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Abstract
Introduction: Gastric cancer is the fifth most frequent cancer worldwide After lung, breast, colorectal, and prostate cancers. 
Helicobacter pylori (H. pylori) is considered the most important causative agent of gastrointestinal diseases such as peptic ulcer, 
gastritis, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma.
Objective: to identify the tumor suppressor genes alterations associated with CagA in patients with gastric cancer.
Methods: All the available papers published before 2022 were collected by searching in PubMed and Scopus. The keywords 
included in the research were “H.pylori”, “gastric cancer”, “virulence factors”, “tumor suppressor genes” “ gene mutations” 
“cagA+” used by Boolean operators to obtain the articles with the keywords in their titles or abstracts.
Result: Initial searches yielded 111 articles, four articles were excluded as a duplication using the computer program Zotero (v5), 
then one hundred and seven articles were screened for the title and abstract evaluation using the Rayyan website, among them 
seventy-one articles were excluded. Thirty-six articles were scanned for full-text review and eligibility, furthermore, twenty-five 
articles were excluded because there were either Reviews and case reports, Not relevant studies, Insufficient data, and Unclear 
methods and results. Eleven articles were included for the literature review. In addition, the studies were in different regions of the 
world including Asia, Europe, North America, and Latin America. However, most of the studies were related to the USA.
Conclusion: Cag A can cause alterations on gastric tumor suppressor genes by either decreased expression by increasing the 
methylation, inducing point mutation as mentioned, inactivation by increasing the methylation levels, increasing the levels of deg-
radation and methylation the promotor of the tumor suppressor gene as mentioned. 
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Introduction
Gastric cancer is the fifth most common cancer in the world. Fol-
lowing cancers of the lung, breast, colorectal, and prostate. Almost 
two-thirds of stomach cancer cases are found in East Asia, East-
ern Europe, and South and Central America. GC affects over 80% 
of adults in developing countries, while it affects 20% of people 
under thirty and 50% of the elderly in developed countries [1]. 
Lauren has distinguished between the intestinal type and the dif-
fuse type of gastric cancer[2,3]. The intestinal type of gastric can-
cer is well-differentiated, progresses gradually, and forms glands. 
Atrophic gastritis is frequently the first pathological change that 
leads to intestinal metaplasia, dysplasia, and eventually malignan-

cy in the development of this type of gastric cancer [4]. The diffuse 
type of gastric cancer spreads quickly to distant organs and tissues 
without developing glands and grows aggressively throughout the 
stomach. Additionally, it is made up of tumor cells that have not 
undergone proper differentiation and produces mucus. The stom-
ach wall thickens, hardens, and rubberizes due to a morphological 
variation of diffuse-type cancer that invades the muscles of the 
stomach wall with significant fibrosis. A type of diffuse stomach 
cancer called scirrhous gastric cancer, also known as linitis plastic, 
exists [5].

Barry Marshall and Robin Warren made the initial discovery 
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of Helicobacter pylori (H. pylori) in Australia in 1982. It is spi-
ral-shaped, has flagella, and is an extracellular, microaerophilic 
bacterium that lives in the human stomach's submucosa [6]. It may 
spread through fecal-oral, oral-oral, or gastro-oral means between 
individuals [7]. Additionally, it is regarded as the primary cause 
of gastrointestinal illnesses like gastritis, gastric adenocarcinoma, 
peptic ulcer, and mucosa-associated lymphoid tissue (MALT) lym-
phoma [8,9].

Though not everyone infected with H. pylori develops gastric 
cancer, it is thought to be one of the risk factors. The Cytotoxin 
Associated Gene A (cagA), a protein with more than 1,200 ami-
no acids that is inserted into epithelial cells lining the stomach by 
T4SS, is thought to be the virulence factor of H. pylori that causes 
an increase in cell proliferation [10-13]. By interfering with more 
than 20 host proteins, the cage can alter a variety of host cellular 
processes, including cytoskeletal organization, cell-to-cell adhe-
sion, and intracellular signal transduction [14]. Many of the proon-
cogenic properties of cagA are thought to be primarily attributed 
to its C-terminal domain. [14-17]. Oncogenesis is a multifactorial 
series of events, as is well known. Oncogene activation and tumor 
suppressor gene activation are typically the two main factors in 
the majority of known cancers. CagA can influence cellular tumor 
suppressor genes and activate cellular protooncogenes [18-20].

 Materials and Method
 Search Strategies
All the available papers published before 2022 were collected by 

searching in PubMed and Scopus. The keywords included in the 
research were “H.pylori”, “gastric cancer”, “virulence factors”, 
“tumor suppressor genes” “ gene mutations” “cagA+” used by 
Boolean operators to obtain the articles with the keywords in their 
titles or abstracts.

All records were entered into the computer program Zotero to re-
move the duplicated articles or merge them. After that, the Rayyan 
website was used for the title and abstract screening. The includ-
ed articles were downloaded for full-text screening and eligibility. 
The Statistical Package for Social Sciences (SPSS v26) was used 
for analysis.

Inclusion and Exclusion Criteria
All the case-control, cross-sectional, cohort studies, and the letter 
to the editors regarding the H. pylori infection, gastric cancer, and 
tumor suppressor genes were considered eligible and included in 
the study. 

The eligibility of studies was determined after reviewing and eval-
uating the titles, abstracts, and full text of the studies. The includ-
ed studies needed to be focused on the main idea, using standard 
methods including culture, urea breath test, immunohistochemis-
try PCR, Sequencing, and PCR-RFLP. However, the studies pub-
lished in a non-English language, review articles, case reports, 
studies based on nonclinical samples, laboratory animals, and oth-
er autoimmune diseases were excluded
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Figure 1: Flow Diagram Represents the Methodology of this Study and its Process

Background
H. pylori can trigger a strong immune response that results in in-
flammation of the gastric mucosa. Gastric cancer is largely caused 
by the failure to eradicate the organism from the stomach, where it 
causes a protracted infection [21]. However, it is a protracted pro-
cess governed by the digestive environment, the host, and bacterial 
virulence factors, leading to gastric issues like peptic ulcer disease 
and gastric cancer [22]. H. pylori possesses numerous virulence 
factors, including Vacuolating cytotoxin A (VacA) the cytotox-

in-associated gene pathogenicity island (cagPAI), an oncoprotein 
(i.e. cytotoxin-associated gene A (CagA)), and adhesion proteins, 
all of which are associated with the pathogenicity and develop-
ment of gastric cancer [23,24]. The purpose of this review was to 
compile the most recent findings regarding changes in gastric tu-
mor suppressor genes that are associated with CagA and contribute 
to the pathogenesis and development of gastric cancer.
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Cytotoxin-Associated Gene Pathogenicity Island (cagPAI)
cagPAI contains about 40 kb of chromosomal DNA that contains 
about 32 open reading frames (ORFs), such as cag1 to cag26, cagA 
to cagZ [25]. cagPAI encodes the effector protein cagA and the 
syringe-like structure the bacterial type four (IV) secretion sys-
tem (T4SS) which delivers the cagA into the epithelial cells of the 
stomach [26,27]. Although cagPAI integrity is required to encode 
intact T4SS for H. pylori contact with host cells, cagPAI is not 
present in all strains and is defective in some strains [28,29]. In-
fection with strains expressing the entire cagPAI has been linked 
to severe gastrointestinal problems such as chronic gastritis, peptic 
ulcer disease, and gastric cancer [30,31].

Cytotoxin-Associated Gene A (CagA)
H.pylori bacteria that can express this protein are thought to be 
very virulent, whereas strains that cannot express this protein are 
thought to be less virulent. This protein is approximately 125-145 
kDa in length. T4SS assists in its translocation into gastric epitheli-
al cells [29,32]. CagA is made up of a well-known five-amino-acid 
motif called EPIYA (glutamic acid-proline-isoleucine-tyrosine-al-
anine), which forms a sequence at the C-terminal region and, along 
with the nearby sequence, is critical for CagA's biological activity 
[24].

Depending on geographic variation, H. pylori strains can have four 
different EPIYA-sequences, namely EPIYA-A, -B, -C, and -D. 
CagA with the EPIYA-D sequence has a greater ability to de-reg-
ulate cellular activities than CagA with the EPIYA-C sequence. 
CagA containing the first two EPIYA-sequences (EPIYA-A and 
EPIYA-B) combined with the EPIYA-D sequence is thus consid-
ered more virulent than CagA containing the EPIYA-A, EPIYA-B, 
and EPIYA-C sequences [33].

CagA Translocation
CagA is translocated into gastric epithelial cells after H. pylori 
strains produce it, and at least 15 cagPAI-encoded proteins are in-
volved in the formation of T4SS [34,35]. CagA is exposed on the 
bacterial surface via T4SS and interacts with PS patches on the 
plasma membrane of host cells that have been abnormally exter-
nalized due to H. pylori infection. CagA's N-terminal region in-
teracts with the PS patches, causing the bound CagA to be flipped 
inside and internalized [36].

Tyrosine Phosphorylation
When CagA is delivered into gastric epithelial cells, its tyrosine 
(Y) residue in the EPIYA motifs is phosphorylated by cellular ki-
nases such as Csk, Src family kinases (SFKs), and c-Abl [37-39]. 
CagA has the ability to bind promiscuously to the SH2 domain, 
which contains host proteins like the pro-oncogene Src homology 
2 phosphatase (SHP2), PI3K, Crk, and the adaptor protein Grb2 
[40-43]. 

Pylori CagA+ and Tumor Suppressor Genes
Apoptosis-Stimulating Protein of p53-2 (ASPP2) Tumor Sup-
pressor
ASPP2 was initially discovered as a p53 binding protein, but it has 
now been shown to be a self-sufficient tumor suppressor that col-
laborates with p53 (and its family members p63 and p73) to inhibit 
tumor growth in vivo [44,45]. Furthermore, mounting evidence 
suggests that ASPP2's cellular roles include tight junction devel-
opment and epithelial cell polarity maintenance. ASPP2 is down-
regulated in many aggressive tumors, including gastric cancers. 
Following Hp infection and CagA delivery, the level of ASPP2 
increases. Furthermore, after Hp infection, CagA coimmunopre-
cipitates with ASPP2, altering its proapoptotic activity [46-54].

CagA injection enhances the interaction of p53 and ASPP2. Doxo-
rubicin (Dox), a DNA-damaging chemical that activates p53, in-
duced ASPP2 association with p53 as well as cell apoptosis. The 
link between CagA and ASPP2 was discovered 90 minutes after 
infection and grew stronger over time. In contrast, the relationship 
between ASPP2 and cytoplasmic p53 was discovered at 3 h and 
peaked at 7 h. This implies that when CagA interacts with ASPP2, 
the cytoplasmic pool of p53 is recruited.

P53 is a transcription factor that regulates gene expression. Al-
though it is significantly stabilized following DNA damage or cel-
lular stress, the proteasome degrades it quickly. Because ASPP2 
binds cytoplasmic p53 during H. pylori infection, the transcrip-
tional activity of p53 may be altered after CagA translocation. Ac-
cording to several lines of research, CagA-mediated suppression of 
p53 expression is ASPP2 dependent, whereas CagA-induced p53 
degradation is mediated by the proteasome. Under normal con-
ditions, the tumor suppressor activity of the ASPP2-p53 pathway 
is primarily mediated by stimulation of the apoptotic response. 
CagA, on the other hand, increases the association between p53 
and ASPP2, resulting in increased p53 degradation and, as a result, 
transcriptional suppression in H. pylori-infected cells. CagA in-
hibits apoptosis by binding the tumor suppressor ASPP2, causing 
p53 to be damaged and its apoptotic activity to be suppressed [56].

Phosphatase and Tens in Homolog (PTEN)
PTEN (phosphatase and tensin homolog) is a tumor suppressor 
gene (810) found on chromosome 10q23. It has been discovered 
to regulate the protein kinase B (AKT) and mechanistic target 
of rapamycin signaling pathways, both of which are involved in 
apoptosis, cell cycle progression, and cell proliferation. PTEN de-
ficiency has been linked to oncogenesis and somatic mutations in 
a number of cancers. Tet methylcytosine dioxygenase (Tet)1 has 
been found to interact with the p53enhancer of zeste 2 polycomb 
repressive complex 2 subunits (EZH2) signaling pathway to de-
crease tumors in gastric cancer. Tet1 inhibits cancer formation by 
activating p53 and inhibiting the carcinogenic protein EZH2, per-
haps through DNA demethylation [57,58]. Zhang et al (59) recent-
ly reported that In human gastric cancer, the expression of PTEN 
was found to be dramatically reduced by CagA. 
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Cyclin-Dependent Kinase Inhibitor 2A-CDKN2A
E-cadherin and CDKN2A are two tumor suppressor genes whose 
promoter hypermethylation has been associated with H. pylori 
infection [59,60]. The tumor suppressor p16INK4A deletion has 
been implicated in the carcinogenic process in a number of malig-
nancies [61–63]. It is common for p16INK4A to lose expression in 
GC, and hypermethylation of its promoter regions is thought to be 
the main factor in this gene's inactivation [64-66]. To the contrary, 
numerous earlier studies [67,68] claimed that promoter methyla-
tion and p16INK4A showed a strong correlation. The mechanism 
behind p16INK4A inactivation is unknown, despite the fact that it 
is acknowledged as a contributing factor to GC carcinogenesis. It 
is believed that H. pylori plays a significant role in this process [69, 
70]. The H. pylori genotype has an impact on whether methylation 
or non-methylation mechanisms are used to inactivate p16INK4A, 
according to research by Zhang et al. [59]. Additionally, they noted 
that depending on where the tumor is located, different histological 
subtypes of GC exhibit different patterns of p16INK4A inactiva-
tion. Only in Nocardia tumors does methylation of the CDKN2A 
promoter render p16INK4A inactive in diffuse subtype cancers. 
In contrast, both cardia and non-cardia tumors exhibit promoter 
methylation, which is a crucial pathway for deactivating p16IN-
K4A in intestinal cancers. Additionally, the methylation of the CD-
KN2A promoter is influenced by the H. pylori genotype.

P53 and p27
The p53 gene, which is located on the short arm of chromosome 
17 (17p13.1), produces a protein that acts as a transcription factor 
and controls a number of physiological processes, including cell 
division, DNA damage response, apoptosis, and angiogenesis. The 
main transcriptional target of p53 is WAF1 (also known as CIP1, 
SDI1, mda-6, or CDKN1A). A phosphorylated 21-kDa protein 
with tumor-suppressing properties is encoded by the p2WAF1/
CIP1 gene. P53 mutations are found in between 38% and 71% of 
gastric cancer tumors, making them relatively common [70,71].

Another CIP/KIP tumor suppressor protein is encoded by the 
p27KIP1 gene, which is located on chromosome 12p13. Because 
p27Kip1 Protein (p27) and p21 share a 42 percent structural simi-
larity, this explains how their ability to inhibit the cyclin D/CDK4, 
cyclin E/CDK2, and cyclin A/CDK2 complexes to stop the pro-
gression of the cell cycle is similar [72,73]. Reduced or absent p27 
protein expression is associated with more aggressive characteris-
tics and tumor growth in people with gastric carcinomas [74-76]. 
Lower expression of p27 has been reported to be a predictor of 
aggressive behavior and a poor prognosis in a variety of malignant 
tumors, including breast, colon, liver, stomach, lung, brain, pros-
tate, and malignant melanoma [77-80].

According to reports, H. pylori can result in a mutation in the p53 
tumor suppressor gene, which in turn can lead to stomach cancer 
[81]. Although p53 alterations have been examined in several stud-
ies of gastric cancer associated with H. pylori infection [81–85], 
there is still some controversy. Furthermore, H. pylori in gastric 
cancer has been linked to decreased p27 expression [86,87]. How-

ever, there is no scientific agreement among studies, and there ar-
en't any studies linking these two suppressor genes to H. pylori 
[89].

Fragile Histidine Triad (FHIT)
Is a tumor suppressor gene that can be found on chromosome 
3p14.2. Early studies on a large number of gastric cancer samples 
discovered that the tumor suppressor protein fragile histidine triad 
(FHIT) was lost in the majority of cases (more than 70%), and that 
it was more common in GC with the diffuse and mixed histotypes 
than the intestinal histotype. Changes in FHIT gene expression 
have been found in primary tumors and cancer cells from the lung, 
breast, head and neck, esophagus, colon and rectum, pancreas, 
kidney, cervix, and hepatocellular carcinoma. The FHIT protein is 
involved in a variety of biological functions, including cell cycle 
regulation, DNA damage sensitivity, and pro-apoptotic signaling 
[90-95].

CDH1
CDH1 is a tumor suppressor gene that produces the E-cadherin 
protein, which is required for cell-cell interactions. Inactivating 
this gene increases the likelihood of metastasis. The methylation 
of the CDH1 promoter during the early stages of gastric carcino-
genesis remains a mystery. It is found in epithelial cells and partic-
ipates in cellular processes like adhesion, morphology, migration, 
and development. It plays a role in cellular processes such as ad-
hesion, morphology, migration, and development, as well as in cell 
architecture and tissue integrity [96,97].

It has been found in a variety of cancers, including gastric cancer, 
and its inactivation has been linked to tumor growth via invasion 
and metastasis. CDH1 mutations were found in approximately 
50% of diffuse histological type gastric carcinomas, and CDH1 
hypermethylation was discovered to be the second source of gene 
expression inactivation in two families with familial stomach can-
cer and CDH1 mutations [98].
 
Result
Initial searches yielded 111 articles, four articles were excluded as 
a duplication using the computer program Zotero (v5), then one 
hundred and seven articles were screened for the title and abstract 
evaluation using the Rayyan website, among them seventy-one 
articles were excluded. Thirty-six articles were scanned for full-
text review and eligibility, furthermore, twenty-five articles were 
excluded because there were either Reviews and case reports, Not 
relevant studies, Insufficient data, and Unclear methods and re-
sults. Eleven articles were included in the literature review. In ad-
dition, the studies were in different regions of the world including 
Asia, Europe, North America, and Latin America. However, most 
of the studies were related to the USA.

Among eligible studies, the data of 298 (59.6 ± 28.7) patients with 
gastric cancer were studied. Regarding the histological classifi-
cation of gastric cancer, intestinal-type was in 92 of the studied 
patients while the diffuse type was seen in 44 of the studied pa-
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tients. on the other hand, the cagA+ gene was in 151 of the studied 
patients among them cagA was in 55 patients with intestinal-type 
while it was in 35 of patients with the diffuse type (Table 1).

In Deguch et al, they aimed to assess the possible association be-
tween CagA+ Helicobacter pylori infection and gastric carcino-
genesis in gastric cancer patients [100]. they studied about 64 pa-
tients with gastric cancer, and their specimens were gastric biopsy. 
They use more than one procedure, they determine H pylori infec-
tion using culturing, a molecular technique such as flaA-PCR, and 
an immunological technique like serum antibody against CagA 
was used.

For detecting mutations in P53 and other genes they used PCR-SS-
CP and direct sequencing. They found that, out of 64 patients, 
85.9% (55/64) patients were infected with H pylori, in addition, 
the intestinal type of gastric cancer was found in 45 patients while 
the diffuse type was found in 19 patients. regarding the CagA an-
tibody, it was positive in 78.9% (15/19) of patients with the dif-
fuse type while it was in 48.9% (22/45) of patients with the in-
testinal type (p=0.003). regarding p 53 mutation, it was found in 
11(29.7%) out of 37 patients with cagA+ while it was in 2(11.1%) 
out of cagA- patients.

Furthermore, they reported that the alterations in p53 were found 
more frequently in patients with cagA+ h pylori (29.7%) in con-
trast to cagA- H pylori patients (7.4%) with a significant p-value 
(p=0.033). 

Another study by André et al aimed to verify the relationship 
among H [101]. pylori infection, p53 mutations, and p27Kip1 
Protein (p27) expression in gastric adenocarcinomas (GA). they 
included about seventy-four tumor samples classified as gastric 
adenocarcinomas, in addition, they used PCR to amplify the urea 
gene by using specific primers to detect the H pylori infection and 
the presence of CagA too. Moreover, to assess the alterations in 
the p53 gene they used the Single-strand conformational polymor-
phism (SSCP).

Regarding the type of gastric cancer, they found the intestinal type 
was more frequent 59% than the diffuse type, in addition, they 
found the H pylori infection in 95% (70/74) of GA patients. more-
over, they detect the cagA gene in 63% (44/70) of their studied 
cases. On the other hand, they noticed that in fifty-three cases 72% 
showed band mobility shifts in exons 5–8 of the p53 gene. 

Regarding the association between p53 mutations and the presence 
of cagA, they noticed that the majority of cases with p53 mutation 
(67.9%) were cagA positive, the p-value of the difference between 
the cases with p53 mutation and presence of cagA was statistically 
significant (p=0.034).

On the other hand, regarding p 27, they found a reduction in the 
expression of p27, they noticed no statistical significance between 
the p27 expression and the presence of cagA although the cases of 

cagA+ (47.1%) were p27 negative (p=1.000). 

Zhang et al conducted a study in 2018, that aimed to investigate the 
functions of cagA in human gastric cancer and to assess the associ-
ation between cagA and Phosphatase and tensin homolog (PTEN) 
ad other genes in gastric cancer [102]. They included 12 patients 
with gastric cancer, they confirmed gastric cancer pathological-
ly. They used Quantitative polymerase chain reaction (qPCR) to 
screen gene expression in HGC‑27 human gastric cancer cells 
overexpressing CagA. In addition, they used western blotting for 
protein expression, and for methylation status, they used methyla-
tion‑specific PCR. They found that the expression levels of PTEN 
and other genes were decreased in the patients’ group with cagA+ 
compared to the control group (p value<0.05). In addition, they 
found that the decreased expression of PTEN was associated with 
increased methylation levels in the cells.

Another study by Alves et al, wanted to assess the association 
between p16INK4A inactivation and H. pylori genotype (vacA, 
cagA, cagE, virB11, and flaA) according to the location and his-
tological subtype of the tumors [103]. They included 77 patients 
with adenocarcinoma who undergo gastrectomy. They extract the 
DNA by using the cetyltrimethylammonium bromide (CTAB) 
technique, in addition, they determine the amount of DNA by us-
ing a NanoDropTM 3300 fluorospectrometer (Wilmington, DE, 
USA). Moreover, they determined the methylation status of the 
CDKN2A gene by using Sodium bisulfite treatment and methyl-
ation-specific PCR (MS-PCR). For the detection of H.pylori and 
the presence of vacA, cagA, cagE, virB11, and flaA genes they 
used ureC gene primers for PCR and primer sets respectively. 
Moreover, they performed Immunohistochemical staining using 
CINtec p16INK4A Cytology Ki. They found that p16INK4A ex-
pression and CDKN2A promoter methylation were found in 77 
gastric adenocarcinoma samples by immunohistochemistry and 
methylation-specific PCR. Furthermore, they found a strong nega-
tive correlation between immunostaining and CDKN2A promoter 
region methylation. Moreover, they reported that the process of 
methylation of the CDKN2A promoter seems to depend on the H. 
pylori genotype.

Stec-Michalska et al conducted a study in Poland, they aimed 
at determining whether FHIT expression is affected by Helico-
bacter pylori infection, strain virulence (vacA and cagA genes), 
and histopathological changes in the gastric mucosa of patients 
with functional dyspepsia having first-degree relatives with gastric 
cancer [104] .They included about eighty-eight patients with gas-
tric cancer. To identify the H pylori infection they used bacterial 
DNA amplification, for the level of FHIT gene expression they 
used qRT-PCR, and they found that in patients having first-degree 
relatives with gastric cancer FHIT expression was lower (mRNA 
by ca. 40–45% and protein by 30%) compared with the control 
patients (p < .05). in addition, H. pylori infection decreased the 
FHIT mRNA level by 10–35% and the protein level by 10–20%. 

Bacterial strain vacA(+) cagA(+) lowered FHIT mRNA by ca. 
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30–35% in the antrum samples of both groups and corpus sam-
ples of patients with first-degree relatives with gastric cancer (p 
< .05). they conclude that The decreased FHIT gene expression 
associated with hereditary factors and with H. pylori infection, 
especially with vacA(+) cagA(+)-positive strains, may be related 
to gastric carcinoma development. Kague et al [105] conducted 
a study to investigate the methylation status of CDH1 in chronic 
gastritis samples and correlated it with the presence of H. pylori. 
They used about Sixty gastric mucosal biopsies; they used PCR for 
the detection of H pylori used PCR for the urease C gene and the 

presence of page. In addition, CDH1 was analyzed using methyl-
ation-specific polymerase chain reaction and direct sequencing of 
the PCR. They found that H pylori were in 90% of chronic gastri-
tis samples; among these 33% were cagA positive. Regarding the 
methylation of CDH1, they found it in 63.3% of chronic gastri-
tis samples and 95% of them were also H. pylori-positive. They 
conclude that CDH1 gene methylation and H. pylori infection are 
frequent events in samples from Brazilian patients with chronic 
gastritis and reinforce the correlation between H. pylori infection 
and CDH1 inactivation in the early steps of gastric tumorigenesis.

Table 1: Shows the total number of patients in studied articles and the type of gastric cancer

Total number of 
patients

type of gastric cancer cagA+ patients cagA in diffuse-type cagA in intestinal-type
diffuse intestinal

298 44 92 151 35 55
mean 59.6 22 46 37.75 17.5 27.5
SD 28.71 4.24 1.41 19.25 3.53 7.77

Table 2: Tumor suppressor genes and alterations associated to CagA

Tumor suppressor genes Alteration(s) Method (s) Authors
phosphatase and tensin homo-
log (PTEN)

Decreased expression (in-
creased methylation)

Quantitative polymerase chain 
reaction (qPCR), western blot-
ting

Zhang et al (102)

fragile histidine triad (FHIT) Decreased expression (in-
creased methylation)

Multiplex PCR, real-time quan-
titative

Stec-Michalska et al (104)

  RT-PCR, Western Blotting.  
p53 point mutation (alterations in 

exons 5, 6, 7 and 8, respective-
ly)

Insta Gene Matrix Deguch et al (100)

  (Bio-Rad, Richmond, CA), 
PCR-SSCP

 

p53 mutations within exons 5– 8 of 
the p53 gene

Single-strand conformational 
polymorphism (SSCP), PCR

André et al (101)

 inactivation (increased methyl-
ation)

Sodium bisulfite treatment and 
methylation-specific

Alves et al (103)

CDKN2A  PCR (MS-PCR), PCR  
p27 Decreased expression by in-

creasing
Single-strand conformational 
polymorphism (SSCP), PCR

André et al(101)

 its degradation   
Cadherin 1 (CDH1) inactivation (Promoter methyl-

ation).
PCR, MSP (methylation-specif-
ic PCR)

Kague et al (105)

Conclusion
Cag A can cause alterations on; P53, phosphatase and tensin ho-
molog (PTEN), fragile histidine triad (FHIT), CDKN2A, p27, and 
Cadherin 1 (CDH1) tumor suppressor genes by either decreased 
expression by increasing the methylation, inducing point mutation 
as mentioned, inactivation by increasing the methylation levels, 
increasing the levels of degradation and methylation the promotor 
of the tumor suppressor gene as mentioned.
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