representation, and T
is the unitary transformation matrix. For example, for
a two-level atomic system, which will be addressed later,
the unitary transformation matrix is T(t) = I cosΘ(t)−
iσyΘ(t), and
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)1/2

sinΘ(t) =
(
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where Ωeff (t) is the Rabi frequency, which couples the
ground and the excited states. Our approach implies a
variation of the field parameters to tune to a specific dy-
namics path by manipulating the desired avoided cross-
ings of the energy of the bare states, which result in a
predetermined superposition state by the end of pulse
duration within adiabatic approximation. If there are
more than one dressed state involved at the very end in
order to have a desired superposition state, we conclude
that non-adiabatic contribution cannot be neglected and
overall the dynamics is non-adiabatic. Because out of
twelve energy-unique states only the ground state is field
independent and is initially populated, any kind of popu-
lation transfer is possible only through the avoided cross-
ings. According to the functional dependence of the en-
ergy of the states and aiming at achieving avoided cross-
ings with the ground state, the following conditions have
to be satisfied: i) The one-photon and two-photon de-
tunings ∆ and δ must be negative in sign so that they
give the starting negative values of the collective state
energies; ii) Chirp rates α1 and α2 have to be negative
so that the energy slope is positive and the energies of
all the states relevant for a creation of the GHZ and the
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|rrg〉 the diagonal matrix element is 2w3+2V23. The co-
efficient of 2 in front of the Rydberg-Rydberg interaction
comes as a result of the force on atom three from atom
two, V23, and vice versa. Since the Rydberg-Rydberg
matrix is also Hermitian, V23 = V32. The energy of state
|rgr〉 is different though, and equal to 2w3 + 2V13.

Then, the truncated matrix of the collective field-
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GHZ state. States that contain w2 can be surpressed by ma-
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bare states in the field interaction representation, and T
is the unitary transformation matrix. For example, for
a two-level atomic system, which will be addressed later,
the unitary transformation matrix is T(t) = I cosΘ(t)−
iσyΘ(t), and
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where Ωeff (t) is the Rabi frequency, which couples the
ground and the excited states. Our approach implies a
variation of the field parameters to tune to a specific dy-
namics path by manipulating the desired avoided cross-
ings of the energy of the bare states, which result in a
predetermined superposition state by the end of pulse
duration within adiabatic approximation. If there are
more than one dressed state involved at the very end in
order to have a desired superposition state, we conclude
that non-adiabatic contribution cannot be neglected and
overall the dynamics is non-adiabatic. Because out of
twelve energy-unique states only the ground state is field
independent and is initially populated, any kind of popu-
lation transfer is possible only through the avoided cross-
ings. According to the functional dependence of the en-
ergy of the states and aiming at achieving avoided cross-
ings with the ground state, the following conditions have
to be satisfied: i) The one-photon and two-photon de-
tunings ∆ and δ must be negative in sign so that they
give the starting negative values of the collective state
energies; ii) Chirp rates α1 and α2 have to be negative
so that the energy slope is positive and the energies of
all the states relevant for a creation of the GHZ and the
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|rrg〉 the diagonal matrix element is 2w3+2V23. The co-
efficient of 2 in front of the Rydberg-Rydberg interaction
comes as a result of the force on atom three from atom
two, V23, and vice versa. Since the Rydberg-Rydberg
matrix is also Hermitian, V23 = V32. The energy of state
|rgr〉 is different though, and equal to 2w3 + 2V13.
Then, the truncated matrix of the collective field-

interaction Hamiltonian H may be written as


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Because of a degeneracy of certain states there are
twelve unique energies dependent on the field parame-
ters. They read as follows
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α2)(t− tc), and Vmax = V21 + V32 + V31.
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GENERATION OF MULTIPARTICLE
COHERENT SUPERPOSITION STATES

We refer to the dressed state picture aiming at the in-
vestigation of the dynamics of the collective spin states
subject to the incident fields. Within the adiabatic ap-
proximation, we focus only one the first, the adiabatic
term in the Schrödinger equation written in the dressed
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transitional states to the zero-energy state to prevent undesirable 
population transfer.

The time of the crossing is equal to tres = (δ/2+(V12+ V23 +V13)/3) 
/ α+tc. If 2(V12 +V23 +V13) = 3δ, the resonance occurs at the same 
time as the peak intensity of the field  tc. Owing to the fact that the 
desired avoided crossing occurs the earliest in the time evolution 
implies that the intermediate state manifold, which consists of 
the rest 25 states for the three-atomic case, is not involved into 
a generation of the GHZ state and may be eliminated adiabati-
cally within a semi-classical approach. Then adiabatic passage 
of a half of population to the all-Rydberg state is designed in 
the framework of an effective two-level system with the ground 
state being |ggg⟩ and the excited state being |rrr⟩. The effective 
Hamiltonian reads

Here the effective Rabi frequency is Ωeff (t) ~  Ω0
6
 /(Δ

2V3). Within 
this two-level model, we design adiabatic passage leading to a 
coherent superposition of two states, |ggg⟩  and |rrr⟩, with equal 
populations. We rotate this Hamiltonian Heff (t) in Equation (19) 
using unitary transformation matrix T and bring it to the diago-
nal form                                                The           is now written 
in the dressed state basis Cd. Aiming at creating the adiabatic 
passage condition, we assume adiabatic approximation with ne-
glecting the second term in Equation (16).

Then, the adiabatic transition from |ggg⟩ to |rrr⟩ state takes place 
with in a single dressed state; this state has lower energy           
.                                       and reads  

where                           is the pulse area. The details of the 
solution are presented in [11]. The coefficients are matrix ele-
ments of T(t), which read as defined above in Equation (17). 
The control scheme to create the equal population distribution 
between states implies α ≤ 0 for times t ≤ tc before the peak of 
the Gaussian pulse and α = 0 for t > tc till the end of the pulse 
duration. At the initial time t=0, it provides the value of cos Θ (0) 
= 1 and sin Θ (0) = 0; meaning that the population is initially in 
the ground |ggg⟩ state. Then at t = tc, the probability amplitudes 
of two states change to become the same in magnitude: cos Θ 
(tc) =  1/√2 and sin Θ (tc) = 1/√2. At later times, t > tc, the chirp is 
set to zero, and the field remains in the resonance with the tran-
sition frequency of the system till the end of the pulse duration, 
therefore any changes of the population are suppressed, (the ap-
plied field changes only the global dynamical phase), preserving 
the created superposition state. Thus, at the end of the pulse the 
probability amplitudes of |ggg> and |rrr⟩ states are cos Θ(t∞) = 
1/√2 and sin Θ(t∞) = 1/√2, giving the maximum state coherence.

However, in contrast to the case of the GHZ state, for the W state 
formation, the magnitude of the chirp parameter is preserved till 
the end of the pulse as it is required in order to allow all rel-
evant, collective transitional states involved in forming the W 
state to populate by the end of the pulse. This can be observed in 
Figure (3), where state |rrr⟩ cross |ggg⟩ first, followed by states 
|rrg⟩  and |grr⟩ before finally  |rgr⟩ crosses. Among all collective 
states, we stir the evolution of states |ggg⟩ and  |rrr⟩ relevant for 
the GHZ state and, alternatively, the evolution of the |rrg⟩, |grr⟩ 
|rgr⟩ states relevant for the W state formation.

The entanglement fidelity function for the GHZ state is [12]

                                                                  )

For the W state, it reads

The entanglement fidelity ranges from 1 to 0 and determines 
quantum correlations between the substates in the superposition.

V. Numerical Verification of the Quantum Control 
Schemes to Generate the Multipartite GHZ and the W 
States
We justify the developed quantum control methodology by ap-
plying it in a numerical exact solution of the time-dependent 
Schrödinger equation using the multiparticle field-interaction 
Hamiltonian in Equation (14) to generate the GHZ and the W 
state. The maximum fidelity of the GHZ state is achieved for 
the two-photon detuning δ = -2/3Vmax. However, the adiabatic 
approximation is not valid for the W state, because the dynam-
ical process that stirs the three-atomic system to the required 
superposition state is inherently non-adiabatic with three dressed 
states participating at different stages of the pulse time evolu-
tion. Therefore, the maximum fidelity is found from the exact 
solution of the time dependent Schrödinger equation, which ac-
counts for the non-adiabatic effects.

The exact solution of the time-dependent Schrödinger equation 
was performed numerically using the Runge-Kutta method and 
a numerical method based on multipoint Hermit interpolating 
polynomials [13, 14]. In calculations to generate the GHZ state 
the following values of the parameters of the fields were used: 
the pulse duration is τ0 = 1µs, the one-photon detuning is Δ= 
-1.5 GHz, and the peak Rabi frequency of both applied pulses 
is Ω01(2), it changes in the range from 0 to 300 MHz, the chirp 
rate is α1,2, it changes in the range from 0 to -600 MHz / µs, and 
the two-photon detuning is δ = -2/3Vmax, which has two values, 
δ = -100MHz for V31 =V/2 and δ = -80.63MHz for V31 = V/26 
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W states will cross the zero energy of the initial state
|ggg〉. iii) The detuning must satisfy |∆| � |δ| so that
the transitional states dependent on ∆ are significantly
shifted and do not resonate with |ggg〉 during the pulse
duration. This effectively means that any bare state con-
taining an w2 parameter can be avoided while any state
containing only w3 terms will cross and interact with the
initial state |ggg〉.

To stir the population to a desired superposition state
we use two, equally chirped pulses with α1 = α2 = α
and completely overlapping Rabi frequencies Ω1(t) and
Ω2(t) based on the control scheme developed for a de-
terministic excitation of a single atom to the Rydberg
state [10]. To begin with, we analyze the qualitative be-
havior of the bare states energy depending on the choice
of the field parameters. Fig.(3) shows the time evolu-
tion of the energy of the collective bare states which
depend on the two-photon detuning and the chirp rate
and due to a proximity to the ground state energy (zero
energy state) may contribute to the population dynam-
ics. The all-Rydberg state |rrr〉 inherently evolves the
fastest due to three times doubled chirp rate in the en-
ergy 3(δ−2α(t− tc)+2Vmax, which provides the leading
crossing with the ground state. Thus the desired avoided
crossing is formed, which is the first within the pulse tem-
poral evolution and the only one needed for the forma-
tion of the GHZ state. The time of the resonance, when
two energy lines cross, is determined from the equality of
the respective states energy. Immediately after this res-
onance, the chirp must be turned off to prevent further
approach of the lagging transitional states to the zero
energy state to prevent undesirable population transfer.
The time of the crossing is equal to tres = (δ/2+(V12+

V23 + V13)/3)/α+ tc. If 2(V12 + V23 + V13) = 3δ, the res-
onance occurs at the same time as the peak intensity of
the field tc. Owing to the fact that the desired avoided
crossing occurs the earliest in the time evolution implies
that the intermediate state manifold, which consists of
the rest 25 states for the three-atomic case, is not in-
volved into a generation of the GHZ state and may be
eliminated adiabatically within a semi-classical approach.
Then adiabatic passage of a half of population to the all-
Rydberg state is designed in the framework of an effective
two-level system with the ground state being |ggg〉 and
the excited state being |rrr〉. The effective Hamiltonian
reads

ȧggg = iΩeff (t)arrr (18)

ȧrrr = i6α(t− tc)arrr + iΩeff (t)aggg,

Heff (t) = �
(

0 −Ωeff (t)
−Ωeff (t) −6α(t− tc)

)
. (19)

Here the effective Rabi frequency is Ωeff (t) ∼
Ω6

0/(∆
2V 3). Within this two-level model, we design adi-

abatic passage leading to a coherent superposition of two

states, |ggg〉 and |rrr〉, with equal populations. We ro-
tate this Hamiltonian Heff (t) in Eq.(19) using unitary
transformation matrix T and bring it to the diagonal
form Ĥd(t) = T(t)Heff (t)T

†(t). The Ĥd(t) is now writ-
ten in the dressed state basis Cd. Aiming at creating
the adiabatic passage condition, we assume adiabatic ap-
proximation with neglecting the second term in Eq.(16).
Then, the adiabatic transition from |ggg〉 to |rrr〉 state
takes place within a single dressed state; this state

has lower energy EI = −�/2
√
Ω2

eff + δ(t)2 and reads

|Ψ(t)〉 = eiΛ(t)/2 (cosΘ(t)|ggg〉 − sinΘ(t)|rrr〉), where

Λ(t) =
∫ t

0
Ω(t′)dt′ is the pulse area. The details of the

solution are presented in [11]. The coefficients are ma-
trix elements of T(t), which read as defined above in
Eq.(17). The control scheme to create the equal popula-
tion distribution between states implies α ≤ 0 for times
t ≤ tc before the peak of the Gaussian pulse and α = 0
for t > tc till the end of the pulse duration. At the ini-
tial time t=0, it provides the value of cosΘ(0) = 1, and
sinΘ(0) = 0, meaning that the population is initially in
the ground |ggg〉 state. Then at t = tc, the probabil-
ity amplitudes of two states change to become the same
in magnitude: cosΘ(tc) = 1√

2
and sinΘ(tc) = 1√

2
. At

later times, t > tc, the chirp is set to zero, and the field
remains in the resonance with the transition frequency
of the system till the end of the pulse duration, there-
fore any changes of the population are suppressed, (the
applied field changes only the global dynamical phase),
preserving the created superposition state. Thus, at the
end of the pulse the probability amplitudes of |ggg〉 and
|rrr〉 states are cosΘ(t∞) = 1√

2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
(20)
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2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
(20)

5

W states will cross the zero energy of the initial state
|ggg〉. iii) The detuning must satisfy |∆| � |δ| so that
the transitional states dependent on ∆ are significantly
shifted and do not resonate with |ggg〉 during the pulse
duration. This effectively means that any bare state con-
taining an w2 parameter can be avoided while any state
containing only w3 terms will cross and interact with the
initial state |ggg〉.

To stir the population to a desired superposition state
we use two, equally chirped pulses with α1 = α2 = α
and completely overlapping Rabi frequencies Ω1(t) and
Ω2(t) based on the control scheme developed for a de-
terministic excitation of a single atom to the Rydberg
state [10]. To begin with, we analyze the qualitative be-
havior of the bare states energy depending on the choice
of the field parameters. Fig.(3) shows the time evolu-
tion of the energy of the collective bare states which
depend on the two-photon detuning and the chirp rate
and due to a proximity to the ground state energy (zero
energy state) may contribute to the population dynam-
ics. The all-Rydberg state |rrr〉 inherently evolves the
fastest due to three times doubled chirp rate in the en-
ergy 3(δ−2α(t− tc)+2Vmax, which provides the leading
crossing with the ground state. Thus the desired avoided
crossing is formed, which is the first within the pulse tem-
poral evolution and the only one needed for the forma-
tion of the GHZ state. The time of the resonance, when
two energy lines cross, is determined from the equality of
the respective states energy. Immediately after this res-
onance, the chirp must be turned off to prevent further
approach of the lagging transitional states to the zero
energy state to prevent undesirable population transfer.

The time of the crossing is equal to tres = (δ/2+(V12+
V23 + V13)/3)/α+ tc. If 2(V12 + V23 + V13) = 3δ, the res-
onance occurs at the same time as the peak intensity of
the field tc. Owing to the fact that the desired avoided
crossing occurs the earliest in the time evolution implies
that the intermediate state manifold, which consists of
the rest 25 states for the three-atomic case, is not in-
volved into a generation of the GHZ state and may be
eliminated adiabatically within a semi-classical approach.
Then adiabatic passage of a half of population to the all-
Rydberg state is designed in the framework of an effective
two-level system with the ground state being |ggg〉 and
the excited state being |rrr〉. The effective Hamiltonian
reads

ȧggg = iΩeff (t)arrr (18)

ȧrrr = i6α(t− tc)arrr + iΩeff (t)aggg,

Heff (t) = �
(

0 −Ωeff (t)
−Ωeff (t) −6α(t− tc)

)
. (19)

Here the effective Rabi frequency is Ωeff (t) ∼
Ω6

0/(∆
2V 3). Within this two-level model, we design adi-

abatic passage leading to a coherent superposition of two

states, |ggg〉 and |rrr〉, with equal populations. We ro-
tate this Hamiltonian Heff (t) in Eq.(19) using unitary
transformation matrix T and bring it to the diagonal
form Ĥd(t) = T(t)Heff (t)T

†(t). The Ĥd(t) is now writ-
ten in the dressed state basis Cd. Aiming at creating
the adiabatic passage condition, we assume adiabatic ap-
proximation with neglecting the second term in Eq.(16).
Then, the adiabatic transition from |ggg〉 to |rrr〉 state
takes place within a single dressed state; this state

has lower energy EI = −�/2
√

Ω2
eff + δ(t)2 and reads

|Ψ(t)〉 = eiΛ(t)/2 (cosΘ(t)|ggg〉 − sinΘ(t)|rrr〉), where

Λ(t) =
∫ t

0
Ω(t′)dt′ is the pulse area. The details of the

solution are presented in [11]. The coefficients are ma-
trix elements of T(t), which read as defined above in
Eq.(17). The control scheme to create the equal popula-
tion distribution between states implies α ≤ 0 for times
t ≤ tc before the peak of the Gaussian pulse and α = 0
for t > tc till the end of the pulse duration. At the ini-
tial time t=0, it provides the value of cosΘ(0) = 1, and
sinΘ(0) = 0, meaning that the population is initially in
the ground |ggg〉 state. Then at t = tc, the probabil-
ity amplitudes of two states change to become the same
in magnitude: cosΘ(tc) = 1√

2
and sinΘ(tc) = 1√

2
. At

later times, t > tc, the chirp is set to zero, and the field
remains in the resonance with the transition frequency
of the system till the end of the pulse duration, there-
fore any changes of the population are suppressed, (the
applied field changes only the global dynamical phase),
preserving the created superposition state. Thus, at the
end of the pulse the probability amplitudes of |ggg〉 and
|rrr〉 states are cosΘ(t∞) = 1√

2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
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5

W states will cross the zero energy of the initial state
|ggg〉. iii) The detuning must satisfy |∆| � |δ| so that
the transitional states dependent on ∆ are significantly
shifted and do not resonate with |ggg〉 during the pulse
duration. This effectively means that any bare state con-
taining an w2 parameter can be avoided while any state
containing only w3 terms will cross and interact with the
initial state |ggg〉.

To stir the population to a desired superposition state
we use two, equally chirped pulses with α1 = α2 = α
and completely overlapping Rabi frequencies Ω1(t) and
Ω2(t) based on the control scheme developed for a de-
terministic excitation of a single atom to the Rydberg
state [10]. To begin with, we analyze the qualitative be-
havior of the bare states energy depending on the choice
of the field parameters. Fig.(3) shows the time evolu-
tion of the energy of the collective bare states which
depend on the two-photon detuning and the chirp rate
and due to a proximity to the ground state energy (zero
energy state) may contribute to the population dynam-
ics. The all-Rydberg state |rrr〉 inherently evolves the
fastest due to three times doubled chirp rate in the en-
ergy 3(δ−2α(t− tc)+2Vmax, which provides the leading
crossing with the ground state. Thus the desired avoided
crossing is formed, which is the first within the pulse tem-
poral evolution and the only one needed for the forma-
tion of the GHZ state. The time of the resonance, when
two energy lines cross, is determined from the equality of
the respective states energy. Immediately after this res-
onance, the chirp must be turned off to prevent further
approach of the lagging transitional states to the zero
energy state to prevent undesirable population transfer.
The time of the crossing is equal to tres = (δ/2+(V12+

V23 + V13)/3)/α+ tc. If 2(V12 + V23 + V13) = 3δ, the res-
onance occurs at the same time as the peak intensity of
the field tc. Owing to the fact that the desired avoided
crossing occurs the earliest in the time evolution implies
that the intermediate state manifold, which consists of
the rest 25 states for the three-atomic case, is not in-
volved into a generation of the GHZ state and may be
eliminated adiabatically within a semi-classical approach.
Then adiabatic passage of a half of population to the all-
Rydberg state is designed in the framework of an effective
two-level system with the ground state being |ggg〉 and
the excited state being |rrr〉. The effective Hamiltonian
reads

ȧggg = iΩeff (t)arrr (18)

ȧrrr = i6α(t− tc)arrr + iΩeff (t)aggg,

Heff (t) = �
(

0 −Ωeff (t)
−Ωeff (t) −6α(t− tc)

)
. (19)

Here the effective Rabi frequency is Ωeff (t) ∼
Ω6

0/(∆
2V 3). Within this two-level model, we design adi-

abatic passage leading to a coherent superposition of two

states, |ggg〉 and |rrr〉, with equal populations. We ro-
tate this Hamiltonian Heff (t) in Eq.(19) using unitary
transformation matrix T and bring it to the diagonal
form Ĥd(t) = T(t)Heff (t)T

†(t). The Ĥd(t) is now writ-
ten in the dressed state basis Cd. Aiming at creating
the adiabatic passage condition, we assume adiabatic ap-
proximation with neglecting the second term in Eq.(16).
Then, the adiabatic transition from |ggg〉 to |rrr〉 state
takes place within a single dressed state; this state

has lower energy EI = −�/2
√

Ω2
eff + δ(t)2 and reads

|Ψ(t)〉 = eiΛ(t)/2 (cosΘ(t)|ggg〉 − sinΘ(t)|rrr〉), where

Λ(t) =
∫ t

0
Ω(t′)dt′ is the pulse area. The details of the

solution are presented in [11]. The coefficients are ma-
trix elements of T(t), which read as defined above in
Eq.(17). The control scheme to create the equal popula-
tion distribution between states implies α ≤ 0 for times
t ≤ tc before the peak of the Gaussian pulse and α = 0
for t > tc till the end of the pulse duration. At the ini-
tial time t=0, it provides the value of cosΘ(0) = 1, and
sinΘ(0) = 0, meaning that the population is initially in
the ground |ggg〉 state. Then at t = tc, the probabil-
ity amplitudes of two states change to become the same
in magnitude: cosΘ(tc) = 1√

2
and sinΘ(tc) = 1√

2
. At

later times, t > tc, the chirp is set to zero, and the field
remains in the resonance with the transition frequency
of the system till the end of the pulse duration, there-
fore any changes of the population are suppressed, (the
applied field changes only the global dynamical phase),
preserving the created superposition state. Thus, at the
end of the pulse the probability amplitudes of |ggg〉 and
|rrr〉 states are cosΘ(t∞) = 1√

2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
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5

W states will cross the zero energy of the initial state
|ggg〉. iii) The detuning must satisfy |∆| � |δ| so that
the transitional states dependent on ∆ are significantly
shifted and do not resonate with |ggg〉 during the pulse
duration. This effectively means that any bare state con-
taining an w2 parameter can be avoided while any state
containing only w3 terms will cross and interact with the
initial state |ggg〉.

To stir the population to a desired superposition state
we use two, equally chirped pulses with α1 = α2 = α
and completely overlapping Rabi frequencies Ω1(t) and
Ω2(t) based on the control scheme developed for a de-
terministic excitation of a single atom to the Rydberg
state [10]. To begin with, we analyze the qualitative be-
havior of the bare states energy depending on the choice
of the field parameters. Fig.(3) shows the time evolu-
tion of the energy of the collective bare states which
depend on the two-photon detuning and the chirp rate
and due to a proximity to the ground state energy (zero
energy state) may contribute to the population dynam-
ics. The all-Rydberg state |rrr〉 inherently evolves the
fastest due to three times doubled chirp rate in the en-
ergy 3(δ−2α(t− tc)+2Vmax, which provides the leading
crossing with the ground state. Thus the desired avoided
crossing is formed, which is the first within the pulse tem-
poral evolution and the only one needed for the forma-
tion of the GHZ state. The time of the resonance, when
two energy lines cross, is determined from the equality of
the respective states energy. Immediately after this res-
onance, the chirp must be turned off to prevent further
approach of the lagging transitional states to the zero
energy state to prevent undesirable population transfer.
The time of the crossing is equal to tres = (δ/2+(V12+

V23 + V13)/3)/α+ tc. If 2(V12 + V23 + V13) = 3δ, the res-
onance occurs at the same time as the peak intensity of
the field tc. Owing to the fact that the desired avoided
crossing occurs the earliest in the time evolution implies
that the intermediate state manifold, which consists of
the rest 25 states for the three-atomic case, is not in-
volved into a generation of the GHZ state and may be
eliminated adiabatically within a semi-classical approach.
Then adiabatic passage of a half of population to the all-
Rydberg state is designed in the framework of an effective
two-level system with the ground state being |ggg〉 and
the excited state being |rrr〉. The effective Hamiltonian
reads

ȧggg = iΩeff (t)arrr (18)

ȧrrr = i6α(t− tc)arrr + iΩeff (t)aggg,

Heff (t) = �
(

0 −Ωeff (t)
−Ωeff (t) −6α(t− tc)

)
. (19)

Here the effective Rabi frequency is Ωeff (t) ∼
Ω6

0/(∆
2V 3). Within this two-level model, we design adi-

abatic passage leading to a coherent superposition of two

states, |ggg〉 and |rrr〉, with equal populations. We ro-
tate this Hamiltonian Heff (t) in Eq.(19) using unitary
transformation matrix T and bring it to the diagonal
form Ĥd(t) = T(t)Heff (t)T

†(t). The Ĥd(t) is now writ-
ten in the dressed state basis Cd. Aiming at creating
the adiabatic passage condition, we assume adiabatic ap-
proximation with neglecting the second term in Eq.(16).
Then, the adiabatic transition from |ggg〉 to |rrr〉 state
takes place within a single dressed state; this state

has lower energy EI = −�/2
√
Ω2

eff + δ(t)2 and reads

|Ψ(t)〉 = eiΛ(t)/2 (cosΘ(t)|ggg〉 − sinΘ(t)|rrr〉), where

Λ(t) =
∫ t

0
Ω(t′)dt′ is the pulse area. The details of the

solution are presented in [11]. The coefficients are ma-
trix elements of T(t), which read as defined above in
Eq.(17). The control scheme to create the equal popula-
tion distribution between states implies α ≤ 0 for times
t ≤ tc before the peak of the Gaussian pulse and α = 0
for t > tc till the end of the pulse duration. At the ini-
tial time t=0, it provides the value of cosΘ(0) = 1, and
sinΘ(0) = 0, meaning that the population is initially in
the ground |ggg〉 state. Then at t = tc, the probabil-
ity amplitudes of two states change to become the same
in magnitude: cosΘ(tc) = 1√

2
and sinΘ(tc) = 1√

2
. At

later times, t > tc, the chirp is set to zero, and the field
remains in the resonance with the transition frequency
of the system till the end of the pulse duration, there-
fore any changes of the population are suppressed, (the
applied field changes only the global dynamical phase),
preserving the created superposition state. Thus, at the
end of the pulse the probability amplitudes of |ggg〉 and
|rrr〉 states are cosΘ(t∞) = 1√

2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
(20)

5

W states will cross the zero energy of the initial state
|ggg〉. iii) The detuning must satisfy |∆| � |δ| so that
the transitional states dependent on ∆ are significantly
shifted and do not resonate with |ggg〉 during the pulse
duration. This effectively means that any bare state con-
taining an w2 parameter can be avoided while any state
containing only w3 terms will cross and interact with the
initial state |ggg〉.

To stir the population to a desired superposition state
we use two, equally chirped pulses with α1 = α2 = α
and completely overlapping Rabi frequencies Ω1(t) and
Ω2(t) based on the control scheme developed for a de-
terministic excitation of a single atom to the Rydberg
state [10]. To begin with, we analyze the qualitative be-
havior of the bare states energy depending on the choice
of the field parameters. Fig.(3) shows the time evolu-
tion of the energy of the collective bare states which
depend on the two-photon detuning and the chirp rate
and due to a proximity to the ground state energy (zero
energy state) may contribute to the population dynam-
ics. The all-Rydberg state |rrr〉 inherently evolves the
fastest due to three times doubled chirp rate in the en-
ergy 3(δ−2α(t− tc)+2Vmax, which provides the leading
crossing with the ground state. Thus the desired avoided
crossing is formed, which is the first within the pulse tem-
poral evolution and the only one needed for the forma-
tion of the GHZ state. The time of the resonance, when
two energy lines cross, is determined from the equality of
the respective states energy. Immediately after this res-
onance, the chirp must be turned off to prevent further
approach of the lagging transitional states to the zero
energy state to prevent undesirable population transfer.
The time of the crossing is equal to tres = (δ/2+(V12+

V23 + V13)/3)/α+ tc. If 2(V12 + V23 + V13) = 3δ, the res-
onance occurs at the same time as the peak intensity of
the field tc. Owing to the fact that the desired avoided
crossing occurs the earliest in the time evolution implies
that the intermediate state manifold, which consists of
the rest 25 states for the three-atomic case, is not in-
volved into a generation of the GHZ state and may be
eliminated adiabatically within a semi-classical approach.
Then adiabatic passage of a half of population to the all-
Rydberg state is designed in the framework of an effective
two-level system with the ground state being |ggg〉 and
the excited state being |rrr〉. The effective Hamiltonian
reads

ȧggg = iΩeff (t)arrr (18)

ȧrrr = i6α(t− tc)arrr + iΩeff (t)aggg,

Heff (t) = �
(

0 −Ωeff (t)
−Ωeff (t) −6α(t− tc)

)
. (19)

Here the effective Rabi frequency is Ωeff (t) ∼
Ω6

0/(∆
2V 3). Within this two-level model, we design adi-

abatic passage leading to a coherent superposition of two

states, |ggg〉 and |rrr〉, with equal populations. We ro-
tate this Hamiltonian Heff (t) in Eq.(19) using unitary
transformation matrix T and bring it to the diagonal
form Ĥd(t) = T(t)Heff (t)T

†(t). The Ĥd(t) is now writ-
ten in the dressed state basis Cd. Aiming at creating
the adiabatic passage condition, we assume adiabatic ap-
proximation with neglecting the second term in Eq.(16).
Then, the adiabatic transition from |ggg〉 to |rrr〉 state
takes place within a single dressed state; this state

has lower energy EI = −�/2
√
Ω2

eff + δ(t)2 and reads

|Ψ(t)〉 = eiΛ(t)/2 (cosΘ(t)|ggg〉 − sinΘ(t)|rrr〉), where

Λ(t) =
∫ t

0
Ω(t′)dt′ is the pulse area. The details of the

solution are presented in [11]. The coefficients are ma-
trix elements of T(t), which read as defined above in
Eq.(17). The control scheme to create the equal popula-
tion distribution between states implies α ≤ 0 for times
t ≤ tc before the peak of the Gaussian pulse and α = 0
for t > tc till the end of the pulse duration. At the ini-
tial time t=0, it provides the value of cosΘ(0) = 1, and
sinΘ(0) = 0, meaning that the population is initially in
the ground |ggg〉 state. Then at t = tc, the probabil-
ity amplitudes of two states change to become the same
in magnitude: cosΘ(tc) = 1√

2
and sinΘ(tc) = 1√

2
. At

later times, t > tc, the chirp is set to zero, and the field
remains in the resonance with the transition frequency
of the system till the end of the pulse duration, there-
fore any changes of the population are suppressed, (the
applied field changes only the global dynamical phase),
preserving the created superposition state. Thus, at the
end of the pulse the probability amplitudes of |ggg〉 and
|rrr〉 states are cosΘ(t∞) = 1√

2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
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5

W states will cross the zero energy of the initial state
|ggg〉. iii) The detuning must satisfy |∆| � |δ| so that
the transitional states dependent on ∆ are significantly
shifted and do not resonate with |ggg〉 during the pulse
duration. This effectively means that any bare state con-
taining an w2 parameter can be avoided while any state
containing only w3 terms will cross and interact with the
initial state |ggg〉.

To stir the population to a desired superposition state
we use two, equally chirped pulses with α1 = α2 = α
and completely overlapping Rabi frequencies Ω1(t) and
Ω2(t) based on the control scheme developed for a de-
terministic excitation of a single atom to the Rydberg
state [10]. To begin with, we analyze the qualitative be-
havior of the bare states energy depending on the choice
of the field parameters. Fig.(3) shows the time evolu-
tion of the energy of the collective bare states which
depend on the two-photon detuning and the chirp rate
and due to a proximity to the ground state energy (zero
energy state) may contribute to the population dynam-
ics. The all-Rydberg state |rrr〉 inherently evolves the
fastest due to three times doubled chirp rate in the en-
ergy 3(δ−2α(t− tc)+2Vmax, which provides the leading
crossing with the ground state. Thus the desired avoided
crossing is formed, which is the first within the pulse tem-
poral evolution and the only one needed for the forma-
tion of the GHZ state. The time of the resonance, when
two energy lines cross, is determined from the equality of
the respective states energy. Immediately after this res-
onance, the chirp must be turned off to prevent further
approach of the lagging transitional states to the zero
energy state to prevent undesirable population transfer.
The time of the crossing is equal to tres = (δ/2+(V12+

V23 + V13)/3)/α+ tc. If 2(V12 + V23 + V13) = 3δ, the res-
onance occurs at the same time as the peak intensity of
the field tc. Owing to the fact that the desired avoided
crossing occurs the earliest in the time evolution implies
that the intermediate state manifold, which consists of
the rest 25 states for the three-atomic case, is not in-
volved into a generation of the GHZ state and may be
eliminated adiabatically within a semi-classical approach.
Then adiabatic passage of a half of population to the all-
Rydberg state is designed in the framework of an effective
two-level system with the ground state being |ggg〉 and
the excited state being |rrr〉. The effective Hamiltonian
reads

ȧggg = iΩeff (t)arrr (18)

ȧrrr = i6α(t− tc)arrr + iΩeff (t)aggg,

Heff (t) = �
(

0 −Ωeff (t)
−Ωeff (t) −6α(t− tc)

)
. (19)

Here the effective Rabi frequency is Ωeff (t) ∼
Ω6

0/(∆
2V 3). Within this two-level model, we design adi-

abatic passage leading to a coherent superposition of two

states, |ggg〉 and |rrr〉, with equal populations. We ro-
tate this Hamiltonian Heff (t) in Eq.(19) using unitary
transformation matrix T and bring it to the diagonal
form Ĥd(t) = T(t)Heff (t)T

†(t). The Ĥd(t) is now writ-
ten in the dressed state basis Cd. Aiming at creating
the adiabatic passage condition, we assume adiabatic ap-
proximation with neglecting the second term in Eq.(16).
Then, the adiabatic transition from |ggg〉 to |rrr〉 state
takes place within a single dressed state; this state

has lower energy EI = −�/2
√
Ω2

eff + δ(t)2 and reads

|Ψ(t)〉 = eiΛ(t)/2 (cosΘ(t)|ggg〉 − sinΘ(t)|rrr〉), where

Λ(t) =
∫ t

0
Ω(t′)dt′ is the pulse area. The details of the

solution are presented in [11]. The coefficients are ma-
trix elements of T(t), which read as defined above in
Eq.(17). The control scheme to create the equal popula-
tion distribution between states implies α ≤ 0 for times
t ≤ tc before the peak of the Gaussian pulse and α = 0
for t > tc till the end of the pulse duration. At the ini-
tial time t=0, it provides the value of cosΘ(0) = 1, and
sinΘ(0) = 0, meaning that the population is initially in
the ground |ggg〉 state. Then at t = tc, the probabil-
ity amplitudes of two states change to become the same
in magnitude: cosΘ(tc) = 1√

2
and sinΘ(tc) = 1√

2
. At

later times, t > tc, the chirp is set to zero, and the field
remains in the resonance with the transition frequency
of the system till the end of the pulse duration, there-
fore any changes of the population are suppressed, (the
applied field changes only the global dynamical phase),
preserving the created superposition state. Thus, at the
end of the pulse the probability amplitudes of |ggg〉 and
|rrr〉 states are cosΘ(t∞) = 1√

2
and sinΘ(t∞) = 1√

2
,

giving the maximum state coherence.

However, in contrast to the case of the GHZ state,
for the W state formation, the magnitude of the chirp
parameter is preserved till the end of the pulse as it is
required in order to allow all relevant, collective transi-
tional states involved in forming the W state to populate
by the end of the pulse. This can be observed in Fig.(3)
where state |rrr〉 cross |ggg〉 first, followed by states |rrg〉
and |grr〉 before finally |rgr〉 crosses. Among all collec-
tive states, we stir the evolution of states |ggg〉 and |rrr〉
relevant for the GHZ state and, alternatively, the evolu-
tion of the |rrg〉, |grr〉, and |rgr〉 states relevant for the
W state formation.

The entanglement fidelity function for the GHZ state
is [13]

FGHZ = 1/
√
2(arrr + aggg)

2 =

1/2(a2rrr + a2ggg + arrra
†
ggg + aggga

†
rrr =

1/2(a2rrr + a2ggg + 2Re{arrra†ggg}).
(20)
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For the W state, it reads

FW = 1/
√
3(arrg + agrr + argr)

2 =

1/3(a2rrg + a2grr + a2rgr + arrga
†
grr

+ arrga
†
rgr + agrra

†
rrg + agrra

†
rgr

+ argra
†
rrg + argra

†
grr) = (21)

1/3(a2rrg + a2grr + a2rgr + 2Re{arrga†grr}
+ 2Re{arrga†rgr}+ 2Re{agrra†rgr}).

The entanglement fidelity ranges from 1 to 0 and deter-
mines quantum correlations between the substates in the
superposition.

V. NUMERICAL VERIFICATION OF THE
QUANTUM CONTROL SCHEMES TO

GENERATE THE MULTIPARTITE GHZ AND
THE W STATES

We justify the developed quantum control methodol-
ogy by applying it in a numerical exact solution of the
time-dependent Schrödinger equation using the multipar-
ticle field-interaction Hamiltonian in Eq.(14) to gener-
ate the GHZ and the W state. The maximum fidelity
of the GHZ state is achieved for the two-photon detun-
ing δ = −2/3Vmax. However the adiabatic approxima-
tion is not valid for the W state, because the dynam-
ical process that stirs the three-atomic system to the
required superposition state is inherently non-adiabatic
with three dressed states participating at different stages
of the pulse time evolution. Therefore, the maximum
fidelity is found from the exact solution of the time-
dependent Schrödinger equation, which accounts for the
non-adiabatic effects.
The exact solution of the time-dependent Schrödinger

equation was performed numerically using the Runge-
Kutta method [12] and a numerical method based on
multipoint Hermit interpolating polynomials [14]. In cal-
culations to generate the GHZ state the following values
of the parameters of the fields were used: the pulse du-
ration is τ0 = 1µs, the one-photon detuning is ∆ = −1.5
GHz, and the peak Rabi frequency of both applied pulses
is Ω01(2), it changes in the range from 0 to 300 MHz,
the chirp rate is α1,2, it changes in the range from
0 to -600 MHz / µs, and the two-photon detuning is
δ = −2/3Vmax, which has two values, δ = −100MHz
for V31 = V/2 and δ = −80.63MHz for V31 = V/26

for nearest neighbor interaction equal to V = 60MHz.
Numerical analysis demonstrates the generation of the
GHZ state via two-photon adiabatic passage with the
same chirp rate α1,2 = α of two pulses and the same
overlapping Rabi frequencies Ω01(2)(t).

The fidelity of the GHZ state is shown in
Figs.(4,(a),(c)) as a function of the chirp rate and the
strength of the peak Rabi frequency for V31 = V/2 (a)

FIG. 4. (a) Fidelity of the GHZ state as a function of
the chirp rate and the peak Rabi frequency for V31 = V/2,
Vmax = 150MHz; (b) The population difference of states
|ggg〉 and |rrr〉 as a function of the chirp rate and the peak
Rabi frequency for V31 = V/2, Vmax = 150MHz. (c) Fidelity
of the GHZ state as a function of the chirp rate and the peak
Rabi frequency for V31 = V/26, Vmax = 120.94MHz; (d) The
population difference of states |ggg〉 and |rrr〉 as a function
of the chirp rate and the peak Rabi frequency for V31 = V/26,
Vmax = 120.94MHz. Parameters used in calculation are V =
60MHz, τ0 = 1µs, ∆ = −1.5GHz, and δ = −2/3Vmax.

and V31 = V/26 (c). The optimal values of the fidelity
within 0.995 range are highlighted by the contour plots.
Figs.(4,(b),(d)) show the density plot of the difference
between the populations of the |ggg〉 and the |rrr〉 states
and brings an additional information for a complete pic-
ture of the GHZ state formation. The zero values of the
population difference indicate upon equal populations of
these states, while fidelity about 0.995 in the same re-
gion of the field parameters carries information about
high phase correlation between atoms. A comparison of
the results for V31 = V/2 (a),(b) and V31 = V/26 (c),(d)
suggests that the generation the GHZ state with high fi-
delity, a wider choice of the field parameters is possible
for a smaller value of the interaction between terminal
atoms V31. For V31 = V/26, the results are more ro-
bust for experimental realization, but at the expense of
a higher field amplitude.

The time dependence of the population of the |ggg〉
and |rrr〉 states leading to the formation of the GHZ
state at the end of the pulse duration is shown in Fig.(5)
demonstrating adiabatic passage for parameters of the
field ∆ = −1.5GHz, δ = −100MHz, Ω01(2) = 158MHz,
α = −176MHz/µs, and Vmax = 150MHz.

(18)

(19)

(20)

(21)
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for nearest neighbour interaction equal to V = 60MHz. Numer-
ical analysis demonstrates the generation of the GHZ state via 
two-photon adiabatic passage with the same chirp rate α1,2 = α of 
two pulses and the same overlapping Rabi frequencies Ω01(2)(t).

The fidelity of the GHZ state is shown in Figure (4a) and Figure 
(4c) as a function of the chirp rate and the strength of the peak 
Rabi frequency for V31 = V/2 (a) and V31 = V/26 (c). The optimal 
values of the fidelity within 0.995 range are highlighted by the 
contour plots. Figure (4b) and Figure (4d) show the density plot 
of the difference between the populations of the |ggg⟩ and the 

|rrr⟩ states and brings an additional information for a complete 
picture of the GHZ state formation. The zero values of the popu-
lation difference indicate upon equal populations of these states, 
while fidelity about 0.995 in the same region of the field param-
eters carries information about high phase correlation between 
atoms. A comparison of the results for V31 = V/2 (a), (b) and 
V31 = V/26 (c), (d) suggests that for the generation the GHZ state 
with high fidelity, a wider choice of the field parameters is possi-
ble for a smaller value of the interaction between terminal atoms 
V31. For V31 = V/26, the results are more robust for experimental 
realization, but at the expense of a higher field amplitude.6

For the W state, it reads

FW = 1/
√
3(arrg + agrr + argr)

2 =

1/3(a2rrg + a2grr + a2rgr + arrga
†
grr

+ arrga
†
rgr + agrra

†
rrg + agrra

†
rgr

+ argra
†
rrg + argra

†
grr) = (21)

1/3(a2rrg + a2grr + a2rgr + 2Re{arrga†grr}
+ 2Re{arrga†rgr}+ 2Re{agrra†rgr}).

The entanglement fidelity ranges from 1 to 0 and deter-
mines quantum correlations between the substates in the
superposition.

V. NUMERICAL VERIFICATION OF THE
QUANTUM CONTROL SCHEMES TO

GENERATE THE MULTIPARTITE GHZ AND
THE W STATES

We justify the developed quantum control methodol-
ogy by applying it in a numerical exact solution of the
time-dependent Schrödinger equation using the multipar-
ticle field-interaction Hamiltonian in Eq.(14) to gener-
ate the GHZ and the W state. The maximum fidelity
of the GHZ state is achieved for the two-photon detun-
ing δ = −2/3Vmax. However the adiabatic approxima-
tion is not valid for the W state, because the dynam-
ical process that stirs the three-atomic system to the
required superposition state is inherently non-adiabatic
with three dressed states participating at different stages
of the pulse time evolution. Therefore, the maximum
fidelity is found from the exact solution of the time-
dependent Schrödinger equation, which accounts for the
non-adiabatic effects.
The exact solution of the time-dependent Schrödinger

equation was performed numerically using the Runge-
Kutta method [12] and a numerical method based on
multipoint Hermit interpolating polynomials [14]. In cal-
culations to generate the GHZ state the following values
of the parameters of the fields were used: the pulse du-
ration is τ0 = 1µs, the one-photon detuning is ∆ = −1.5
GHz, and the peak Rabi frequency of both applied pulses
is Ω01(2), it changes in the range from 0 to 300 MHz,
the chirp rate is α1,2, it changes in the range from
0 to -600 MHz / µs, and the two-photon detuning is
δ = −2/3Vmax, which has two values, δ = −100MHz
for V31 = V/2 and δ = −80.63MHz for V31 = V/26

for nearest neighbor interaction equal to V = 60MHz.
Numerical analysis demonstrates the generation of the
GHZ state via two-photon adiabatic passage with the
same chirp rate α1,2 = α of two pulses and the same
overlapping Rabi frequencies Ω01(2)(t).

The fidelity of the GHZ state is shown in
Figs.(4,(a),(c)) as a function of the chirp rate and the
strength of the peak Rabi frequency for V31 = V/2 (a)

FIG. 4. (a) Fidelity of the GHZ state as a function of
the chirp rate and the peak Rabi frequency for V31 = V/2,
Vmax = 150MHz; (b) The population difference of states
|ggg〉 and |rrr〉 as a function of the chirp rate and the peak
Rabi frequency for V31 = V/2, Vmax = 150MHz. (c) Fidelity
of the GHZ state as a function of the chirp rate and the peak
Rabi frequency for V31 = V/26, Vmax = 120.94MHz; (d) The
population difference of states |ggg〉 and |rrr〉 as a function
of the chirp rate and the peak Rabi frequency for V31 = V/26,
Vmax = 120.94MHz. Parameters used in calculation are V =
60MHz, τ0 = 1µs, ∆ = −1.5GHz, and δ = −2/3Vmax.

and V31 = V/26 (c). The optimal values of the fidelity
within 0.995 range are highlighted by the contour plots.
Figs.(4,(b),(d)) show the density plot of the difference
between the populations of the |ggg〉 and the |rrr〉 states
and brings an additional information for a complete pic-
ture of the GHZ state formation. The zero values of the
population difference indicate upon equal populations of
these states, while fidelity about 0.995 in the same re-
gion of the field parameters carries information about
high phase correlation between atoms. A comparison of
the results for V31 = V/2 (a),(b) and V31 = V/26 (c),(d)
suggests that the generation the GHZ state with high fi-
delity, a wider choice of the field parameters is possible
for a smaller value of the interaction between terminal
atoms V31. For V31 = V/26, the results are more ro-
bust for experimental realization, but at the expense of
a higher field amplitude.

The time dependence of the population of the |ggg〉
and |rrr〉 states leading to the formation of the GHZ
state at the end of the pulse duration is shown in Fig.(5)
demonstrating adiabatic passage for parameters of the
field ∆ = −1.5GHz, δ = −100MHz, Ω01(2) = 158MHz,
α = −176MHz/µs, and Vmax = 150MHz.

Figure 4: (a) Fidelity of the GHZ state as a function of the chirp rate and the peak Rabi frequency for V31 = V/2, Vmax = 150MHz; (b) 
The population difference of states |ggg⟩ and |rrr⟩ as a function of the chirp rate and the peak Rabi frequency for V31 = V/2, Vmax = 
150MHz. (c) Fidelity of the GHZ state as a function of the chirp rate and the peak Rabi frequency for V31 = V/26, Vmax = 120.94 MHz; 
(d) The population difference of states |ggg⟩ and |rrr⟩ as a function of the chirp rate and the peak Rabi frequency for V31 = V/26, Vmax 
= 120.94MHz. Parameters used in calculation are V = 60MHz, τ0 = 1µs, Δ = -1.5GHz, and δ = -2/3Vmax.

The time dependence of the population of the  |ggg⟩  and |rrr⟩  
states leading to the formation of the GHZ state at the end of the 
pulse duration is shown in Figure (5) demonstrating adiabatic 

passage for parameters of the field Δ = -1.5GHz, δ = -100MHz, 
Ω01(2) = 158MHz, α = -176MHz/µs, and Vmax = 150MHz.
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FIG. 5. The time dependence of the population of the |ggg〉
and |rrr〉 states leading to the formation of the GHZ state
at the end of the pulse duration for parameters of the field
τ0 = 1µs, ∆ = −1.5GHz, δ = −100MHz, Ω01(2) = 158MHz,
α = −176MHz/µs, and Vmax = 150MHz. Dashed curves
show an approximate solution using Eqs.(18).

FIG. 6. (a) Fidelity of the W state as a function of the chirp
rate and the peak Rabi frequency for V31 = V/2, Vmax =
150MHz; (b) The density plot of the sum of populations of
|rrg〉, |grr〉, and |rgr〉 states for V31 = V/2, Vmax = 150MHz.
(c) Fidelity of the W state as a function of the chirp rate and
the peak Rabi frequency for V31 = V/26, Vmax = 120.94MHz;
(d) The density plot of the sum of populations of |rrg〉, |grr〉,
and |rgr〉 states for V31 = V/26, Vmax = 120.94MHz. Pa-
rameters used in calculation are V = 60MHz, τ0 = 1µs,
∆ = −1.4GHz, and δ = −4.5MHz. The black curves draw
the contour where three contributing states have equal pop-
ulation.

FIG. 7. Time dependence of population of the |grr〉, |rrg〉 and
|rgr〉 states leading to the formation of the W state at the end
of the pulse duration for parameters of the field τ0 = 1µs,
∆=-1.4 GHz, δ=-4.5 MHz, Ω01(2)=262 MHz, α=-32 MHz/
µs, and V21 = V32 = 2V31 = V=60MHz.

In numerical calculations of the W state generation
the following values of the parameters of the fields were
used: The pulse duration is τ0 = 1µs, the chirp rate is
α1,2, it varies in the range from 0 to −300MHz/µs, the
two-photon detuning is δ = −4.5MHz, the one-photon
detuning is ∆ = −1.4GHz, and the peak Rabi frequency
of both applied pulses is Ω01(2), it varies in the range
from 0 to 300MHz. Two values of the parameter V31

were used, V31 = V/2 and V31 = V/26, which provide
Vmax = 150MHz and Vmax = 120.94MHz respectively,
for nearest neighbor interaction equal to V = 60MHz.
Figs.(6,(a),(c)) show fidelity of the W state as a func-

tion of the chirp rate and the peak Rabi frequency for
V31 = V/2 (a) and V31 = V/26 (c). Strong dependence
on α1,2 and Ω01(2) is observed indicating upon nonadia-
batic regime of light-matter interaction. The black curve
draws the contour where three contributing states have
equal population. The blue regions of fidelity through
which this curve passes manifest highest values owing to
equal population of the contributing states and the same
phase between them. Figs.(6,(b),(d)) show the density
plots of the sum of populations of |rrg〉, |grr〉, and |rgr〉
states for V31 = V/2 (b) and V31 = V/26 (d). Together
with the density plots of the difference of populations be-
tween |rrg〉 and |rgr〉, (not shown here), they provided
sufficient information to draw the contours of equal pop-
ulations.
By comparing the results for V31 = V/2 (a),(b) and

V31 = V/26 (c),(d) we conclude that a smaller value of the
interaction between terminal atoms somewhat improves
the results for the generation the W state, meaning that
the target area of the field parameters providing higher
fidelity states is increased. However, since the process
of the W state generation is principally non-adiabatic
with at least three dressed states populated, the consid-
ered change in the value of V31 does not substantially
change the non-adiabatic coupling between the impor-

Figure 5:  The time dependence of the population of the |ggg⟩  and |rrr⟩ states leading to the formation of the GHZ state at the end 
of the pulse duration for parameters of the field τ0 = 1µs, Δ= -1.5GHz, δ= -100MHz, Ω01(2) = 158MHz, α = -176MHz/µs, and Vmax = 
150MHz. Dashed curves show an approximate solution using Eqs (18).
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FIG. 5. The time dependence of the population of the |ggg〉
and |rrr〉 states leading to the formation of the GHZ state
at the end of the pulse duration for parameters of the field
τ0 = 1µs, ∆ = −1.5GHz, δ = −100MHz, Ω01(2) = 158MHz,
α = −176MHz/µs, and Vmax = 150MHz. Dashed curves
show an approximate solution using Eqs.(18).

FIG. 6. (a) Fidelity of the W state as a function of the chirp
rate and the peak Rabi frequency for V31 = V/2, Vmax =
150MHz; (b) The density plot of the sum of populations of
|rrg〉, |grr〉, and |rgr〉 states for V31 = V/2, Vmax = 150MHz.
(c) Fidelity of the W state as a function of the chirp rate and
the peak Rabi frequency for V31 = V/26, Vmax = 120.94MHz;
(d) The density plot of the sum of populations of |rrg〉, |grr〉,
and |rgr〉 states for V31 = V/26, Vmax = 120.94MHz. Pa-
rameters used in calculation are V = 60MHz, τ0 = 1µs,
∆ = −1.4GHz, and δ = −4.5MHz. The black curves draw
the contour where three contributing states have equal pop-
ulation.

FIG. 7. Time dependence of population of the |grr〉, |rrg〉 and
|rgr〉 states leading to the formation of the W state at the end
of the pulse duration for parameters of the field τ0 = 1µs,
∆=-1.4 GHz, δ=-4.5 MHz, Ω01(2)=262 MHz, α=-32 MHz/
µs, and V21 = V32 = 2V31 = V=60MHz.

In numerical calculations of the W state generation
the following values of the parameters of the fields were
used: The pulse duration is τ0 = 1µs, the chirp rate is
α1,2, it varies in the range from 0 to −300MHz/µs, the
two-photon detuning is δ = −4.5MHz, the one-photon
detuning is ∆ = −1.4GHz, and the peak Rabi frequency
of both applied pulses is Ω01(2), it varies in the range
from 0 to 300MHz. Two values of the parameter V31

were used, V31 = V/2 and V31 = V/26, which provide
Vmax = 150MHz and Vmax = 120.94MHz respectively,
for nearest neighbor interaction equal to V = 60MHz.
Figs.(6,(a),(c)) show fidelity of the W state as a func-

tion of the chirp rate and the peak Rabi frequency for
V31 = V/2 (a) and V31 = V/26 (c). Strong dependence
on α1,2 and Ω01(2) is observed indicating upon nonadia-
batic regime of light-matter interaction. The black curve
draws the contour where three contributing states have
equal population. The blue regions of fidelity through
which this curve passes manifest highest values owing to
equal population of the contributing states and the same
phase between them. Figs.(6,(b),(d)) show the density
plots of the sum of populations of |rrg〉, |grr〉, and |rgr〉
states for V31 = V/2 (b) and V31 = V/26 (d). Together
with the density plots of the difference of populations be-
tween |rrg〉 and |rgr〉, (not shown here), they provided
sufficient information to draw the contours of equal pop-
ulations.
By comparing the results for V31 = V/2 (a),(b) and

V31 = V/26 (c),(d) we conclude that a smaller value of the
interaction between terminal atoms somewhat improves
the results for the generation the W state, meaning that
the target area of the field parameters providing higher
fidelity states is increased. However, since the process
of the W state generation is principally non-adiabatic
with at least three dressed states populated, the consid-
ered change in the value of V31 does not substantially
change the non-adiabatic coupling between the impor-

Figure 6: (a) Fidelity of the W state as a function of the chirp rate and the peak Rabi frequency for V31 = V/2, Vmax = 150MHz; (b) 
The density plot of the sum of populations of |rrg⟩ , |grr⟩ and  |rgr⟩ states for V31 = V/2, Vmax = 150MHz. (c) Fidelity of the W state 
as a function of the chirp rate and the peak Rabi frequency for V31 = V/26; Vmax = 120.94MHz; (d) The density plot of the sum of 
populations of |rrg⟩, |grr⟩ and |rgr⟩  states for V31=V/26 , Vmax = 120.94MHz. Parameters used in calculation are V = 60MHz, τ0 = 1µs, 
Δ = -1.4GHz, and δ = -4.5MHz. The black curves draw the contour where three contributing states have equal population.
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FIG. 5. The time dependence of the population of the |ggg〉
and |rrr〉 states leading to the formation of the GHZ state
at the end of the pulse duration for parameters of the field
τ0 = 1µs, ∆ = −1.5GHz, δ = −100MHz, Ω01(2) = 158MHz,
α = −176MHz/µs, and Vmax = 150MHz. Dashed curves
show an approximate solution using Eqs.(18).

FIG. 6. (a) Fidelity of the W state as a function of the chirp
rate and the peak Rabi frequency for V31 = V/2, Vmax =
150MHz; (b) The density plot of the sum of populations of
|rrg〉, |grr〉, and |rgr〉 states for V31 = V/2, Vmax = 150MHz.
(c) Fidelity of the W state as a function of the chirp rate and
the peak Rabi frequency for V31 = V/26, Vmax = 120.94MHz;
(d) The density plot of the sum of populations of |rrg〉, |grr〉,
and |rgr〉 states for V31 = V/26, Vmax = 120.94MHz. Pa-
rameters used in calculation are V = 60MHz, τ0 = 1µs,
∆ = −1.4GHz, and δ = −4.5MHz. The black curves draw
the contour where three contributing states have equal pop-
ulation.

FIG. 7. Time dependence of population of the |grr〉, |rrg〉 and
|rgr〉 states leading to the formation of the W state at the end
of the pulse duration for parameters of the field τ0 = 1µs,
∆=-1.4 GHz, δ=-4.5 MHz, Ω01(2)=262 MHz, α=-32 MHz/
µs, and V21 = V32 = 2V31 = V=60MHz.

In numerical calculations of the W state generation
the following values of the parameters of the fields were
used: The pulse duration is τ0 = 1µs, the chirp rate is
α1,2, it varies in the range from 0 to −300MHz/µs, the
two-photon detuning is δ = −4.5MHz, the one-photon
detuning is ∆ = −1.4GHz, and the peak Rabi frequency
of both applied pulses is Ω01(2), it varies in the range
from 0 to 300MHz. Two values of the parameter V31

were used, V31 = V/2 and V31 = V/26, which provide
Vmax = 150MHz and Vmax = 120.94MHz respectively,
for nearest neighbor interaction equal to V = 60MHz.
Figs.(6,(a),(c)) show fidelity of the W state as a func-

tion of the chirp rate and the peak Rabi frequency for
V31 = V/2 (a) and V31 = V/26 (c). Strong dependence
on α1,2 and Ω01(2) is observed indicating upon nonadia-
batic regime of light-matter interaction. The black curve
draws the contour where three contributing states have
equal population. The blue regions of fidelity through
which this curve passes manifest highest values owing to
equal population of the contributing states and the same
phase between them. Figs.(6,(b),(d)) show the density
plots of the sum of populations of |rrg〉, |grr〉, and |rgr〉
states for V31 = V/2 (b) and V31 = V/26 (d). Together
with the density plots of the difference of populations be-
tween |rrg〉 and |rgr〉, (not shown here), they provided
sufficient information to draw the contours of equal pop-
ulations.
By comparing the results for V31 = V/2 (a),(b) and

V31 = V/26 (c),(d) we conclude that a smaller value of the
interaction between terminal atoms somewhat improves
the results for the generation the W state, meaning that
the target area of the field parameters providing higher
fidelity states is increased. However, since the process
of the W state generation is principally non-adiabatic
with at least three dressed states populated, the consid-
ered change in the value of V31 does not substantially
change the non-adiabatic coupling between the impor-

Figure 7: Time dependence of population of the |grr⟩, |rrg⟩  and |rgr⟩ states leading to the formation of the W state at the end of 
the pulse duration for parameters of the field τ0 = 1µs, Δ=-1.4 GHz, δ=-4.5 MHz, Ω01(2) =262 MHz, α=-32 MHz/µs, and V21 = V32 = 
2V31 = V =60MHz.

In numerical calculations of the W state generation the follow-
ing values of the parameters of the fields were used: The pulse 
duration is τ0 = 1µs, the chirp rate is α1,2, it varies in the range 
from 0 to -300MHz/µs, the two-photon detuning is δ = -4.5MHz, 
the one-photon detuning is Δ = -1.4GHz, and the peak Rabi fre-
quency of both applied pulses is Ω01(2), it varies in the range from 
0 to 300MHz. Two values of the parameter V31 were used, V31 
= V/2 and V31 = V/26, which provide Vmax = 150MHz and Vmax = 
120.94MHz respectively, for nearest neighbour interaction equal 
to V = 60MHz.
 
Figure (6a) and Figure (6c) show fidelity of the W state as a 
function of the chirp rate and the peak Rabi frequency for V31 = 
V/2 (a) and V31 = V/26 (c). Strong dependence on α1,2 and Ω01(2) 
is observed indicating upon nonadiabatic regime of light-mat-
ter interaction. The black curve draws the contour where three 
contributing states have equal population. The blue regions of 
fidelity through which this curve passes manifest highest val-
ues owing to equal population of the contributing states and the 
same phase between them. Figure (6b) and Figure (6d) show 
the density plots of the sum of populations of  |rrg⟩, |grr⟩ and 
|rgr⟩ states for V31 = V/2 (b) and V31 = V/26 (d). Together with the 
density plots of the difference of populations between |rrg⟩ and 
|rgr⟩, (not shown here), they provided sufficient information to 
draw the contours of equal populations.

By comparing the results for V31 = V/2 (a), (b) and V31 = V/26 (c), 
(d) we conclude that a smaller value of the interaction between 
terminal atoms somewhat improves the results for the generation 
the W state, meaning that the target area of the field parameters 
providing higher fidelity states is increased. However, since the 
process of the W state generation is principally non-adiabat-
ic with at least three dressed states populated, the considered 
change in the value of V31 does not substantially change the 
non-adiabatic coupling between the important dressed states, 
(one of which correlates with |ggg⟩  state at t=0, while another 
correlate with  |grr⟩, |rrg⟩ and |rgr⟩ at final time.)

The dynamics of the population of the |rrg⟩, |grr⟩ and |rgr⟩  
states, forming the W state is shown in Figure (7) for Δ=-1.4 
GHz, δ=-4.5MHz, Ω01(2) =262 MHz, α=-32 MHz/µs, and V21 
= V32 = 2V31 = V =60MHz. The Rabi oscillations between the 
mostly populated states |rrg⟩, |grr⟩ and |rgr⟩ are clearly shown 
at the intermediate times. These oscillations can be explained by 
the non-adiabatic coupling between states in the dressed state 
picture indicating upon the non-adiabatic nature of the W state 
formation. The fidelity of such state formation is 0.999 and is 
among the highest values in the provided numerical results. Pa-
rameters used in the time dependent calculations of Figure (5) 
and Figure (7) may be used to explore the experimental realiza-
tions of the GHZ and W states.

The lifetime of the Rydberg states is on the order of 100µs, 
while the pulse duration used in our method is 1µs. Two orders 
of magnitude difference permit us to neglect the decoherence 
effects in the systems during control operations with the applied 
fields. Besides, one-photon detuning from intermediate state of 
1.5 GHz is about an order of magnitude larger than the natural 
bandwidth of these states known to be ~10 ns [15, 16]. Such 
detuning results in a negligible population of transitional states 
minimizing decoherence. In principle, a one-photon excitation, 
which would need a photon in the ultraviolet range [17], may be 
used to excite atoms to a predetermined magnetic sublevel of 
the Rydberg state. However, the two-photon excitation scheme 
is more robust because it requires visible light; it is commonly 
used in Rydberg experiments with trapped alkali atoms. Besides, 
it offers a broader range of control parameters including the 
one-photon and the two-photon detuning, which bring flexibil-
ity to the control scheme to perform adiabatic passage on large 
atomic systems. Strong Rydberg-Rydberg interactions provide 
significant collective energy shifts beneficial for controllable ex-
citations of predetermined collective states. Meanwhile, a long 
lifetime of Rydberg states is efficient for quantum operations.
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VI. Conclusion
Quantum control of multiparticle entangled states generation 
involving coherent superpositions of spin states in ultracold 
Rydberg atoms is presented based on the two-photon passage on 
the selected state manifold using circularly polarized and linear-
ly chirped pulses. Selectivity of states is achieved through the 
choice of the one-photon and the two-photon detuning, the ratio 
of the Rabi frequency to the collective coupling strength and the 
chirp rate. It is shown that the creation of the GHZ sate is adia-
batic passage in nature, while the W entangled state generation 
is inherently non-adiabatic process. These results are of funda-
mental interest and usefulness aiming at a controlled generation 
of the entangled states in large ensembles of trapped atoms.
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