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Abstract
In my paper, a divisibility rule named the Vezir function is described, which has been generalized for every integer and 
encompasses all previously established divisibility rules. Subsequently, the paper discusses other areas where this function 
is instrumental. These include simplifying ratios, conducting rationality tests, generating prime numbers, and more. Towards 
the end of the paper, a set of hypotheses is also presented. Among these, the most significant is the novel approach involving 
the application of the Vezir function for prime number generation.
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1. Introduction 
I would like to start our discussion with the question, what are 
integers or natural numbers? Natural numbers have been a tool for 
measuring a reality that humans have used for centuries. Integers, 
on the other hand, are an abstraction that includes a bit more of 
the abstract aspect at a point where they depart from reality. What 
are the characteristics of natural numbers then? Of course, one of 
them is whether they are divisible by each other or not. Naturally, 
there are other features, but the focus of this article is mostly on 
this aspect. When one natural number is divided by another natural 
number resulting in another natural number, we call this divisibility, 
and by using this divisibility, we generate some special numbers, 
such as prime numbers. I will touch on this topic shortly, but first, 
let’s talk about the rules. What are the rules of divisibility, or in 
other words, the rules of being divisible? Of course, the rules of 
divisibility, just like natural numbers, have always been intriguing 
throughout history. Because imagine having such a power that 
directly gives you the divisibility of these natural numbers, which 
you compulsively use throughout your life. It would be nice, of 
course. And for centuries, many people have researched this and 
derived many divisibility rules. But there was a problem; none 
of them were generalized. Until a recent article summarized this. 
Of course, similar rules are also written in ancient texts, but the 
first known article written on this subject is ”General Divisibility 
Criteria” by A. A. Grinberg and S. Luryi. This article generally 
talks about the most basic general divisibility rule. In my article, 
there is a group of formulas that includes all divisibility rules and 
also the function of these formulas in finding prime numbers. In 
addition, some simplification methods related to the formulas are 
also mentioned. These formulas are divided into two groups: ”Fil” 
and ”Vezir,” and with the help of both, all divisibility rules can 

be used, and prime numbers can be found. Additionally, a few 
hypotheses provide important data.

Proof. By the definition, we said that S1(x,m) is the part that x’s 
digits are greater than the m’th digit, in the same meaning but 
different definition we can say that we put zeros all the digits less 
than m’th digit. Then we divide it by 10m. So, by this definition, 
we can say that this also can be defined as	         . Because x 
− S0 (x,m) is like putting zeros all the digits less than m’th digit 
and dividing it with 10m by the definition. Hence, we have the 
following:

Lemma 1.2. a = D0(x,y) + D1(x,y)10y + D2(x,y)102y + D3(x,y)103y ...
Proof. By the definition, Di(x,y) is the part that is between the iy 
and (i+1)y’th digits. So, in other saying first we should delete the 
part that all the < iy’th part and then we should delete all the > iy’th 
part. This will be possible if we get the part that x’s digits greater 
than iy’th digit. Then we get its digits less than y’th digits. Because 
we already deleted the iy digit and all the parts have y digits. But 
we can write these with our S() function too. For the part that 
x’s digits are greater than iy’th digit: S1(x,iy). Than its digits less 
than y’th digits: S0(S1(x,iy),y). By the Lemma 1.1, we can rewrite 
equation as: S1(x,iy) − S1(S1(x,iy),y)10y. S1(S1(x,iy),y) is the part that 
x’s digits greater than iy’th digits less than y’th digits. This will add 
up to this: S1(S1(x,iy),y) = S1(x,(i + 1)y). Hence, we get: Di(x,y) = 
S1(x,iy) − S1(x,(i + 1)y)10y. So, by our lemma’s equation: D0(x,y) + 
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1. Preparation

Lemma 1.1. 1 2 x = S0(x,m) + S1(x,m)10m

Proof. By the definition, we said that S1(x,m) is the part that x’s digits are greater
than the m’th digit, in the same meaning but different definition we can say that
we put zeros all the digits less than m’th digit. Then we divide it by 10m. So

by this definition, we can say that this also can be defined as x−S0(x,m)
10m . Because

x− S0(x,m) is like putting zeros all the digits less than m’th digit and dividing it
with 10m by the definition. Hence we have the following:

x− S0(x,m)

10m
= S1(x,m)

x− S0(x,m) = S1(x,m)10m

x = S0(x,m) + S1(x,m)10m

□

Lemma 1.2. 3 a = D0(x, y) +D1(x, y)10
y +D2(x, y)10

2y +D3(x, y)10
3y . . .

Proof. By the definition, Di(x, y) is the part that is between the iy and (i+1)y’th
digits. So in other saying first we should delete the part that all the < iy’th part
and then we should delete all the > iy’th part. This will be possible if we get the
part that x’s digits greater than iy’th digit. Then we get its digits less than y’th
digits. Because we already deleted the iy digit and all the parts have y digits. But
we can write these with our S() function too. For the part that x’s digits are greater
than iy’th digit: S1(x, iy). Than its digits less than y’th digits: S0(S1(x, iy), y).
By the Lemma 1.1, we can rewrite equation as: S1(x, iy) − S1(S1(x, iy), y)10

y.
S1(S1(x, iy), y) is the part that x’s digits greater than iy’th digits less than y’th
digits. This will add up to this: S1(S1(x, iy), y)=S1(x, (i + 1)y). Hence we get:
Di(x, y) = S1(x, iy)− S1(x, (i+ 1)y)10y. So, by our lemmas equation:

D0(x, y) +D1(x, y)10
y +D2(x, y)10

2y +D3(x, y)10
3y . . .

4 5 ⌊
Decimal(x)

y

⌋
∑
j=0

Dj(x, y)10
jy

⌊
Decimal(x)

y

⌋
∑
j=0

(S1(x, jy)− S1(x, (j + 1)y)10y)10jy

⌊
Decimal(x)

y

⌋
∑
j=0

S1(x, jy)10
jy − S1(x, (j + 1)y)10(j+1)y

⌊
Decimal(x)

y

⌋
∑
j=0

S1(x, jy)10
jy −

⌊
Decimal(x)

y

⌋
∑
j=0

S1(x, (j + 1)y)10(j+1)y

1S0 : Z → Z where S0(x,m) is x’s digits less than the m’th digit.
2S1 : Z → Z where S1(x,m) is x’s digits greater than the m’th digit.
3D : Z → Z where Di(x, y) is when the digits of x are divided into y parts, the i’th part.
4⌊⌋ : R → R where ⌊x⌋ is the closest integer to x that smaller than x.
5Decimal : Z → Z where Decimal(x) is the decimal count of x.
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D1(x,y)10y + D2(x,y)102y + D3(x,y)103y ... 

S0 : Z → Z where S0(x,m) is x’s digits less than the m’th digit.
S1 : Z → Z where S1(x,m) is x’s digits greater than the m’th digit.
D : Z → Z where Di(x, y) is when the digits of x are divided into y parts, the i’th part.
⌊⌋ : R → R where ⌊x⌋ is the closest integer to x that smaller than x.
Decimal : Z → Z where Decimal (x) is the decimal count of x.
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S1(x, 0) +

⌊
Decimal(x)

y

⌋
∑
j=0

S1(x, (j + 1)y)10(j+1)y −

⌊
Decimal(x)

y

⌋
∑
j=0

S1(x, (j + 1)y)10(j+1)y

S1(x, 0)

x

□

6

Lemma 1.3. ∀x, n :∈ N if for ∀m ∈ Z+ that m≤n, 78Gcd(x, Pm) = 1 and x <
P 2
n+1, then a is a prime number.

Proof. In this proof, we should know that if the natural number x has no other
same divisors other than 1 with all the equal or smaller primes than Pn. Then this
means the minimum prime divisor that can be in x’s divisors is the first prime that
is bigger than Pn. And it is Pn+1. But the minimum integer that is a multiple
of Pn+1 and not a prime and usable in this situation is P 2

n+1. Then this means if
x < P 2

n+1, x must be a prime. □

Lemma 1.4. ∀x, n ∈ N if 9Gcd(x, Pn#) = 1 and x < P 2
n+1, then x is a prime

number.

Proof. If a Gcd(x, Pn#) = 1 then x has no other same divisors than 1 with all the
equal or smaller primes than Pn. From the Lemma 1.3, also if x < P 2

n+1, x must
be a prime. □

2. Simple General Divisibility Algorithms

2.1. First General Divisibility Rule: Vezir Function.

Definition 2.1. vz : Z → Z where ∀x, y :∈ Z, ∀m :∈ N:

vzm(x, y) = S0(x,m)S1(y,m)− S1(x,m)S0(y,m)

Lemma 2.2.
x

y
∈ Z ⇒ vzm(x, y)

y
∈ Z

.

Proof. By the definition,

vzm(x, y) = S0(x,m)S1(y,m)− S1(x,m)S0(y,m)

Making a change of variable using Lemma 1.1,

vzm(x, y) = (x− S1(x,m)10m)S1(y,m)− S1(x,m)(y − S1(y,m)10m)

vzm(x, y) = S1(y,m)x− S1(x,m)S1(y,m)10m + S1(x,m)S1(y,m)10m − S1(x,m)y

vzm(x, y) = S1(y,m)x− S1(x,m)y

Dividing both sides by y,

vzm(x, y)

y
=

S1(y,m)x− S1(x,m)y

y

6|| : R → R where |x| is the positive version of x.
7P : set of elements that has no other same divisors that are smaller than it other than 1.
8Gcd : Z → Z where Gcd(x, y) is the greatest common divisor of x and y.
9P# : N → N where Pn# multiple of all the primes that equal or smaller than Pn
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GENERAL DIVISIBILITY ALGORITHMS 5

Table 1

Algorithm Reapply Count → 1 2 3 4 5 6

126 0 0 0 0 0 0

11.214 1.113 105 0 0 0 0

93.450 9.345 9.24 84 0 0 0

398.034 39.795 3.969 378 21 0 0

194.481 19.446 1.932 189 0 0 0

693 63 0 0 0 0 0

2.310 231 21 0 0 0 0

21 0 0 0 0 0 0

441 42 0 0 0 0 0

9.261 924 84 0 0 0 0

Table 2

Algorithm Reapply Count → 1 2 3 4 5 6

279 0 0 0 0 0 0

31.248 3.100 310 31 0 0 0

2.687.328 268.708 26.846 2666 248 0 0

340.101 34.007 3.379 310 31 0 0

62 0 0 0 0 0 0

651 62 0 0 0 0 0

31 0 0 0 0 0 0

961 93 0 0 0 0 0

29.791 2.976 279 0 0 0 0

923.521 92.349 9.207 899 62 0 0

28.629.151 2.862.912 286.285 28.613 2.852 279 0
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Table 3

Algorithm Reapply Count → 1 2 3 4 5

1.111 0 0 0 0 0

101 0 0 0 0 0

10.201 101 0 0 0 0

1.030.301 10.302 101 0 0 0

104.060.401 1.040.603 10.403 101 0 0

10.510.100.501 105.101.004 1.051.006 10.504 101 0

Here we came back to our first proof. Also in here we should think like if x
y ∈ Z,

then vzm(x,yk)
y ∈ Z. □

In this theorem, we also saw that the Vezir function’s result gave
us the same divisors of x and y.

Lemma 2.8.(
Gcd(y, S1(yk,m)) = 1

)
⇒

((
vzm(x, yk)

y
∈ Z

)
⇐⇒

(
x

y
∈ Z

))

Proof. Same as Lemma 2.3 proof we will see 2 possibilities for each side:
x
y /∈ Z: Then S1(yk,m)xy /∈ Z, so vzm(x,yk)

y /∈ Z because Gcd(y, S1(y, m)) =

1, in equation, S1(y, m) and y won’t be simplified.
x
y ∈ Z: Then S1(yk,m)xy ∈ Z, so vzm(x,yk)

y ∈ Z

If we try to come from the right-hand side to the left, there will be 2 cases too:
vzm(x,yk)

y /∈ Z: Then only possibility is S1(yk,m)xy /∈ Z, so x
y /∈ Z

vzm(x,yk)
y ∈ Z: Then only possibility is S1(yk,m)xy ∈ Z, so x

y ∈ Z because

Gcd(y, S1(yk,m)) = 1, in equation, S1(yk,m) and y won’t be simplified.

So all the possibilities in the if and only if equation will be accurate. □

2.3. Multiple Times Applied Vezir Function:

Definition 2.9. For future usage, we will use a function called multiple Vezir:
∀k :∈ Z+

vzm(x, y)(k) = vzm(. . . (vzm(x, y) . . . ), y)︸ ︷︷ ︸
k pieces

vzm(x, y)(0) = x

2.4. Connection Between Vezir Function and Greatest Common Divisor:

Lemma 2.10.
Gcd(vzm(x, y)) = Gcd(x, y)

Proof. We know that for some integer of x, applying it Vezir with some integer y
will give us a value that multiple of common divisors x and y. By the proof in
Lemma 2.7. This means Vezir will give us all the common divisors with some
different multiple that is not a divisor for y. So this will prove our claim. □
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2.5. More Generalized Version of Vezir Algorithm:

Definition 2.11. Vezir function already has 3 variables but it’s nothing compared
to the most generalized version of it. But first, we have Fil function. It has 5
variables and it can make some newborn divisibility rules.

fl : Z → Z where ∀a, b, c, n :∈ Z, ∀m :∈ N

flnm(a, b, c) = S0(a,m)S1(bc,m)− S1(a,m)(S0(bc,m)− nb)

Lemma 2.12.
a

b
∈ Z ⇒ flnm(a, b, c)

b
∈ Z

Proof.
flnm(a, b, c)

S0(a,m)S1(bc,m)− S1(a,m)(S0(bc,m)− nb)

S0(a,m)S1(bc,m)− S1(a,m)S0(bc,m) + S1(a,m)nb

vzm(a, bc) + S1(a,m)nb

If we try to divide by b:
vzm(a, bc)

b
+

S1(a,m)nb

b
vzm(a, bc)

b
+ S1(a,m)n

then all of the formulas turned into the same function with some additions as the
Vezir function. Our claim will be proved as same as Vezir’s. If vzm(a,bc)

b ∈ Z than

flnm(a, b, c) ∈ Z. But we proved that the only possibility that vzm(a,bc)
b ∈ Z is

a
b ∈ Z. This proves our claim. □

Lemma 2.13.(
Gcd(b, S1(b,m)) = 1

)
⇒

((
flnm(a, b, c)

b
∈ N

)
⇐⇒

(
a

b
∈ N

))

Proof. Same as other proof when it is an if and only if the situation, we will see 2
possibilities for each 2 sides. But now we don’t need much work to prove it, just
because it has a Vezir function in it. We are looking for only the non-integer part
so we can delete the integer part in the function. When deleting it we only got the
vzm(a,bc)

b part. But we proved it before. So our claim is proved. □

Example 2.14. 98 is a very big and uncomfortable number to work with. This
means it is very hard for a divisibility rule. But if we use fl−1

2 (a, 98, 2) then it will
be much easier,fl−1

2 (a, 98, 2) = S0(a, 2) + 2S1(a, 2):
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Table 4

Algorithm Reapply Count → 1 2 3 4 5

588 98 98 98 98 98

602.112 12.054 294 98 98 98

98 98 98 98 98 98

9.604 196 98 98 98 98

941.192 18.914 392 98 98 98

92.236.816 1.844.752 36.946 784 98 98

9.039.207.968 180.784.226 3.615.710 72.324 1.470 98

Example 2.15. Normally 7 has a really simple divisibility rule. It rule can be
found in Fil as this example. fl−1

1 (a, 7, 8) = 5S0(a, 1) + S1(a, 1):

Table 5

Algorithm Reapply Count → 1 2 3 4 5

21 7 35 28 42 14

2.310 231 28 42 14 21

45.360 4.536 483 63 21 7

7 35 28 42 14 21

49 49 49 49 49 49

343 49 49 49 49 49

2.401 245 49 49 49 49

16.807 1.715 196 49 49 49

117.649 11.809 1.225 147 49 49

823.543 82.369 8.281 833 98 49

5.764.801 576.485 57.673 5.782 588 98

Example 2.16. Normally 3 and 9 have very good design and simple divisibility
rules and we will find them in later the article but for now, there is a simple rule too.
for 3, fl−1

1 (a, 3, 4) = S0(a, 1)+S1(a, 1) same as 9, fl−1
1 (a, 9, 2) = S0(a, 1)+S1(a, 1).

Here are some examples for 3:
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  Volume 4 | Issue 1 | 7

Example 2.16. Normally 3 and 9 have very good design and simple divisibility rules and we will find them in later the article but for 
now, there is a simple rule too.

For 3,				          same as 9, 

Here are some examples for 3:

J Sen Net Data Comm, 2024

8 CAN KAAN KAYA

Table 4

Algorithm Reapply Count → 1 2 3 4 5

588 98 98 98 98 98

602.112 12.054 294 98 98 98

98 98 98 98 98 98

9.604 196 98 98 98 98

941.192 18.914 392 98 98 98

92.236.816 1.844.752 36.946 784 98 98

9.039.207.968 180.784.226 3.615.710 72.324 1.470 98

Example 2.15. Normally 7 has a really simple divisibility rule. It rule can be
found in Fil as this example. fl−1

1 (a, 7, 8) = 5S0(a, 1) + S1(a, 1):

Table 5

Algorithm Reapply Count → 1 2 3 4 5

21 7 35 28 42 14

2.310 231 28 42 14 21

45.360 4.536 483 63 21 7

7 35 28 42 14 21

49 49 49 49 49 49

343 49 49 49 49 49

2.401 245 49 49 49 49

16.807 1.715 196 49 49 49

117.649 11.809 1.225 147 49 49

823.543 82.369 8.281 833 98 49

5.764.801 576.485 57.673 5.782 588 98

Example 2.16. Normally 3 and 9 have very good design and simple divisibility
rules and we will find them in later the article but for now, there is a simple rule too.
for 3, fl−1

1 (a, 3, 4) = S0(a, 1)+S1(a, 1) same as 9, fl−1
1 (a, 9, 2) = S0(a, 1)+S1(a, 1).
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Table 6
2.6. Multiple Times Applied Fil Function
Definition 2.17. For future usage, we will use a function called multiple Fil: ∀k ∈ Z+
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Table 6

Algorithm Reapply Count → 1 2 3 4 5 6 7 8

21 3 3 3 3 3 3 3 3

2.310 231 24 6 6 6 6 6 6

691.200 69.120 6.912 693 72 9 9 9 9

3 3 3 3 3 3 3 3 3

9 9 9 9 9 9 9 9 9

27 9 9 9 9 9 9 9 9

81 9 9 9 9 9 9 9 9

243 27 9 9 9 9 9 9 9

729 81 9 9 9 9 9 9 9

2.178 225 27 9 9 9 9 9 9

6.534 657 72 9 9 9 9 9 9

19.602 1.962 198 27 9 9 9 9 9

58.806 5.886 594 63 9 9 9 9 9

2.6. Multiple Times Applied Fil Function:

Definition 2.17. For future usage, we will use a function called multiple Fil:
∀k ∈ Z+

flnm(a, b, c)(k) = flnm(. . . (flnm(a, b, c) . . . ), b, c)︸ ︷︷ ︸
k pieces

flnm(a, b, c)(0) = a

2.7. Connection Between Fil Function and Greatest Common Divisor:

Definition 2.18. We know that Fil has a Vezir inside, also in the part that has
no Vezir there is a y factor so this equation will be accurate:

Gcd(flnm(a, b, c), b) = Gcd(a, b)

3. Ratio Simplifying with General Divisibility Rules

Definition 3.1. Svz : Z → Z where ∀a, b :∈ Z, ∀m :∈ N:

Svzm(a, b) =
S1(a,m) + vzm(a,b)

b

S1(b,m)

Lemma 3.2.

Svzm(a, b) =
a

b
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Definition 3.1. Svz : Z → Z where ∀a,b :∈ Z, ∀m :∈ N:
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3.1. Infinite Series Version of Simplifying Function 
Lemma 3.3.  

10 CAN KAAN KAYA

Proof.

Svzm(a, b)

S1(a,m) + vzm(a,b)
b

S1(b,m)

S1(a,m) + S1(b,m)a−S1(a,m)b
b

S1(b,m)

S1(a,m) + S1(b,m)ab − S1(a,m)

S1(b,m)

S1(b,m)ab
S1(b,m)

a

b
□

3.1. Infinite Series Version of Simplifying Function:

Lemma 3.3.

Svzm(a, b) =

∞∑
n=0

S1(vzm(a, b)(n),m)

S1(b,m)n+1

Proof. In this proof, we will open out simplifying function’s ratio part:

Svzm(a, b)

S1(a,m) + vzm(a,b)
b

S1(b,m)

S1(a,m)

S1(b,m)
+

vzm(a,b)
b

S1(b,m)

S1(a,m)

S1(b,m)
+

S1(vzm(a,b),m)+
vzm(a,b)(2)

b

S1(b,m)

S1(b,m)

S1(a,m)

S1(b,m)
+

S1(vzm(a, b),m)

S1(b,m)2
+

vzm(a,b)(2)

b

S1(b,m)2

S1(a,m)

S1(b,m)
+

S1(vzm(a, b),m)

S1(b,m)2
+

S1(vzm(a,b)(2),m)+
vzm(a,b)(3)

b

S1(b,m)

S1(b,m)2

S1(a,m)

S1(b,m)
+

S1(vzm(a, b),m)

S1(b,m)2
+

S1(vzm(a, b)(2),m)

S1(b,m)3
. . .

∞∑
n=0

S1(vzm(a, b)(n),m)

S1(b,m)n+1

□
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3.2. Inverse Function of Vezir Function 
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3.2. Inverse Function of Vezir Function:

Definition 3.4. vz(−1) : Z → Z where ∀a, b, n :∈ Z, ∀m :∈ N: vzm(a, b)
(−1)
n is the

n’th value of inverse function of Vezir. This is because there is no one answer to
the inverse function of Vezir.

Lemma 3.5.

vzm(a, b)(−1)
n =

nb+ a

S1(b,m)

Proof. We will start by putting the value of vzm(a, b)
(−1)
n to simplifying function:

vzm(a, b)
(−1)
n

b
=

S1(vzm(a, b)
(−1)
n ,m) +

vzm(vzm(a,b)(−1)
n ,b)

b

S1(b,m)

vzm(a, b)
(−1)
n

b
=

S1(vzm(a, b)
(−1)
n ,m) + a

b

S1(b,m)

vzm(a, b)(−1)
n =

S1(vzm(a, b)
(−1)
n ,m)b+ a

S1(b,m)

Here we can see the only unknown part on the left-hand side is S1(vzm(a, b)
(−1)
n ,m).

This is because we can choose whatever we want so with a little bit change of
variable. We can say that,

vzm(a, b)(−1)
n =

nb+ a

S1(b,m)

□

3.3. Multiple Times Applied Inverse Vezir Function:

Definition 3.6. For future usage, we will use a function called multiple inverse
Vezir:

∀k :∈ Z+, ∀R ⊂ Z

vzm(x, y)
(−k)
R = vzm(. . . (vzm(x, y)

(−1)
R⌊ k

2
⌋
. . . )

(−1)
Rk−1

, y)
(−1)
Rk︸ ︷︷ ︸

k pieces

Here we can also find the Fil function version of all of them but
they will be the same proofs as these proofs so there is no need to
prove non-necessary functions.

3.4. Infinite Repeated Inverse Function of Vezir:

Lemma 3.7.

lim
h→∞

vzm(a, b)−h
R =

∞∑
i=0

Rib

S1(b,m)i+1

Proof.

lim
h→∞

vzm(a, b)
(−h)
R

lim
h→∞

bR1 +
bR2+

bR3+...

S1(b,m)

S1(b,m)

S1(b,m)
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lim
h→∞

bR1

S1(b,m)
+

bR2

S1(b,m)2
+

bR3

S1(b,m)3
+ . . .

lim
h→∞

h∑
i=0

bRi

S1(b,m)i+1

10

∞∑
i=0

bRi

S1(b,m)i+1

□

Conjecture: The pattern of R set is the pattern of multiple times
applied Vezir function of infinitely applied reverse Vezir function.

4. Full Versions of General Divisibility Rules

4.1. Full Version of Vezir Algorithm:

Definition 4.1. normally we use S() function in Vezir algorithm. But we can also
use the D() and Decimal() functions. And the formula will be like this:∀a, b ∈
Z, ∀m ∈ N,

Mvzm(a, b) =

Decimal(a)−1∑
i=0

(−1)iDi(a,m)S1(b,m)Decimal(a)−iS0(b,m)i

Lemma 4.2.
a

b
∈ N ⇒ Mvzm(a, b)

b
∈ N

Proof.
Decimal(a)−1∑

i=0

(−1)iDi(a,m)S1(b,m)Decimal(a)−iS0(b,m)i

Decimal(a)−1∑
i=0

(−1)iDi(a,m)(b− 10mS1(b,m))iS1(b,m)Decimal(a)−i

11 12 13
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(−1)i

(
Di(a,m)

( i∑
j=0

(
i

j

)(
bi−j(−10mS1(b,m))j

)

S1(b,m)Decimal(a)−i

))(4.1)

Decimal(a)−1∑
i=0

(−1)i

(
Di(a,m)

( i∑
j=0

(
i

j

)(
bi−j(−10mS1(b,m))j

S1(b,m)Decimal(a)−i
)))(4.2)

10∀x : |x| < 1|
∑∞

i=0 x
−i = 1

1− 1
x

[4]

11∀x, y ∈ R, ∀n ∈ N+|(x+ y)n =
∑n

i=0

(n
i

)
xiyn−i[5]

12∀x, y ∈ N|
(x
y

)
= x!

y!(x−y)!
13∀x ∈ N|x! = x(x− 1)(x− 2) · · · 3 · 2 · 1

Lemma 3.5,
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(4.7)

Here we have two sides of the equation one of them is the right side of the plus sign which has a factor called a and other is the left side 
of the plus sign which has a factor called y. Also, other factors are integers. So, if we try to divide it by y:

In here if              then the whole equation will be an integer. This proves our claim.	

Lemma 4.3.
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(4.10)

In here if a
b ∈ Z then the whole equation will be an integer. This proves our

claim. □

Lemma 4.3.(
Gcd(b, S1(b,m)) = 1

)
⇒

((
Mvzm(a, b)

b
∈ N

)
⇐⇒

(
a

b
∈ N

))

Proof. Same as all of the if and only if proofs we see aGcd(b, S1(b,m)) = 1 situation.
In here only thing we should think is that if Gcd(b, S1(b,m)) = 1 then for every
natural number x, Gcd(b, S1(b,m)x) = 1. So all the proof is coming from Lemma
2.3. □

Example 4.4. In 101 we see the same result as the normal 101 divisibility rule:

Table 7

Algorithm Reapply Count → 1 2 3 4 5 6 7 8

101 0 0 0 0 0 0 0 0

10.201 0 0 0 0 0 0 0 0

1.030.301 11 0 0 0 0 0 0 0

104.060.401 0 0 0 0 0 0 0 0
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b ∈ Z then the whole equation will be an integer. This proves our

claim. □
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Proof. Same as all of the if and only if proofs we see a Gcd(b,S1(b,m)) = 1 situation. In here only thing we should think is that if 
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be like this: ∀a, b, c, n ∈ Z, ∀m ∈ N,
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Example 4.5. In 11 we found the same result as the normal 11 divisibility rule:

Table 8

Algorithm Reapply Count → 1 2 3 4 5 6 7 8

564.537.600 0 0 0 0 0 0 0 0

209 11 0 0 0 0 0 0 0

1.331 0 0 0 0 0 0 0 0

14.641 0 0 0 0 0 0 0 0

161.051 0 0 0 0 0 0 0 0

1.771.561 0 0 0 0 0 0 0 0

19.487.171 0 0 0 0 0 0 0 0

40909 22 0 0 0 0 0 0 0

4.2. Full Version of Fil Algorithm:

Definition 4.6. normally we use S() function in Fil algorithm. But we can also
use the D() and Decimal functions. And the formula will be like this:∀a, b, c, n ∈
Z, ∀m ∈ N,

Mflnm(a, b, c)
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))(4.11)
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Decimal(a)−1∑
i=0

(−1)i

(
Di(a,m)

( i∑
j=0

(
i

j

)(
(bc− bn)i−j(−10mS1(bc,m))j

S1(bc,m)Decimal(a)−i
)))(4.12)

Decimal(a)−1∑
i=0

(−1)i

(
Di(a,m)

(i−1∑
j=0

(
i

j

)(
(bc− bn)i−j(−10mS1(bc,m))j

S1(bc,m)Decimal(a)−i
)

+S1(bc,m)Decimal(a)−i(−10mS1(bc,m))i
))

(4.13)

Decimal(a)−1∑
i=0

(−1)i

(
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(i−1∑
j=0

(
i

j

)(
(bc− bn)i−j(−10mS1(bc,m))j

S1(bc,m)Decimal(a)−i
)

+S1(bc,m)Decimal(a)(−10m)i
))

(4.14)

Decimal(a)−1∑
i=0

(−1)i

(
Di(a,m)

(i−1∑
j=0

(
i

j

)(
(bc− bn)i−j(−10mS1(bc,m))j

S1(bc,m)Decimal(a)−i
)))

+

Decimal(a)−1∑
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(−1)iDi(a,m)S1(bc,m)Decimal(a)(−10m)i

(4.15)

Decimal(a)−1∑
i=0

(−1)i

(
Di(a,m)

(i−1∑
j=0

(
i

j

)(
(bc− bn)i−j(−10mS1(bc,m))j

S1(bc,m)Decimal(a)−i
)))

+

Decimal(a)−1∑
i=0

Di(a,m)S1(bc,m)Decimal(a)10mi

(4.16)

Decimal(a)−1∑
i=0

(−1)i

(
Di(a,m)

(i−1∑
j=0

(
i

j

)(
(bc− bn)i−j(−10mS1(bc,m))j

S1(bc,m)Decimal(a)−i
)))

+S1(bc,m)Decimal(a)

Decimal(a)−1∑
i=0

Di(a,m)10mi

(4.17)
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Decimal(a)−1∑
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)

(
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S1(bc,m)Decimal(a)−i
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+aS1(bc,m)Decimal(a)

(4.19)

Here we have two sides of the equation one of them is the right side of the plus sign
which has a factor called a and the other is the left side of the plus sign which has
a factor called b. Also, other factors is integers. So if we try to divide it by b:

(bc− bn)

b

Decimal(a)−1∑
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(−1)i

(
Di(a,m)
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j=0
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i

j
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b

(4.20)

(c− n)
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j=0
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i

j
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(bc− bn)i−j−1(−10mS1(b,m))jS1(bc,m)Decimal(a)−i
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+
aS1(bc,m)Decimal(a)

b

(4.21)

In here if a
b ∈ Z then the whole equation will be an integer. This proves our

claim. □

Lemma 4.8.(
Gcd(b, S1(bc,m)) = 1

)
⇒

((
Mflnm(a, b, c)

b
∈ N

)
⇐⇒

(
a

b
∈ N

))

Proof. Same as all of the if and only if proofs we see a Gcd(b, S1(bc,m)) = 1
situation. In here only thing we should think is that if Gcd(b, S1(b,m)) = 1 then
for every natural number x, Gcd(b, S1(bc,m)x) = 1. So all the proof is coming from
Lemma 2.3. □
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In here if a
b ∈ Z then the whole equation will be an integer. This proves our
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)
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Proof. Same as all of the if and only if proofs we see a Gcd(b, S1(bc,m)) = 1
situation. In here only thing we should think is that if Gcd(b, S1(b,m)) = 1 then
for every natural number x, Gcd(b, S1(bc,m)x) = 1. So all the proof is coming from
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Here we have two sides of the equation one of them is the right side of the plus sign which has a factor called a and the other is the left 
side of the plus sign which has a factor called b. Also, other factors is integers. So, if we try to divide it by b:

In here if              then the whole equation will be an integer. This proves our claim.

Lemma 4.8.

Proof. Same as all of the if and only if proofs we see a Gcd(b,S1(bc,m)) = 1 situation. In here only thing we should think is that if 
Gcd(b,S1(b,m)) = 1 then for every natural number x, Gcd(b,S1(bc,m)x) = 1. So, all the proof is coming from Lemma 2.3.

Example 4.9. In 3 and 9 we get the same result as the normal divisibility rule.
In 3:
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Example 4.9. In 3 and 9 we get the same result as the normal divisibility rule.
In 3:

Table 9

Algorithm Reapply Count → 1 2 3 4 5 6 7 8

9 9 9 9 9 9 9 9 9

42 6 6 6 6 6 6 6 6

84.240 18 9 9 9 9 9 9 9

81 9 9 9 9 9 9 9 9

729 18 9 9 9 9 9 9 9

6.561 18 9 9 9 9 9 9 9

59.049 18 9 9 9 9 9 9 9

531.441 18 9 9 9 9 9 9 9

4.782.969 45 9 9 9 9 9 9 9

43.046.721 27 9 9 9 9 9 9 9

39.999.999 57 12 3 3 3 3 3 3

5. Finding Prime Numbers With General Divisibility Rules
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Table 9

5. Finding Prime Numbers with General Divisibility Rules
5.1. Finding Prime Numbers with Vezir Function
Lemma 5.1. Vezir is a divisibility rule for every number. Also, it is a Gcd() simpler. With these truths, we can use to find prime numbers 
like this by using Lemma 1.4:

5.2. Finding Prime Numbers with Fil Function:
Lemma 5.2. Vezir is a divisibility rule for every number. Also, it is a Gcd() simpler. With these truths, we can use to find prime numbers 
like this by using Lemma 1.4:

Example 5.3. We can use the Pn# type of numbers. For example, 2310:

Lemma 1.1. 

Lemma 1.4. 

Lemma 1.4. 
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Example 5.3. We can use the Pn# type of numbers. For example 2310:

Table 10

Algorithm Reapply Count → |vz2(a, 2310)| ↓

703 1

101 13

401 17

503 19

1 23

403 29

1307 31

601 37

1103 41

701 47

2011 53

103 59

1007 61

1409 67

907 71

2213 79

1711 83

2113 89

1109 97

1201 97

607 101

...
...

Table 10

Example 5.4. We can use not only the Pn# type of numbers. Also, we can use their multiples. For example, 120:
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Example 5.4. We can use not only the Pn# type of numbers. Also, we can use
their multiples. For example 120:

Table 11

Algorithm Reapply Count → |vz2(a, 120)| ↓

101 19

103 17

107 13

113 7

127 7

131 11

137 17

133 13

139 19

143 23

149 29

151 31

157 37

161 41

163 43

167 47

5.3. Checkmate Theorem:

Lemma 5.5.
fl1m(a, b, 1)− vzm(a, b) = S1(a,m)b

Proof.
fl1m(a, b, 1)− vzm(a, b)

vzm(a, b) + S1(a,m)b− vzm(a, b)

S1(a,m)b

□

5.4. Main Conjecture: For ∃a, b,m ∈ N, fl1m(a, b, 1) and vzm(a, b) will be pos-
itive and by using the properties in Lemma 5.1 and Lemma 5.2 we can make
them prime numbers. Also in their properties, y must be an even number. Also
using the checkmate theorem in Lemma 5.5, we can get their difference set to
S1(a,m)b. So if we choose a and y correctly we can find 2 prime numbers that have
a difference of S1(a,m)b. The question is, can we find infinitely many? There is no
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Table 11

5.3. Checkmate Theorem
Lemma 5.5.

5.4. Main Conjecture
For ∃a,b,m ∈ N, flm1 (a,b,1) and vzm(a,b) will be positive and by 
using the properties in Lemma 5.1 and Lemma 5.2 we can make 
them prime numbers. Also, in their properties, y must be an even 
number. Also using the checkmate theorem in Lemma 5.5, we 
can get their difference set to S1(a,m)b. So, if we choose a and y 
correctly we can find 2 prime numbers that have a difference of 
S1(a,m)b. The question is, can we find infinitely many? There is no 
full proof in here but all the things are connecting to this solution. 
The last job is to find a formula for it with these properties. The 
main conjecture is we can find a general formula with these 
functions [1-5].
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