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Abstract
This paper develops a unified theoretical structure for quantum mechanics and general relativity within a six-dimensional Euclid-
ean space-time (𝑅⁶ = 𝑥₁ + 𝑥₂ + 𝑥₃ + 𝑡₁ + 𝑡₂  + 𝑡₃). The approach focuses on the behavior of physical systems over finite durations 
and relates observed phenomena to geometric features of space-time. Unlike existing models, it explicitly connects intrinsic 
properties of matter and fundamental constants to the structure of space-time itself. The theory yields deterministic results where 
conventional quantum mechanics relies on probability, using a metric based on elliptical eccentricity that incorporates temporal 
mass distribution. This framework also introduces a geometrical account for phenomena currently attributed to dark matter and 
dark energy, offering a fresh basis for interpreting large-scale cosmic dynamics.
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1. Introduction
In the past century, significant efforts have been dedicated to reconciling quantum mechanics and general relativity. The inherent non-
deterministic nature of quantum mechanical phenomena has posed a fundamental challenge to the compatibility of these two pillars 
of modern physics. At the heart of this incompatibility lies the unreality of quantum mechanical phenomena, which stands in stark 
contrast to the deterministic framework of general relativity. This discrepancy has been a subject of intense theoretical and experimental 
investigation, reflecting the profound implications for our understanding of the fundamental nature of reality. Albert Einstein, a key 
figure in the development of both quantum mechanics and general relativity, articulated a perspective that sheds light on this fundamental 
issue. According to Einstein, the reality of a physical quantity is contingent upon the ability to predict that reality with certainty, without 
inducing any disruption or disorder within the system. This criterion, rooted in the classical determinism of physics, underscores the 
challenge posed by the inherently probabilistic nature of quantum mechanics [1].

To unite two theories, the two theories must share identical attitudes towards physical quantities. Understanding the phenomenon of 
quantum mechanics can be achieved through a comprehensive knowledge of the origins of mass, spin, electric charge, and other related 
factors. This understanding is crucial for the integration of theories and the advancement of scientific knowledge in the field [2-6]. 
The exploration of time's nature has become increasingly crucial in the ongoing development of the theory of everything, particularly 
in light of the remarkable successes of quantum mechanics. As we strive towards a comprehensive understanding of the universe, it 
is imperative to consider the fundamental nature of time and its role in shaping the fabric of reality. By delving into the intricacies of 
temporal dynamics, we can gain valuable insights that may ultimately lead to a more unified and comprehensive theoretical framework. 
This endeavor holds great promise for advancing our understanding of the cosmos and represents a pivotal strategy in the evolution of 
scientific thought [7]. 

A new approach to understanding quantum mechanics phenomena involves reexamining the nature of space-time. Describing events 
outside of the constraints of time is a novel area of study that offers a fresh perspective in the field of physics. This new outlook 
provides a different vantage point from which to explore the universe. Research and scholarly work in this area is centered on defining 
different metrics within a six-dimensional space. This shift in perspective opens up new possibilities for comprehending the fundamental 
principles that govern the behavior of particles at the quantum level [8-12]. The incorporation of six-dimensional space as a framework 
for understanding space-time presents certain challenges, yet it proves to be highly advantageous in elucidating various phenomena 
within the realm of quantum mechanics [13]. The concept of space-time metric, described in terms of elliptical eccentricity, offers a 
compelling solution to several longstanding problems in the field of astrophysics and cosmology. This innovative approach provides 
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a new framework for understanding the fundamental nature of space-time and its impact on the behavior of celestial bodies. One of 
the key advantages of employing elliptical eccentricity in the metric description of space-time is its ability to account for the non-
uniform distribution of mass and energy throughout the universe. Traditional models often struggle to accurately represent the complex 
gravitational interactions that occur in systems with significant asymmetry or irregularity. By incorporating elliptical eccentricity into 
the metric, scientists can more effectively capture the dynamic and intricate nature of these systems, leading to more accurate predictions 
and explanations of observed phenomena.

Furthermore, this approach has the potential to address discrepancies between theoretical predictions and observational data related to 
the motion of celestial bodies. The incorporation of elliptical eccentricity into the space-time metric offers a more nuanced understanding 
of gravitational effects, allowing for better alignment between theoretical calculations and empirical evidence. This has significant 
implications for our ability to model and interpret the behavior of objects ranging from individual stars to entire galaxies. In addition, 
the use of elliptical eccentricity in the metric description of space-time has implications for our understanding of the fundamental 
structure of the universe. By providing a more comprehensive framework for incorporating the effects of mass and energy distribution, 
this approach has the potential to shed light on longstanding mysteries such as dark matter and dark energy. It may also offer new 
insights into the behavior of black holes and other exotic astronomical phenomena. Overall, the incorporation of elliptical eccentricity 
into the metric description of space-time represents a promising avenue for advancing our understanding of the cosmos. By providing 
a more accurate and comprehensive model of gravitational interactions, this approach has the potential to revolutionize our ability to 
explain and predict a wide range of astrophysical phenomena. As researchers continue to explore and refine this innovative framework, 
it is likely to yield discoveries and deepen our appreciation for the intricate interplay between space, time, and the forces that shape the 
universe [14,15]. In this six-dimensional space-time framework, quantum mechanics offers a comprehensive and elegant way to describe 
the behavior of particles and their interactions. By incorporating both the three dimensions of space and the three dimensions of time, 
this approach provides a more complete picture of the dynamics of quantum systems. The concept of six-dimensional space-time has 
profound implications for our understanding of phenomena such as quantum entanglement, particle-wave duality, and the behavior of 
subatomic particles. It allows for a more nuanced and sophisticated description of these phenomena, shedding light on the underlying 
principles that govern the behavior of the quantum world [16]. The concept of time as an independent dimension from space allows for 
the definition of a unique type of 'motion' in time itself. When considering extrinsic geometry, this motion in time can be understood 
as a 'real' distance. The unidirectional nature of time is expressed by the time arrow, and it is observed that objects move at varying 
speeds within this dimension. The rate of an object's movement through time is directly related to its mass, with denser objects moving 
more slowly in the time dimension. This relationship between mass and movement through time is further exemplified by phenomena 
such as gravitational time dilation and time dilation for moving objects. These occurrences express the change in density of an object 
within the space-time continuum, resulting in a slower movement through time for denser objects. The balance theory delves into the 
equilibrium of events and quantities across the three dimensions of time and the three dimensions of space within the six dimensions of 
space-time [17]. This theory provides a framework for understanding the interplay between temporal and spatial dimensions, offering 
insights into the dynamic nature of the universe. In conclusion, the consideration of time as an independent dimension opens up new 
avenues for understanding motion and the interplay between mass, space, and time. It provides a framework for exploring the intricacies 
of the universe and offers valuable insights into the fundamental nature of reality. The paper addresses several key defects in a particular 
theory, aiming to establish a balance and parity between time, space, and physical quantities. Its theories the concept of mass resulting 
from movement in both time dimensions and space, emphasizing the interconnectedness of these fundamental aspects. The proposition 
that time can be disregarded in the sub-atomic realm is explored, with examples illustrating particle behavior within different time 
dimensions. Furthermore, the paper discusses the relationship between particle state entanglement and higher dimensions, highlighting 
the intriguing closeness of particles despite spatial separation. Additionally, the article explores the potential independence of three-
time dimensions from three space dimensions and their deep interconnections for analyzing quantum mechanics and general relativity 
phenomena. The nature and cause of quantum mechanical phenomena are attributed to the relationship between fundamental constants 
and key mathematical numbers. Finally, the paper emphasizes the significance of a geometrical interpretation for unifying quantum 
mechanics with general relativity.

2. Six-Dimensional Space-Time
The space-time framework considered in this study is a Euclidean 6-dimensional manifold, denoted as 3+3, comprising three spatial 
coordinates (x,y,z) and three temporal coordinates (t−,t, t+) (2.1) From the standpoint of an external observer, time is structured as a 
three-dimensional imaginary vector space, although it is directly perceived as a single observable dimension. (1.2) (2.2) 

The y and z spatial dimensions are imaginary from the perspective of one-dimensional entities confined to motion along a circular path. 
This circle is situated on the surface of a three-dimensional sphere that undergoes continuous expansion (see Figure 1). As a result of
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The space-time framework considered in this study is a Euclidean 6-dimensional manifold, 
denoted as 3+3, comprising three spatial coordinates (x,y,z) and three temporal coordinates (t−,t,
t+) (2.1) From the standpoint of an external observer, time is structured as a three-dimensional 
imaginary vector space, although it is directly perceived as a single observable dimension. (1.2) 
(2.2)

𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3) ∈ 𝑅𝑅6 1.2

𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑥𝑥12 + 𝑑𝑑𝑥𝑥22 + 𝑑𝑑𝑥𝑥32 − (𝑐𝑐2𝑑𝑑𝑡𝑡12 + 𝑐𝑐2𝑑𝑑𝑡𝑡22 + 𝑐𝑐2𝑑𝑑𝑡𝑡32) 2.2

The y and z spatial dimensions are imaginary from the perspective of one-dimensional entities confined 
to motion along a circular path. This circle is situated on the surface of a three-dimensional sphere that 
undergoes continuous expansion (see Figure 1). As a result of their limited frame of reference, these 
one-dimensional observers perceive two imaginary dimensions projected onto a single imaginary 
direction due to parallax effects. Additionally, the temporal structure includes an internal dimension.
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Figure 1. A circle located on the surface of an expanding three-dimensional sphere grows proportionally 
with the sphere’s expansion. For observers confined to this circle, the y and z

Time dilation the rate of progression through the time dimension is influenced by both the mass 
and velocity of the observer. These two factors are directly associated with the eccentricity of the 
ellipse describing the observer's trajectory in space-time (Figure 2). The eccentricity defined in 
spatial dimensions affects the temporal dimensions as well. From the standpoint of extrinsic 
geometry, both relativistic time dilation due to motion and gravitational time dilation in a 
gravitational field can be formulated as a function of the angle θ (2.3). Variations in density or 
speed contribute to changes in eccentricity across the dimensions of space-time.
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Figure 2: Time dilation of the moving object and gravitational time dilation express the direct relationship 
between mass & density with time.
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Figure 1: A circle located on the surface of an expanding three-dimensional sphere grows proportionally with the sphere’s expansion. 
For observers confined to this circle, the y and z dimensions appear as imaginary components, projected from their limited viewpoint 
onto a single perceived imaginary dimension

Time dilation the rate of progression through the time dimension is influenced by both the mass and velocity of the observer. These 
two factors are directly associated with the eccentricity of the ellipse describing the observer's trajectory in space-time (Figure 2). The 
eccentricity defined in spatial dimensions affects the temporal dimensions as well. From the standpoint of extrinsic geometry, both 
relativistic time dilation due to motion and gravitational time dilation in a gravitational field can be formulated as a function of the angle 
θ (2.3). Variations in density or speed contribute to changes in eccentricity across the dimensions of space-time. 

Eccentricity in one axis causes eccentricity in other axes. As a result of this eccentricity, the path traversed in space-time has a rotation 
equal to ¼ of the circumference of the hypothetical circle with the radius of the density (field). Figure 3
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Figure 2: Time dilation of the moving object and gravitational time dilation express the direct relationship between mass & density with 
time

Figure 3: Eccentricity in space causes to create time dilation for the moving object compared to the 2-time axles

The passed distance in space is real six-dimensional from the perspective of space-time. But the distance from the perspective of 4 or 
5-dimensional space-time is expressed in hyperbolic geometry. (2.4) (2.5)
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Eccentricity in one axis causes eccentricity in other axes. As a result of this eccentricity, the path 
traversed in space-time has a rotation equal to ¼ of the circumference of the hypothetical circle 
with the radius of the density (field). Figure 3

Figure 3: Eccentricity in space causes to create time dilation for the moving object compared to the 2-time 
axles.

As a result of defining the passed distance in space-time, is dependent on the space-time 
expansion, the light speed as well as eccentricity in six-dimensional space-time. (2.6)

𝜂𝜂 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑠𝑠−1(Δ𝑥𝑥
𝑐𝑐

))  , 𝜇𝜇 = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐𝑐𝑐𝑠𝑠−1 (𝛥𝛥𝑥𝑥
𝑐𝑐

))  
    

      

𝜇𝜇 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑐𝑐𝑠𝑠−1(𝛥𝛥𝛥𝛥
𝑐𝑐

))  , 𝜂𝜂 = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑐𝑐𝑐𝑐𝑠𝑠−1(𝛥𝛥𝛥𝛥
𝑐𝑐

))              2.6

θ + ϕ = 90 ⇒ sin2 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜙𝜙 = (sin𝜃𝜃 cos𝜙𝜙)(sin𝜙𝜙𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑠𝑠2 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠2 𝜙𝜙

𝑐𝑐𝑐𝑐𝑠𝑠2 𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠2(90 − 𝜃𝜃) ⇒ 𝜙𝜙 = 90 − 𝜃𝜃

In six-dimensional space, there are five degrees of freedom. From the perspective of 4–
dimensional space-time, two-time dimensions are observed in one dimension. Consequently, the 
two angles, related to eccentricity are expressed by the angle θ. The angle κ is also for expansion 
and final movement in time. Figure 4
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dimensional space-time, two-time dimensions are observed in one dimension. Consequently, the 
two angles, related to eccentricity are expressed by the angle θ. The angle κ is also for expansion 
and final movement in time. Figure 4
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As a result of defining the passed distance in space-time, is dependent on the space-time expansion, the light speed as well as eccentricity 
in six-dimensional space-time. (2.6) 
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Figure 4: The density of each object has a length in the time dimension and it is embedded around a
sphere with a radius equal to the density which is called a “mass field”.

While moving the rigid object in space, the radius of the field and object lengths change which is 
proportional to density. The angles related to eccentricity exist in equilibrium in the two-time 
dimensions. (2.7)
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With consideration of the two-time axles, the matter is stressed by space–time. The exerted stress 
on the matter from time dimensions is twice the exerted stress from space dimensions. This twice 
proportion has a direct connection with the golden constant. (2.8)
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Figure 5: Two dimensions of time are seen from the perspective of three-dimensional space in one 
dimension, and as a result, this causes the material to experience double stress from the time dimensions.

From the perspective of extrinsic geometry, the imaginary dimension of time is a real dimension. 
And the distance traveled in space-time is a real path over time. (2.9)
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Figure 4: The density of each object has a length in the time dimension and it is embedded around a sphere with a radius equal to the 
density which is called a “mass field”

While moving the rigid object in space, the radius of the field and object lengths change which is proportional to density. The angles 
related to eccentricity exist in equilibrium in the two-time dimensions. (2.7) 

With consideration of the two-time axles, the matter is stressed by space–time. The exerted stress on the matter from time dimensions is 
twice the exerted stress from space dimensions. This twice proportion has a direct connection with the golden constant. (2.8)
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Figure 5: Two dimensions of time are seen from the perspective of three-dimensional space in one dimension, and as a result, this causes 
the material to experience double stress from the time dimensions
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From the perspective of extrinsic geometry, the imaginary dimension of time is a real dimension. And the distance traveled in space-time 
is a real path over time. (2.9) 

The angles θ and ϕ indicate the extent of eccentricity. The metric of space-time is expressed based on the two angles of θ, according to 
the surface metric of the sphere (3sphere). (2.10) 

The matter with a 3-dimensional nature creates heterogeneity in the space density with higher dimensions. As a result of this heterogeneity, 
matter moves in space–time. Meanwhile, heterogeneity is a factor in creating eccentricity and stress to the material. Based on creating 
heterogeneity in space–time structure by matter and energy, density can be expressed in the form of passed distance in space–time. 
The oscillation of heterogeneity in space-time creates gravitational mass. Mass cannot exist in the past or future; therefore, expressing 
negative density is necessary for the Energy momentum tensor (2.11).
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⎥
⎥
⎥
⎥
⎤

𝑀𝑀{1,−1,−1,0,−1,1}         � 2sin(30)+1
2cos(60)+2𝑖𝑖

� � 2sin(30)−1
2cos(60)−2𝑖𝑖

� = 0 

The matter with a 3-dimensional nature creates heterogeneity in the space density with higher 
dimensions. As a result of this heterogeneity, matter moves in space–time. Meanwhile, 
heterogeneity is a factor in creating eccentricity and stress to the material. Based on creating 
heterogeneity in space–time structure by matter and energy, density can be expressed in the form 
of passed distance in space–time. The oscillation of heterogeneity in space-time creates 
gravitational mass. Mass cannot exist in the past or future; therefore, expressing negative density 
is necessary for the Energy momentum tensor (2.11).

sin 0 = 0 ⇒ 𝑥𝑥, 𝛥𝛥 ≠ 𝜂𝜂    𝜉𝜉 = sin (cos−1(
∆𝑥𝑥
𝜂𝜂

)) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜂𝜂𝑐𝑐𝑠𝑠−1(
∆𝑦𝑦
𝜂𝜂

)) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜂𝜂𝑐𝑐𝑠𝑠−1(
∆𝑧𝑧
𝜂𝜂

))

𝛥𝛥 =
𝛥𝛥0
𝜉𝜉
≡ 𝛥𝛥 = 𝛥𝛥0�1 −

2𝐺𝐺𝑀𝑀
𝑟𝑟𝜂𝜂2

⇒ 𝜂𝜂�𝜂𝜂21 + 𝜂𝜂22 + 𝜂𝜂23� = 𝑟𝑟𝑥𝑥,𝜌𝜌𝜂𝜂 ⇒ sin (cos−1(
√2𝐺𝐺𝑀𝑀
𝜂𝜂√𝑟𝑟

)) ≡ 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙

𝛥𝛥 =
𝛥𝛥0
𝜂𝜂

  , 𝑙𝑙 =
𝑙𝑙0
𝜂𝜂

  , 𝑚𝑚 =
𝑚𝑚0

𝜂𝜂
    𝑚𝑚𝑡𝑡 =

ℎ𝜈𝜈
𝜂𝜂2

  , (  𝜌𝜌𝜂𝜂)
1
2 = ∆�́�𝑥  , 𝑟𝑟𝑥𝑥,𝜌𝜌 = ∆𝑥𝑥 + ∆�́�𝑥  ,  

(𝑚𝑚𝑡𝑡 + 𝑚𝑚𝑥𝑥) = 𝑚𝑚𝑡𝑡

𝜂𝜂
  → 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 𝑚𝑚𝑡𝑡

𝑚𝑚𝑡𝑡+𝑚𝑚𝑥𝑥
2.11

(𝜌𝜌𝜂𝜂) = ∆�́�𝑥2  , �
𝜂𝜂
𝜌𝜌�

= ∆�́�𝛥2

8 
 

𝜂𝜂𝜂𝜂 = 𝛥𝛥𝛥𝛥    ,    𝜇𝜇𝜂𝜂 = Δ𝑥𝑥    ⇒ 𝛥𝛥𝑥𝑥2 + 𝛥𝛥𝛥𝛥2 = 𝜂𝜂2 ⇒ 𝑑𝑑𝑠𝑠2 = 𝜂𝜂2𝑑𝑑𝛥𝛥2 − 𝑑𝑑𝑥𝑥12 − 𝑑𝑑𝑥𝑥22 − 𝑑𝑑𝑥𝑥32

The angles θ and ϕ indicate the extent of eccentricity. The metric of space-time is expressed 
based on the two angles of θ, according to the surface metric of the sphere (3sphere). (2.10)

𝑆𝑆3 ⟶ 𝑑𝑑𝑠𝑠2 = 𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑑𝑑𝜙𝜙2 + 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2 2.10

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 𝜂𝜂𝑐𝑐𝑠𝑠𝜙𝜙, 𝜂𝜂𝑐𝑐𝑠𝑠𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙 →

𝛥𝛥−  , 𝛥𝛥+   ∈ 𝛥𝛥  ⇒   𝑑𝑑�́�𝑠2 = 𝑎𝑎2𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑎𝑎2𝑟𝑟2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝑑𝑑𝜙𝜙2 + 𝑟𝑟  𝑎𝑎2  𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝜂𝜂𝑐𝑐𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2  ,

𝑑𝑑𝑠𝑠2 = 𝑟𝑟𝑎𝑎2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝜂𝜂𝑐𝑐𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2 + 𝑟𝑟2𝑎𝑎2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃𝑑𝑑𝜙𝜙2 + 𝑟𝑟2𝑎𝑎2𝑑𝑑𝜃𝜃2 + 𝑎𝑎2𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑎𝑎2𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑑𝑑𝜙𝜙2

+𝑎𝑎𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2

𝑔𝑔𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎡𝑟𝑟𝑎𝑎

2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝜂𝜂𝑐𝑐𝑠𝑠2𝜙𝜙 0 0 0 0 0
0 𝑟𝑟2𝑎𝑎2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃 0 0 0 0
0 0 𝑟𝑟2𝑎𝑎2 0 0 0
0 0 0 𝑎𝑎2𝑟𝑟2 0 0
0 0 0 0 𝑎𝑎2𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 0
0 0 0 0 0 𝑎𝑎  𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙⎦

⎥
⎥
⎥
⎥
⎤

𝑀𝑀{1,−1,−1,0,−1,1}         � 2sin(30)+1
2cos(60)+2𝑖𝑖

� � 2sin(30)−1
2cos(60)−2𝑖𝑖

� = 0 

The matter with a 3-dimensional nature creates heterogeneity in the space density with higher 
dimensions. As a result of this heterogeneity, matter moves in space–time. Meanwhile, 
heterogeneity is a factor in creating eccentricity and stress to the material. Based on creating 
heterogeneity in space–time structure by matter and energy, density can be expressed in the form 
of passed distance in space–time. The oscillation of heterogeneity in space-time creates 
gravitational mass. Mass cannot exist in the past or future; therefore, expressing negative density 
is necessary for the Energy momentum tensor (2.11).

sin 0 = 0 ⇒ 𝑥𝑥, 𝛥𝛥 ≠ 𝜂𝜂    𝜉𝜉 = sin (cos−1(
∆𝑥𝑥
𝜂𝜂

)) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜂𝜂𝑐𝑐𝑠𝑠−1(
∆𝑦𝑦
𝜂𝜂

)) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜂𝜂𝑐𝑐𝑠𝑠−1(
∆𝑧𝑧
𝜂𝜂

))

𝛥𝛥 =
𝛥𝛥0
𝜉𝜉
≡ 𝛥𝛥 = 𝛥𝛥0�1 −

2𝐺𝐺𝑀𝑀
𝑟𝑟𝜂𝜂2

⇒ 𝜂𝜂�𝜂𝜂21 + 𝜂𝜂22 + 𝜂𝜂23� = 𝑟𝑟𝑥𝑥,𝜌𝜌𝜂𝜂 ⇒ sin (cos−1(
√2𝐺𝐺𝑀𝑀
𝜂𝜂√𝑟𝑟

)) ≡ 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙

𝛥𝛥 =
𝛥𝛥0
𝜂𝜂

  , 𝑙𝑙 =
𝑙𝑙0
𝜂𝜂

  , 𝑚𝑚 =
𝑚𝑚0

𝜂𝜂
    𝑚𝑚𝑡𝑡 =

ℎ𝜈𝜈
𝜂𝜂2

  , (  𝜌𝜌𝜂𝜂)
1
2 = ∆�́�𝑥  , 𝑟𝑟𝑥𝑥,𝜌𝜌 = ∆𝑥𝑥 + ∆�́�𝑥  ,  

(𝑚𝑚𝑡𝑡 + 𝑚𝑚𝑥𝑥) = 𝑚𝑚𝑡𝑡

𝜂𝜂
  → 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 𝑚𝑚𝑡𝑡

𝑚𝑚𝑡𝑡+𝑚𝑚𝑥𝑥
2.11

(𝜌𝜌𝜂𝜂) = ∆�́�𝑥2  , �
𝜂𝜂
𝜌𝜌�

= ∆�́�𝛥2

8 
 

𝜂𝜂𝜂𝜂 = 𝛥𝛥𝛥𝛥    ,    𝜇𝜇𝜂𝜂 = Δ𝑥𝑥    ⇒ 𝛥𝛥𝑥𝑥2 + 𝛥𝛥𝛥𝛥2 = 𝜂𝜂2 ⇒ 𝑑𝑑𝑠𝑠2 = 𝜂𝜂2𝑑𝑑𝛥𝛥2 − 𝑑𝑑𝑥𝑥12 − 𝑑𝑑𝑥𝑥22 − 𝑑𝑑𝑥𝑥32

The angles θ and ϕ indicate the extent of eccentricity. The metric of space-time is expressed 
based on the two angles of θ, according to the surface metric of the sphere (3sphere). (2.10)

𝑆𝑆3 ⟶ 𝑑𝑑𝑠𝑠2 = 𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑑𝑑𝜙𝜙2 + 𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2 2.10

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 𝜂𝜂𝑐𝑐𝑠𝑠𝜙𝜙, 𝜂𝜂𝑐𝑐𝑠𝑠𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙 →

𝛥𝛥−  , 𝛥𝛥+   ∈ 𝛥𝛥  ⇒   𝑑𝑑�́�𝑠2 = 𝑎𝑎2𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑎𝑎2𝑟𝑟2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝑑𝑑𝜙𝜙2 + 𝑟𝑟  𝑎𝑎2  𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝜂𝜂𝑐𝑐𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2  ,

𝑑𝑑𝑠𝑠2 = 𝑟𝑟𝑎𝑎2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝜂𝜂𝑐𝑐𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2 + 𝑟𝑟2𝑎𝑎2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃𝑑𝑑𝜙𝜙2 + 𝑟𝑟2𝑎𝑎2𝑑𝑑𝜃𝜃2 + 𝑎𝑎2𝑟𝑟2𝑑𝑑𝜃𝜃2 + 𝑎𝑎2𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑑𝑑𝜙𝜙2

+𝑎𝑎𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙𝑑𝑑𝜅𝜅2

𝑔𝑔𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎡𝑟𝑟𝑎𝑎

2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃  𝜂𝜂𝑐𝑐𝑠𝑠2𝜙𝜙 0 0 0 0 0
0 𝑟𝑟2𝑎𝑎2𝜂𝜂𝑐𝑐𝑠𝑠2𝜃𝜃 0 0 0 0
0 0 𝑟𝑟2𝑎𝑎2 0 0 0
0 0 0 𝑎𝑎2𝑟𝑟2 0 0
0 0 0 0 𝑎𝑎2𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 0
0 0 0 0 0 𝑎𝑎  𝑟𝑟2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2𝜙𝜙⎦

⎥
⎥
⎥
⎥
⎤

𝑀𝑀{1,−1,−1,0,−1,1}         � 2sin(30)+1
2cos(60)+2𝑖𝑖

� � 2sin(30)−1
2cos(60)−2𝑖𝑖

� = 0 

The matter with a 3-dimensional nature creates heterogeneity in the space density with higher 
dimensions. As a result of this heterogeneity, matter moves in space–time. Meanwhile, 
heterogeneity is a factor in creating eccentricity and stress to the material. Based on creating 
heterogeneity in space–time structure by matter and energy, density can be expressed in the form 
of passed distance in space–time. The oscillation of heterogeneity in space-time creates 
gravitational mass. Mass cannot exist in the past or future; therefore, expressing negative density 
is necessary for the Energy momentum tensor (2.11).

sin 0 = 0 ⇒ 𝑥𝑥, 𝛥𝛥 ≠ 𝜂𝜂    𝜉𝜉 = sin (cos−1(
∆𝑥𝑥
𝜂𝜂

)) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜂𝜂𝑐𝑐𝑠𝑠−1(
∆𝑦𝑦
𝜂𝜂

)) + 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜂𝜂𝑐𝑐𝑠𝑠−1(
∆𝑧𝑧
𝜂𝜂

))

𝛥𝛥 =
𝛥𝛥0
𝜉𝜉
≡ 𝛥𝛥 = 𝛥𝛥0�1 −

2𝐺𝐺𝑀𝑀
𝑟𝑟𝜂𝜂2

⇒ 𝜂𝜂�𝜂𝜂21 + 𝜂𝜂22 + 𝜂𝜂23� = 𝑟𝑟𝑥𝑥,𝜌𝜌𝜂𝜂 ⇒ sin (cos−1(
√2𝐺𝐺𝑀𝑀
𝜂𝜂√𝑟𝑟

)) ≡ 𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙

𝛥𝛥 =
𝛥𝛥0
𝜂𝜂

  , 𝑙𝑙 =
𝑙𝑙0
𝜂𝜂

  , 𝑚𝑚 =
𝑚𝑚0

𝜂𝜂
    𝑚𝑚𝑡𝑡 =

ℎ𝜈𝜈
𝜂𝜂2

  , (  𝜌𝜌𝜂𝜂)
1
2 = ∆�́�𝑥  , 𝑟𝑟𝑥𝑥,𝜌𝜌 = ∆𝑥𝑥 + ∆�́�𝑥  ,  

(𝑚𝑚𝑡𝑡 + 𝑚𝑚𝑥𝑥) = 𝑚𝑚𝑡𝑡

𝜂𝜂
  → 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 𝑚𝑚𝑡𝑡

𝑚𝑚𝑡𝑡+𝑚𝑚𝑥𝑥
2.11

(𝜌𝜌𝜂𝜂) = ∆�́�𝑥2  , �
𝜂𝜂
𝜌𝜌�

= ∆�́�𝛥2
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𝜌𝜌 = �
𝑚𝑚𝑡𝑡

2𝜋𝜋2𝑟𝑟3
�   ,𝑚𝑚/𝜌𝜌 =

2𝜋𝜋2𝑟𝑟3

𝜂𝜂

𝑇𝑇𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝜌𝜌 0 0 0 0 0
0 −𝜌𝜌 0 0 0 0
0 0 𝜌𝜌 0 0 0
0 0 0 𝑃𝑃 0 0
0 0 0 0 𝑃𝑃 0
0 0 0 0 0 𝑃𝑃⎦

⎥
⎥
⎥
⎥
⎤

2.11

Möbius space extends the properties of lower-dimensional systems into higher-dimensional 
contexts. This idea draws from the well-known Möbius strip a two-dimensional surface 
embedded in three-dimensional space formed by applying a half-twist to a strip before joining its 
ends. In a similar fashion, Möbius space enables properties associated with lower dimensions to 
be preserved and transformed through rotational operations, resulting in nontrivial and often 
counterintuitive behaviors. This framework offers a novel lens for examining the structure of 
space, time, and the physical universe.

In this context, objects within space-time are modeled as rotating around a field whose radius 
corresponds to their density-defined radius in higher dimensions. This radius is defined such that 
it represents the two-dimensional density distributed over an arc of one radian (Figure 6). The 
matter field undergoes simultaneous rotation and displacement, with the radius of rotation 
evolving along with cosmic expansion (Figure 7). The measure of density or spatial 
heterogeneity is analogized to the arc length of one radian on a circular path. The sum of a 
density value and its inverse (or negative counterpart) across two dimensions equals one-quarter 
of a full circular perimeter.

As illustrated in Figure 3, an object’s trajectory in one dimension may be altered along the 
geodesic path of space-time in another. This interaction results in a quarter-turn rotation across 
three-dimensional space, and the principle is extended to higher dimensions as stated in (2.12). 
This rotation is attributed to the conservation of object density and leads to eccentricity along
other axes in the expanding space-time geometry.

𝑀𝑀{1,−1,−1,0,−1,1}

𝐿𝐿 = �𝜃𝜃 360� �2𝜋𝜋𝑟𝑟      𝜃𝜃 = 90 ⇒ 𝐿𝐿 = �
1
4�

2𝜋𝜋𝑟𝑟 ⇒ �
1

2𝜋𝜋�
= �

180 𝜋𝜋�
360
� � = 1𝑅𝑅𝑅𝑅𝑅𝑅

�
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3. Geometry and Fundamental Constants of Physics 
The rotation of objects in five-dimensional space is described by the Golden proportion. (3.13) The Golden ratio, π, and e are geometrically 
connected to the fundamental constants of physics, such as the gravitational constant and Planck’s constant, within a six-dimensional 
space-time.
. (3.13)

Möbius space extends the properties of lower-dimensional systems into higher-dimensional contexts. This idea draws from the well-
known Möbius strip a two-dimensional surface embedded in three-dimensional space formed by applying a half-twist to a strip before 
joining its ends. In a similar fashion, Möbius space enables properties associated with lower dimensions to be preserved and transformed 
through rotational operations, resulting in nontrivial and often counterintuitive behaviors. This framework offers a novel lens for 
examining the structure of space, time, and the physical universe.

In this context, objects within space-time are modeled as rotating around a field whose radius corresponds to their density-defined radius 
in higher dimensions. This radius is defined such that it represents the two-dimensional density distributed over an arc of one radian 
(Figure 6). The matter field undergoes simultaneous rotation and displacement, with the radius of rotation evolving along with cosmic 
expansion (Figure 7). The measure of density or spatial heterogeneity is analogized to the arc length of one radian on a circular path. The 
sum of a density value and its inverse (or negative counterpart) across two dimensions equals one-quarter of a full circular perimeter.

As illustrated in Figure 3, an object’s trajectory in one dimension may be altered along the geodesic path of space-time in another. This 
interaction results in a quarter-turn rotation across three-dimensional space, and the principle is extended to higher dimensions as stated 
in (2.12). This rotation is attributed to the conservation of object density and leads to eccentricity along other axes in the expanding 
space-time geometry.
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Möbius space extends the properties of lower-dimensional systems into higher-dimensional 
contexts. This idea draws from the well-known Möbius strip a two-dimensional surface 
embedded in three-dimensional space formed by applying a half-twist to a strip before joining its 
ends. In a similar fashion, Möbius space enables properties associated with lower dimensions to 
be preserved and transformed through rotational operations, resulting in nontrivial and often 
counterintuitive behaviors. This framework offers a novel lens for examining the structure of 
space, time, and the physical universe.

In this context, objects within space-time are modeled as rotating around a field whose radius 
corresponds to their density-defined radius in higher dimensions. This radius is defined such that 
it represents the two-dimensional density distributed over an arc of one radian (Figure 6). The 
matter field undergoes simultaneous rotation and displacement, with the radius of rotation 
evolving along with cosmic expansion (Figure 7). The measure of density or spatial 
heterogeneity is analogized to the arc length of one radian on a circular path. The sum of a 
density value and its inverse (or negative counterpart) across two dimensions equals one-quarter 
of a full circular perimeter.

As illustrated in Figure 3, an object’s trajectory in one dimension may be altered along the 
geodesic path of space-time in another. This interaction results in a quarter-turn rotation across 
three-dimensional space, and the principle is extended to higher dimensions as stated in (2.12). 
This rotation is attributed to the conservation of object density and leads to eccentricity along
other axes in the expanding space-time geometry.
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 The rigid object rotates within a field whose radius corresponds to its density, while 
simultaneously shifting due to the expansion of space-time. Negative density is defined in relation to 
time. Möbius space transfers the characteristics of lower dimensions to higher ones.

The rotation of objects in five-dimensional space is described by the Golden proportion. (3.13) The 
Golden ratio, π, and e are geometrically connected to the fundamental constants of physics, such 
as the gravitational constant and Planck’s constant, within a six-dimensional space-time.
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Figure 6: The rigid object rotates within a field whose radius corresponds to its density, while simultaneously shifting due to the 
expansion of space-time. Negative density is defined in relation to time. Möbius space transfers the characteristics of lower dimensions 
to higher ones
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Two forces are exerted on the rigid object by the higher dimensions. One force causes the object to move perpendicular to the axis of 
expansion, and the other force opposes the direction of space-time expansion of space-time. As a whole, the object is rotating around a 
field, and the field is also rotating around an expanding sphere. Changing angles of ɑ and β indicate rigid object motion around a field 
with higher dimensions. (3.15) 

Cosmology constant has a direct connection with the Planck constant, the gravity constant, and 3 natural numbers. (3.16)

The resulting force from rotating objects around the field and then the performed work in six-dimensional space were calculated by the 
Planck constant coefficient. (3.14) The Planck constant relates to object motion in space-time, while the gravitational constant describes 
resistance to the expansion of space-time. Figure7
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relates to object motion in space-time, while the gravitational constant describes resistance to the 
expansion of space-time. Figure7
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Figure 7: The object field in the space-time expanding is rotating and moving by the two forces 
perpendicular to each other.

Two forces are exerted on the rigid object by the higher dimensions. One force causes the object 
to move perpendicular to the axis of expansion, and the other force opposes the direction of space-
time expansion of space-time. As a whole, the object is rotating around a field, and the field is 
also rotating around an expanding sphere. Changing angles of ɑ and β indicate rigid object 
motion around a field with higher dimensions. (3.15)
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Figure 7: The object field in the space-time expanding is rotating and moving by the two forces 
perpendicular to each other.

Two forces are exerted on the rigid object by the higher dimensions. One force causes the object 
to move perpendicular to the axis of expansion, and the other force opposes the direction of space-
time expansion of space-time. As a whole, the object is rotating around a field, and the field is 
also rotating around an expanding sphere. Changing angles of ɑ and β indicate rigid object 
motion around a field with higher dimensions. (3.15)
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Figure 7: The object field in the space-time expanding is rotating and moving by the two forces perpendicular to each other
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4. Wave Function
The wave function in quantum mechanics has expanded over time. Concerning the object field, the eccentricity of space-time dimensional, 
negative density, object rotation around the field, and field rotation, the structure of wave function was expressed in the 6-dimensional 
space-time (4.18) Quantization depends on two types of rotations in space. Figure 9

Observations related to the planet's movement express a deep geometrical relationship between fundamental constants. (3.17) 

The radius of the object field in space–time has a direct relationship with exerted force by the higher dimensions. Due to this direct 
relationship, the proportions between these forces have a constant with density. These proportions follow the golden constant, Euler's 
number, and π.  Figure 8
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(4.18) Quantization depends on two types of rotations in space. Figure 9
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Concerning affine transformation, elliptic parametric equation, Fourier Series eccentricity of 
elliptic, and metric of 6-dimensional space-time, the relationship between wave function and 
wave tensor was expressed. (4.19) Meanwhile, the tensor Ψ expresses the created rotation stress 
by space-time to the matter. (4.19). Positive and negative amounts that have a relationship with 
object rotation in higher dimensions are variable depending on the phase, speed, and density.
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5. Field structure and force

The electrical load has a direct relationship with the phase of object field rotation. Particles with 
no mass or without loads have two opposite rotation phases. Photons transport energy and follow 
from the geodesics of quantized space-time. the photons can be decomposed into a pair couple of 
electron-positron fields. Each pack of energy has a particular geometric structure, and on this 
basis, the field radius and the 2nd radius can be calculated with consideration of the performed 
work in space and time. (5.20) Electrical load has a direct relationship with the phase of the field 
in higher dimensions. Figure 10
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Concerning affine transformation, elliptic parametric equation, Fourier Series eccentricity of elliptic, and metric of 6-dimensional space-
time, the relationship between wave function and wave tensor was expressed. (4.19) Meanwhile, the tensor Ψ expresses the created 
rotation stress by space-time to the matter. (4.19). Positive and negative amounts that have a relationship with object rotation in higher 
dimensions are variable depending on the phase, speed, and density. 

5. Field Structure and Force
The electrical load has a direct relationship with the phase of object field rotation. Particles with no mass or without loads have 
two opposite rotation phases. Photons transport energy and follow from the geodesics of quantized space-time. the photons can be 
decomposed into a pair couple of electron-positron fields. Each pack of energy has a particular geometric structure, and on this basis, the 
field radius and the 2nd radius can be calculated with consideration of the performed work in space and time. (5.20) Electrical load has 
a direct relationship with the phase of the field in higher dimensions. Figure 10
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Figure 10: Electrical load results from the density phase in higher dimensions. Chargeless particles 
consist of two particles with opposite phases.

Changing the speed of rotation phases in the electromagnetic field is more than other space-time 
points. Each particle follows space-time geodesics within the limits of an electrical field. 
Eccentricity, in the gravitational field and electromagnetic fields, creates phase-changing speed. 
Figure 11
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Figure 10: Electrical load results from the density phase in higher dimensions. Chargeless particles 
consist of two particles with opposite phases.

Changing the speed of rotation phases in the electromagnetic field is more than other space-time 
points. Each particle follows space-time geodesics within the limits of an electrical field. 
Eccentricity, in the gravitational field and electromagnetic fields, creates phase-changing speed. 
Figure 11

Figure 10: Electrical load results from the density phase in higher dimensions. Chargeless particles consist of two particles with opposite 
phases
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Changing the speed of rotation phases in the electromagnetic field is more than other space-time points. Each particle follows space-time 
geodesics within the limits of an electrical field. Eccentricity, in the gravitational field and electromagnetic fields, creates phase-changing 
speed. Figure 11
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Figure 10: Electrical load results from the density phase in higher dimensions. Chargeless particles 
consist of two particles with opposite phases.

Changing the speed of rotation phases in the electromagnetic field is more than other space-time 
points. Each particle follows space-time geodesics within the limits of an electrical field. 
Eccentricity, in the gravitational field and electromagnetic fields, creates phase-changing speed. 
Figure 11

Figure 11: Phase changing speed is greater in electrical and magnetic fields compared to the gravitational field, and the effective range 
of the gravitational field is more compared to electrical and magnetic fields

The mass obtained from motion in space is (inertial mass) and the mass obtained from motion in time is (gravitational mass). The 
exerted stress from space-time to matter concerns the Planck constant and gravitation constant. This stress intensity is very insignificant. 
However, the exerted stress is observable concerning the rotation around the field and the passage of time. Tensor for space-time stress 
based on Planck constant, gravitation constant, and cosmology constant indicate the quantum Structure of space-time. (5.21) (5.22). The 
“K” tensor expresses the exerted stress to matter in space-time with higher dimensions. This Stress is, therefore, a factor in producing 
spin, electrical load & electromagnetic fields. K tensor has a direct relationship with wavelength and cosmology constant. (5.22) The 
radius equal to density length (field radius) is ‘r x’ and the radius for the variable of field rotation is ‘r t’. It is not able to be greater than 
a specific amount that is dependent on the object's mass. Consequently, 'r t’ is periodic.
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Based on Movement in time dimensions and also work definition, the relationship of the Planck 
constant and gravitational constant is specified with the cosmology constant. (5.23)
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Based on Movement in time dimensions and also work definition, the relationship of the Planck constant and gravitational constant is 
specified with the cosmology constant. (5.23) 

The type and intensity of electrical load and magnetic field depend on other components of the k tensor. Momentum tensor and energy 
with new coefficient make the general relativity equation more complete. (5.24). Mass in space-time can cause inhomogeneity, which is 
represented by negative density. (5.25) 

6. Curvature in Six-Dimensional Space-Time 
Ricci tensor expresses curvature in 4-dimensional space-time; by adding two Dimensions of time another definition of curvature is 
formed. Expression of the sphere surface curvature by Riemann tensor and Ricci tensor in six-dimensional space-time may not be 
comprehensive. (6.26) 

Concerning space rotation, the Ricci tensor expresses curvature in the time dimension length, and space dimensions. Curvature in time 
means changing wavelength in higher dimensions and becoming closer or farther the states of space-time from each other. Generally, 
Ricci's 6-dimensional tensor can only be defined during the time in the case of existing various masses. (6.27)
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The type and intensity of electrical load and magnetic field depend on other components of the k 
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more complete. (5.24). Mass in space-time can cause inhomogeneity, which is represented by 
negative density. (5.25)
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6. Curvature in six-dimensional space-time 

Ricci tensor expresses curvature in 4-dimensional space-time; by adding two Dimensions of time 
another definition of curvature is formed. Expression of the sphere surface curvature by Riemann 
tensor and Ricci tensor in six-dimensional space-time may not be comprehensive. (6.26)
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𝑅𝑅𝑖𝑖𝑖𝑖 = �
2 0 0
0 2 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜃𝜃  0
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� ⇒ 𝑅𝑅𝜇𝜇𝑤𝑤 = �
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�

𝑞𝑞 = −𝑐𝑐2 − 𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 − 𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙 ⇒ 𝑅𝑅 = − 6
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𝐹𝐹2.𝑑𝑑3

𝑐𝑐
= 𝐺𝐺  , 𝑚𝑚 =

𝑊𝑊𝑊𝑊
𝑐𝑐6

  , 2�⃗�𝐹𝑥𝑥 = �⃗�𝐹𝑡𝑡 ⇒ �⃗�𝐹𝑡𝑡 = ℏ𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥    ,    �⃗�𝐹𝑥𝑥 = 𝐺𝐺𝑒𝑒𝜑𝜑𝑥𝑥 ,𝐹𝐹 = 𝑐𝑐𝑒𝑒±𝑖𝑖𝑃𝑃ℏ2𝑖𝑖𝜋𝜋

Λ =   �
𝐹𝐹3.𝑑𝑑3

𝑐𝑐
�
2

→ �
(𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝜃𝜃)2𝑑𝑑3

𝑐𝑐4
�
2

𝑒𝑒(𝜑𝜑)2𝑖𝑖3   ,

  𝑚𝑚 = 𝛬𝛬
∆�́�𝑥3𝑐𝑐3𝑖𝑖

⇒ Λ = 𝑤𝑤𝑤𝑤∆�́�𝑥3𝑖𝑖
𝑐𝑐3

= 𝑊𝑊∆�́�𝑥2

2𝑐𝑐2
5.23

The type and intensity of electrical load and magnetic field depend on other components of the k 
tensor. Momentum tensor and energy with new coefficient make the general relativity equation 
more complete. (5.24). Mass in space-time can cause inhomogeneity, which is represented by 
negative density. (5.25)

�
𝜋𝜋 − 2

2 � = Π  , 𝐿𝐿𝜇𝜇𝑤𝑤 =

⎣
⎢
⎢
⎢
⎢
⎡
Π 0 0 0 0 0
0 Π 0 0 0 0
0 0 Π 0 0 0
0 0 0 Π 0 0
0 0 0 0 Π 0
0 0 0 0 0 Π⎦

⎥
⎥
⎥
⎥
⎤

�𝐿𝐿𝜇𝜇𝑤𝑤� = �𝑖𝑖−2
2
�
6
→ �𝑖𝑖−2

2
�
6
�ℎ𝑒𝑒
𝑐𝑐
� = 8𝑖𝑖𝜋𝜋

𝑐𝑐4
  , �𝑖𝑖−2

2
�
6
�ℎ𝑒𝑒
𝑐𝑐
� ≅ 8𝑖𝑖𝜋𝜋

𝑐𝑐3ℎ𝑒𝑒
  5.24

𝑇𝑇𝜇𝜇𝑤𝑤 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝜌𝜌 0 0 0 0 0
0 −𝜌𝜌 0 0 0 0
0 0 𝜌𝜌 0 0 0
0 0 0 𝑃𝑃 0 0
0 0 0 0 𝑃𝑃 0
0 0 0 0 0 𝑃𝑃⎦

⎥
⎥
⎥
⎥
⎤

5.25

6. Curvature in six-dimensional space-time 

Ricci tensor expresses curvature in 4-dimensional space-time; by adding two Dimensions of time 
another definition of curvature is formed. Expression of the sphere surface curvature by Riemann 
tensor and Ricci tensor in six-dimensional space-time may not be comprehensive. (6.26)

𝑅𝑅1212 = 𝑟𝑟2 sin2 𝜃𝜃  ,    𝑅𝑅1313 = 𝑟𝑟2 sin2 𝜃𝜃 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜙𝜙  , 𝑅𝑅2323 = 𝑟𝑟2 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜃𝜃  𝑐𝑐𝑖𝑖𝑖𝑖2 𝜙𝜙  ,      
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�
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⎥
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Using the introduced metric, two types of Christoffel symbols were expressed in 6-dimensional space. (6.28) (6.29) 

Einstein tensor, Scalar Ricci, and Ricci tensor were obtained using Christoffel symbols. (6.30) (6.31) Geometrical connection is hidden 
between space curvature and time length curvature in Scalar Ricci. (6.30)

17 
 

Concerning space rotation, the Ricci tensor expresses curvature in the time dimension length, 
and space dimensions. Curvature in time means changing wavelength in higher dimensions and 
becoming closer or farther the states of space-time from each other. Generally, Ricci's 6-
dimensional tensor can only be defined during the time in the case of existing various masses. 
(6.27)

𝑅𝑅 =
6

𝑟𝑟2𝑐𝑐2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛾𝛾  

�́�𝑅𝜇𝜇𝜇𝜇 = �

2𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑠𝑠2𝜙𝜙 0 0 0
0 2𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 0 0
0 0 2 0
0 0 0 1

� ⇒ 𝑅𝑅 =
2

𝑟𝑟4𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑠𝑠2𝜙𝜙
  ,  

  𝑔𝑔𝜇𝜇𝜇𝜇 = �

𝑟𝑟 0 0 0
0 𝑟𝑟 0 0
0 0 𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃  0
0 0 0 𝑟𝑟2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃  𝑠𝑠𝑠𝑠𝑠𝑠2 𝜙𝜙  

� ⇒ 𝑅𝑅 = − 6
𝑟𝑟2

6.27

Using the introduced metric, two types of Christoffel symbols were expressed in 6-dimensional 
space. (6.28) (6.29)

Γ𝛼𝛼,𝜇𝜇
1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
2𝑟𝑟

0 0 0 0 0

0 − 1
𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0 0

0 0 − 1
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0

0 0 0 − 1
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0

0 0 0 0 − 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  
𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0

0 0 0 0 0 − 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  𝑐𝑐𝑠𝑠𝑠𝑠2 𝜙𝜙  
  𝑎𝑎  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

6.28

Γ1,𝛼𝛼,𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

  𝑎𝑎2  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
2

0 0 0 0 0
0 −𝑟𝑟 𝑎𝑎2𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 0 0 0 0
0 0 −𝑟𝑟𝑎𝑎2 0 0 0
0 0 0 −𝑟𝑟𝑎𝑎2 0 0
0 0 0 0 −𝑟𝑟𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃  0
0 0 0 0 0 −𝑟𝑟 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜙𝜙  ⎦

⎥
⎥
⎥
⎥
⎥
⎤

6.29

Einstein tensor, Scalar Ricci, and Ricci tensor were obtained using Christoffel symbols. (6.30) 
(6.31) Geometrical connection is hidden between space curvature and time length curvature in 
Scalar Ricci. (6.30)
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

6.28

Γ1,𝛼𝛼,𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

  𝑎𝑎2  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙
2

0 0 0 0 0
0 −𝑟𝑟 𝑎𝑎2𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 0 0 0 0
0 0 −𝑟𝑟𝑎𝑎2 0 0 0
0 0 0 −𝑟𝑟𝑎𝑎2 0 0
0 0 0 0 −𝑟𝑟𝑎𝑎2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃  0
0 0 0 0 0 −𝑟𝑟 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜙𝜙  ⎦

⎥
⎥
⎥
⎥
⎥
⎤

6.29

Einstein tensor, Scalar Ricci, and Ricci tensor were obtained using Christoffel symbols. (6.30) 
(6.31) Geometrical connection is hidden between space curvature and time length curvature in 
Scalar Ricci. (6.30)

18 
 

𝑅𝑅𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
5
2𝑟𝑟2

0 0 0 0 0

0 − 7
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0 0

0 0 − 7
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0

0 0 0 − 7
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0

0 0 0 0 − 7𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0

0 0 0 0 0 − 7𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  𝑐𝑐𝑠𝑠𝑠𝑠2 𝜙𝜙  
  2𝑟𝑟  𝑎𝑎  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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5
𝑟𝑟2
� �

3
𝑟𝑟𝑎𝑎2(  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙)�
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

          6.31

The general equation was obtained for general relativity and quantum mechanics. (6.32) that 
Whenever mass is high (not in the scale of black holes), wave function and electromagnetic field 
are disappeared, and whenever mass and density are low, quantum behavior is observed (6.32)

μ, 𝜈𝜈 = 1,2,3,4,5,6

𝚿𝚿𝝁𝝁𝝁𝝁 + 𝑹𝑹𝝁𝝁𝝁𝝁 −
𝟏𝟏
𝟐𝟐
𝑹𝑹𝒈𝒈𝝁𝝁𝝁𝝁 + 𝚲𝚲𝒈𝒈𝝁𝝁𝝁𝝁 = �𝝅𝝅−𝟐𝟐

𝟐𝟐
�
𝟔𝟔
�𝒉𝒉𝒉𝒉
𝒄𝒄
� 𝑻𝑻𝝁𝝁𝝁𝝁 + 𝑲𝑲𝝁𝝁𝝁𝝁 6.32

7. Quantum mechanics

Hilbert space is a complex of various states for a particle in a time loop. A particle rotates around 
the field with a density radius in higher dimensions. In a moment a particle can have two upper 
and lower spins. Measurement reduces the dimensions of a particle to four dimensions. Figure 12
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The general equation was obtained for general relativity and quantum mechanics. (6.32) that Whenever mass is high (not in the scale 
of black holes), wave function and electromagnetic field are disappeared, and whenever mass and density are low, quantum behavior is 
observed (6.32) 

7. Quantum Mechanics
Hilbert space is a complex of various states for a particle in a time loop. A particle rotates around the field with a density radius in higher 
dimensions. In a moment a particle can have two upper and lower spins. Measurement reduces the dimensions of a particle to four 
dimensions. Figure 12
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⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

          6.31

The general equation was obtained for general relativity and quantum mechanics. (6.32) that 
Whenever mass is high (not in the scale of black holes), wave function and electromagnetic field 
are disappeared, and whenever mass and density are low, quantum behavior is observed (6.32)

μ, 𝜈𝜈 = 1,2,3,4,5,6

𝚿𝚿𝝁𝝁𝝁𝝁 + 𝑹𝑹𝝁𝝁𝝁𝝁 −
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�𝒉𝒉𝒉𝒉
𝒄𝒄
� 𝑻𝑻𝝁𝝁𝝁𝝁 + 𝑲𝑲𝝁𝝁𝝁𝝁 6.32

7. Quantum mechanics

Hilbert space is a complex of various states for a particle in a time loop. A particle rotates around 
the field with a density radius in higher dimensions. In a moment a particle can have two upper 
and lower spins. Measurement reduces the dimensions of a particle to four dimensions. Figure 12

18 
 

𝑅𝑅𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
5
2𝑟𝑟2

0 0 0 0 0

0 − 7
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0 0

0 0 − 7
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0

0 0 0 − 7
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0

0 0 0 0 − 7𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  
2𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0

0 0 0 0 0 − 7𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  𝑐𝑐𝑠𝑠𝑠𝑠2 𝜙𝜙  
  2𝑟𝑟  𝑎𝑎  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

6.30

𝑅𝑅𝛼𝛼𝛼𝛼𝜇𝜇𝜇𝜇 .𝑅𝑅𝛼𝛼𝛼𝛼𝜇𝜇𝜇𝜇 = 45
𝑎𝑎4𝑟𝑟6(  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙)(  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙)  

, 𝑅𝑅1313 = 𝑎𝑎2

2

𝑅𝑅 =
15

𝑎𝑎2𝑟𝑟3(  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙) ⇒ �
5
𝑟𝑟2
� �

3
𝑟𝑟𝑎𝑎2(  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙)�

𝐺𝐺𝜇𝜇𝜇𝜇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
10
𝑟𝑟2

0 0 0 0 0

0 4
𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0 0

0 0 4
𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0 0

0 0 0 4
𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0 0

0 0 0 0 4 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  
𝑟𝑟  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙

0

0 0 0 0 0 4 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜃𝜃  𝑐𝑐𝑠𝑠𝑠𝑠2 𝜙𝜙  
  𝑟𝑟  𝑎𝑎  𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜙𝜙⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

          6.31

The general equation was obtained for general relativity and quantum mechanics. (6.32) that 
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Hilbert space is a complex of various states for a particle in a time loop. A particle rotates around 
the field with a density radius in higher dimensions. In a moment a particle can have two upper 
and lower spins. Measurement reduces the dimensions of a particle to four dimensions. Figure 12
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The general equation was obtained for general relativity and quantum mechanics. (6.32) that 
Whenever mass is high (not in the scale of black holes), wave function and electromagnetic field 
are disappeared, and whenever mass and density are low, quantum behavior is observed (6.32)

μ, 𝜈𝜈 = 1,2,3,4,5,6
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7. Quantum mechanics

Hilbert space is a complex of various states for a particle in a time loop. A particle rotates around 
the field with a density radius in higher dimensions. In a moment a particle can have two upper 
and lower spins. Measurement reduces the dimensions of a particle to four dimensions. Figure 12

Figure 12: when a particle is in the time loop around a field, it exists in Hilbert space

Figure 13: With continuous changing of supervisor states or objects in space, each time a new result measurement is created

Measuring a phenomenon in higher dimensions causes the wave function to collapse to the lower dimensions, resulting in different 
observable states. Figure 13

Despite the distance of the two objects from each other, they can have similar states. Regarding the masses with similar densities, these 
states are contrariwise. Figure 14
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Figure 14: Particles with different charge and mass can have similar states in space 
simultaneously.

Due to direct relationship of mass and momentum with wave function and direct relationship of 
wave function with space-time structure, the whole similar particles like electrons, photons, and 
protons,... follow space geodesics. When one of the entangled particles is measured, another 
particle’s all states can be predicted with certainty. Figure 15

Figure 15: In case of having sufficient information from mass and particle speed, other states can 
be predicted as well.

Before measuring a particle, there is no orientation in 3-dimensional space. Measuring in the 
time state π/3 causes the particle’s dimension collapses into a four-dimensional space; for this 
reason, we select the states from the tensor Ψ which are constant for all the particles with a 
specific momentum. As a result, entanglement will never occur between two particles in the 
coordinate system of relativistic. Entanglement has been institutionalized in the space-time 
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Before measuring a particle, there is no orientation in 3-dimensional space. Measuring in the time state π/3 causes the particle’s dimension 
collapses into a four-dimensional space; for this reason, we select the states from the tensor Ψ which are constant for all the particles 
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8. Results and Discussion
As a result of this research, the relationship between the three numbers π, the golden ratio, and Euler’s number defines the geometric 
structure of space and time in relation to matter and energy. The geometric and classical interpretation of spin, polarization, mass, and 
charge is one of the major achievements of this perspective. The intrinsic expansion of space within itself is the driving factor behind the 
arrow of time, and time represents the geometric potential difference arising from inhomogeneity in the spatial geometry.

The inhomogeneity caused by the presence of mass and energy within the fabric of space-time establishes a connection between Möbius 
space, the wav function, and spin. The existence of two orthogonal time dimensions and the resulting tension between them leads to the 
formation of the golden spiral within material structures. The violation of Bell’s inequality over time indicates the presence of these two 
orthogonal dimensions.

Entanglement, in its simplest interpretation, can be visualized as a boat positioned atop the peak of waves in the present moment. Based 
on this principle, the correlation between information within the structure of space-time gives rise to the phenomenon of entanglement. 
The rotation of electromagnetic and gravitational fields, as well as the direct connection between gravity and electromagnetism in Möbius 
space, is dependent on dimensional attributes. Möbius coils and capacitors have the ability to convert gravitational field fluctuations 
into electrical current and vice versa.

The physical verification of this relationship provides an experimental framework for researchers to test this theory. The deep connection 
between fundamental constants and geometric relations involving the three irrational numbers π, φ, and Euler’s number—as well as their 
relation to the cosmological constant—establishes a mathematical proof for the six-dimensional geometric structure of the universe.

Every mass possesses three spatial dimensions but also includes informational dimensions across time. Information concerning the past, 
present, and future forms a six-dimensional framework through the spatial rotation of matter and energy over time within a unified theory 
incorporating quantum mechanics. Based on this foundation, a classical interpretation of quantum mechanical events becomes possible.
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structure. Bell's Inequality defect is due to the existence of similar states in the space-time 
rotating structure. (7.33)
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