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Abstract
The fractal dimension of	      is identified in this paper. More importantly, the undertaken research has shown how D 
affects the Koch snowflake,       . The study has demonstrated the existence of negative values of 	   (Koch snowflake), 
which connects to a considerable number of extremely intriguing mathematical and physical research areas. The infor-
mation-theoretic impact on the Sierpiniski Gasket dimension     , which corresponds to β=0.5,D=e, namely,      (SG), was 
treated in a more fundamental way. Notably, the credibility of this current study adds to the existing knowledge for the 
information- theoretic fractal dimensions. On another applicative note, this paper offers some potential applications of 
fractal dimension to smart cities. The investigation of the threshold theorems for	      and in terms of the triad(q,β,D) is 
part of the next study phase. Additionally, investigating the newly obtained       's corresponding arbitrary Sierpinski Gas-
ket for the first time
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theoretic impact on the Sierpiniski Gasket dimension 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽

𝑞𝑞𝑞𝑞, which corresponds to 𝛽𝛽𝛽𝛽 = 0.5,𝐷𝐷𝐷𝐷 =
𝑒𝑒𝑒𝑒, namely   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅0.5

𝑞𝑞𝑞𝑞 (SG), was treated in a more fundamental way. Notably, the credibility of this 

current study adds to the existing knowledge for the information- theoretic fractal dimensions. 
On another applicative note, this paper offers some potential applications of fractal dimension 
to smart cities. The investigation of the threshold theorems for 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞   and in terms of the 

triad(𝑞𝑞𝑞𝑞,𝛽𝛽𝛽𝛽,𝐷𝐷𝐷𝐷) is part of the next study phase.  Additionally, investigating the newly 
obtained 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 's corresponding arbitrary Sierpinski Gasket for the first time. 
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1. Introduction 

 The Shannonian entropic measure, 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋) [1] reads: 

𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋)  =  ∑ 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  −∑ 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                   (1.1) 

The probability of the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ event is given by the equation 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖).This entropy, 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋) defines the 
concept of information in information theory.  

Most importantly, (𝑞𝑞𝑞𝑞,𝛽𝛽𝛽𝛽) Generalized Rényian Entropy of order 𝑞𝑞𝑞𝑞 and 𝛽𝛽𝛽𝛽 [2], namely 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽
𝑞𝑞𝑞𝑞 to read 

as 

𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽
𝑞𝑞𝑞𝑞�𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙)� =  𝛽𝛽𝛽𝛽

1−𝑞𝑞𝑞𝑞
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 �∑ �𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙)�𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽𝑁𝑁𝑁𝑁
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𝑞𝑞𝑞𝑞 reduces to the Shannonian entropic formula (1.1). 

            Entropy and fractal dimension are related because entropy is a statistical measure of 
complexity in spatial dimensions. Fractals measure a pattern's ability to fill space because of 
its distinctive scaling behaviour. This connection aids in our comprehension of the complex 
interrelationship between information theory and pattern geometry [4–9]. Lewis Fry 
Richardson investigated in [10] how the length of the stiff stick used to measure coastlines can 
affect the measured length of the shoreline. Mandelbrot referenced this earlier research in [10–
12]. 
         

            There are numerous formal mathematical definitions that can be used to study fractal 
dimension(𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓). One formulation of this kind establishes relationships between (𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓), the 
scaling factor (𝜀𝜀𝜀𝜀), and the number of sticks (𝑁𝑁𝑁𝑁) required to cover a coastline. These formulas 
help quantify the complexity and scaling properties of fractal patterns in spatial dimensions. 
An area of Arizona's Grand Canyon is reproduced with the help of the GNU Image 
Manipulation Programme and Google Earth satellite images. These tools can be used to paint 
portraits or create various depictions of the aspects of the canyon, as seen in figure 1(c.f., [12]).  
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                                                         (1.5) 

 
Figure 1 

It is possible to see how painted portraits were created by using Google Earth satellite 
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Abstract 

The fractal dimension of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  is identified in this paper. More importantly, the undertaken 

research has shown how 𝐷𝐷𝐷𝐷 affects the Koch snowflake,𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞. The study has demonstrated the 

existence of negative values of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 (Koch snowflake), which connects to a considerable 
number of extremely intriguing mathematical and physical research areas. The information-
theoretic impact on the Sierpiniski Gasket dimension 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽

𝑞𝑞𝑞𝑞, which corresponds to 𝛽𝛽𝛽𝛽 = 0.5,𝐷𝐷𝐷𝐷 =
𝑒𝑒𝑒𝑒, namely   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅0.5

𝑞𝑞𝑞𝑞 (SG), was treated in a more fundamental way. Notably, the credibility of this 

current study adds to the existing knowledge for the information- theoretic fractal dimensions. 
On another applicative note, this paper offers some potential applications of fractal dimension 
to smart cities. The investigation of the threshold theorems for 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞   and in terms of the 

triad(𝑞𝑞𝑞𝑞,𝛽𝛽𝛽𝛽,𝐷𝐷𝐷𝐷) is part of the next study phase.  Additionally, investigating the newly 
obtained 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 's corresponding arbitrary Sierpinski Gasket for the first time. 

Keywords: Fractal dimension (𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓), Generalized Rényian Entropy, Koch snowflake, Sierpiniski 
Gasket, Information, and communications Technology (ICT). 

1. Introduction 

 The Shannonian entropic measure, 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋) [1] reads: 

𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋)  =  ∑ 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝐼𝐼𝐼𝐼(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) =  −∑ 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                   (1.1) 

The probability of the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ event is given by the equation 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖).This entropy, 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋) defines the 
concept of information in information theory.  

Most importantly, (𝑞𝑞𝑞𝑞,𝛽𝛽𝛽𝛽) Generalized Rényian Entropy of order 𝑞𝑞𝑞𝑞 and 𝛽𝛽𝛽𝛽 [2], namely 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽
𝑞𝑞𝑞𝑞 to read 

as 

𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽
𝑞𝑞𝑞𝑞�𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙)� =  𝛽𝛽𝛽𝛽

1−𝑞𝑞𝑞𝑞
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 �∑ �𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙)�𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1 �                                             (1.2) 

With 𝑞𝑞𝑞𝑞 ∈ (0,1),𝛽𝛽𝛽𝛽 ∈ (0,1],𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙) ≥ 0 ∀ 𝑙𝑙𝑙𝑙 = 1,2, … ,𝑁𝑁𝑁𝑁 and ∑ 𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙) = 1.𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1  

Notably, as and for 𝛽𝛽𝛽𝛽 = 1,𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽
𝑞𝑞𝑞𝑞 reduces to the Rényian Entropy [3] of order 𝛼𝛼𝛼𝛼 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑞𝑞𝑞𝑞�𝑝𝑝𝑝𝑝(𝑙𝑙𝑙𝑙)� =  1
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𝑛𝑛𝑛𝑛=1 �                            (1.3)                                

And for,  𝛽𝛽𝛽𝛽 = 1, 𝑞𝑞𝑞𝑞 → 1, 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽
𝑞𝑞𝑞𝑞 reduces to the Shannonian entropic formula (1.1). 

            Entropy and fractal dimension are related because entropy is a statistical measure of 
complexity in spatial dimensions. Fractals measure a pattern's ability to fill space because of 
its distinctive scaling behaviour. This connection aids in our comprehension of the complex 
interrelationship between information theory and pattern geometry [4–9]. Lewis Fry 
Richardson investigated in [10] how the length of the stiff stick used to measure coastlines can 
affect the measured length of the shoreline. Mandelbrot referenced this earlier research in [10–
12]. 
         

            There are numerous formal mathematical definitions that can be used to study fractal 
dimension(𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓). One formulation of this kind establishes relationships between (𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓), the 
scaling factor (𝜀𝜀𝜀𝜀), and the number of sticks (𝑁𝑁𝑁𝑁) required to cover a coastline. These formulas 
help quantify the complexity and scaling properties of fractal patterns in spatial dimensions. 
An area of Arizona's Grand Canyon is reproduced with the help of the GNU Image 
Manipulation Programme and Google Earth satellite images. These tools can be used to paint 
portraits or create various depictions of the aspects of the canyon, as seen in figure 1(c.f., [12]).  

 

    𝑁𝑁𝑁𝑁 ∝ 𝜀𝜀𝜀𝜀−𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓                          (1.4) 

   𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝑁𝑁  =  −𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓  =  𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 𝜀𝜀𝜀𝜀
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It is possible to see how painted portraits were created by using Google Earth satellite 
photographs of a section of the Grand Canyon in Arizona. Figures 2 and 3 show how the 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓. 
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And for, 	            reduces to the Shannonian entropic formula (1.1).

Entropy and fractal dimension are related because entropy is a statistical measure of complexity in spatial dimensions. Fractals measure 
a pattern's ability to fill space because of its distinctive scaling behaviour. This connection aids in our comprehension of the complex 
interrelationship between information theory and pattern geometry [4-9]. Lewis Fry Richardson investigated in [10] how the length of 
the stiff stick used to measure coastlines can affect the measured length of the shoreline. Mandelbrot referenced this earlier research in 
[10-12].
 
There are numerous formal mathematical definitions that can be used to study fractal dimension (Df). One formulation of this kind 
establishes relationships between (Df), the scaling factor (𝜀), and the number of sticks (N) required to cover a coastline. These formulas 
help quantify the complexity and scaling properties of fractal patterns in spatial dimensions. An area of Arizona's Grand Canyon is 
reproduced with the help of the GNU Image Manipulation Programme and Google Earth satellite images. These tools can be used to 
paint portraits or create various depictions of the aspects of the canyon, as seen in figure 1(c.f., [12]). 
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Section 2 of the present work mind map reviews earlier research on the connection between 
entropy and 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓, with an emphasis on Shannon and Rényi entropies. It also explains how 
entropy principles can be used to get 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓. This review of earlier research sheds light on the 
fractal dimension's entropic genesis. Section 3 of the paper is dedicated to deriving new results 
and presenting a numerical analysis that strongly supports the idea that the logarithmic base 𝐷𝐷𝐷𝐷 
has a substantial impact on the behavior of the 𝐻𝐻𝐻𝐻1 

𝑞𝑞𝑞𝑞  Koch snowflakes 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓. This section focuses 
on explaining and demonstrating how different values of the logarithmic base influence the 
behavior of the fractal dimension in the context of the Koch snowflake. Section 4 addresses the 
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 Koch snowflakes Df . 

This section focuses on explaining and demonstrating how different values of the logarithmic base influence the behavior of the fractal 
dimension in the context of the Koch snowflake. Section 4 addresses the significant impact of fractal dimension on smart cities. Section 
5 covers the conclusion and future work.

2. Materials and Methods

For occurrences with equal probabilities, that is, 	           an exposition of Df for some entropic formulae, see [1,3,13,14].
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For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 

         𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠  =  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛1𝜀𝜀𝜀𝜀

                                                 (2.1) 

Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 

            𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅  =  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛1𝜀𝜀𝜀𝜀

                                                                             (2.2) 

3 Results and Discussion 

Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                                                              (2.3) 

Proof: Engaging (2.3), it is implied that 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 =  lim
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Engaging (2.1) and (2.2), the proof follows. 

Corollary 2   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c. f. (2.3)) satisfies: 

1. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                       (2.4) 

2. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
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Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
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This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 

         𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠  =  lim
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This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 
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future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 
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Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 

            𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅  =  lim
𝜀𝜀𝜀𝜀→0
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3 Results and Discussion 

Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 
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Proof: Engaging (2.3), it is implied that 
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Engaging (2.1) and (2.2), the proof follows. 

Corollary 2   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c. f. (2.3)) satisfies: 

1. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                       (2.4) 
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Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
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This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 
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Proof: Engaging (2.3), it is implied that 
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This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 
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Proof 

Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝛽𝛽𝛽𝛽→1

𝛽𝛽𝛽𝛽(1 − 𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1 − 𝑞𝑞𝑞𝑞)  lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1
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𝜀𝜀𝜀𝜀

 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑞𝑞𝑞𝑞 ≠ 1 

This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 

         𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠  =  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛1𝜀𝜀𝜀𝜀

                                                 (2.1) 

Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 

            𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅  =  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁
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3 Results and Discussion 

Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                                                              (2.3) 

Proof: Engaging (2.3), it is implied that 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 =  lim
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Engaging (2.1) and (2.2), the proof follows. 

Corollary 2   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c. f. (2.3)) satisfies: 

1. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                       (2.4) 

2. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
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Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝛽𝛽𝛽𝛽→1
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(1 − 𝑞𝑞𝑞𝑞)  lim
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 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑞𝑞𝑞𝑞 ≠ 1 

This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 

         𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠  =  lim
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Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 
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3 Results and Discussion 

Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                                                              (2.3) 

Proof: Engaging (2.3), it is implied that 
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This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
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, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 
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Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 
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(1−𝑞𝑞𝑞𝑞)
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Proof: Engaging (2.3), it is implied that 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 =  lim
𝜀𝜀𝜀𝜀→0

𝛽𝛽𝛽𝛽
(1−𝑞𝑞𝑞𝑞)
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜀𝜀𝜀𝜀

 

=
𝛽𝛽𝛽𝛽(1 − 𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)

(1 − 𝑞𝑞𝑞𝑞)  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

 

Engaging (2.1) and (2.2), the proof follows. 

Corollary 2   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c. f. (2.3)) satisfies: 

1. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                       (2.4) 

2. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑁𝑁𝑁𝑁
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                                                                    (2.5)                                           

Proof 

Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝛽𝛽𝛽𝛽→1

𝛽𝛽𝛽𝛽(1 − 𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1 − 𝑞𝑞𝑞𝑞)  lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

= 
(1 − 𝑞𝑞𝑞𝑞)
(1 − 𝑞𝑞𝑞𝑞) lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑞𝑞𝑞𝑞 ≠ 1 

This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

Rényian dimension, DR  [14] reads:

Proof: Engaging (2.3), it is implied that

Engaging (2.1) and (2.2), the proof follows.

3. Results and Discussion

Theorem 1: For			    it holds that:

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 

         𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠  =  lim
𝜀𝜀𝜀𝜀→0
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𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛1𝜀𝜀𝜀𝜀

                                                 (2.1) 

Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 

            𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅  =  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛1𝜀𝜀𝜀𝜀

                                                                             (2.2) 

3 Results and Discussion 

Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                                                              (2.3) 

Proof: Engaging (2.3), it is implied that 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 =  lim
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Engaging (2.1) and (2.2), the proof follows. 

Corollary 2   𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c. f. (2.3)) satisfies: 

1. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                       (2.4) 

2. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
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                                                                    (2.5)                                           

Proof 

Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝛽𝛽𝛽𝛽→1

𝛽𝛽𝛽𝛽(1 − 𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1 − 𝑞𝑞𝑞𝑞)  lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑞𝑞𝑞𝑞 ≠ 1 

This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 
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significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 

         𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠  =  lim
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                                                 (2.1) 

Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 

            𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅  =  lim
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                                                                             (2.2) 

3 Results and Discussion 

Theorem 1:    For 𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(𝑃𝑃𝑃𝑃)(c, f. , (1.2)), it holds that: 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1−𝑞𝑞𝑞𝑞)
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Proof: Engaging (2.3), it is implied that 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 =  lim
𝜀𝜀𝜀𝜀→0

𝛽𝛽𝛽𝛽
(1−𝑞𝑞𝑞𝑞)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 �∑ �1
𝑁𝑁𝑁𝑁
�
𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽

𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 �

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1
𝜀𝜀𝜀𝜀

 

=
𝛽𝛽𝛽𝛽(1 − 𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)

(1 − 𝑞𝑞𝑞𝑞)  lim
𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

 

Engaging (2.1) and (2.2), the proof follows. 
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2. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼 = 𝛽𝛽𝛽𝛽(1−𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
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Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  
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(1 − 𝑞𝑞𝑞𝑞)
(1 − 𝑞𝑞𝑞𝑞) lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑞𝑞𝑞𝑞 ≠ 1 

This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
𝑁𝑁𝑁𝑁

, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
 
Shannon′s dimension,𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 [12] reads: 
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Rényian dimension, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 [14] reads: 

            𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅  =  lim
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Proof: Engaging (2.3), it is implied that 
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Engaging (2.1) and (2.2), the proof follows. 
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1. 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅                       (2.4) 
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Taking the limit of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞  (c.f., (2.3)) as 𝛽𝛽𝛽𝛽 → 1,  

 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1𝑞𝑞𝑞𝑞  =  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙
𝛽𝛽𝛽𝛽→1

𝛽𝛽𝛽𝛽(1 − 𝑞𝑞𝑞𝑞𝛽𝛽𝛽𝛽)
(1 − 𝑞𝑞𝑞𝑞)  lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

= 
(1 − 𝑞𝑞𝑞𝑞)
(1 − 𝑞𝑞𝑞𝑞) lim

𝜀𝜀𝜀𝜀→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷 𝑁𝑁𝑁𝑁
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1

𝜀𝜀𝜀𝜀

 = 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅 , 𝑞𝑞𝑞𝑞 ≠ 1 

This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
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2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
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, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
entropic formulae, see [1,3,13,14]. 
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This proves 1. 

The proof of 2 is immediate by (2.3) and the well-known formula: 

significant impact of fractal dimension on smart cities. Section 5 covers the conclusion and 
future work. 
 
2 Materials and Methods 

For occurrences with equal probabilities, that is, 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) =  1
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, an exposition of 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 for some 
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decreases, which is shown by figure 5. As expected, as 𝐷𝐷𝐷𝐷 increases, 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(Koch snowflake) 

will tend to zero. Notably, the attained negative values of 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝛼𝛼𝛼𝛼(Koch snowflake) are physically 

interpreted by the measurements of the degrees of emptiness in an empty set, non-conclusion, 
model architectures with various sorts of inhomogeneity non scattered particle distributions are 
described as being empty (lacunar). 

More interestingly, the Sierpiniski Gasket (SG) fractal dimension follows by putting N = 3 and 
𝜀𝜀𝜀𝜀 = 1/2. 

Engaging (2.3), one gets: 
                      𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅0.5

𝑞𝑞𝑞𝑞 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐷𝐷𝐷𝐷 = 𝑒𝑒𝑒𝑒) = (2−𝑞𝑞𝑞𝑞)𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛3
4(1−𝑞𝑞𝑞𝑞)𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛2

                                            (2.7)                                                

In the following experiment, the information theoretic impact of the non-extensive parameter 
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and synergetic theory since it primarily deals with the relationships and interconnections within 
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4. Df Applications to Smart Cities

Local or microscopic chaos and global or macroscopic disorder are the two types of chaos covered by chaos theory [16]. Local chaos is 
mostly investigated by dissipative structure theory and synergetic theory since it primarily deals with the relationships and interconnections 
within a system. Chaos theory, on the other hand, focuses specifically on global chaos, which is described as deterministic patterns and 
behaviours that arise from complex systems.

[16] looked at the growth of smart cities, particularly in China, and stressed how evaluation and planning may suffer from a lack of a 
basic understanding of smart city systems. Consequently, [14] offered a complete framework for assessing and regulating the operations 
of smart cities that considers smart gadgets, ICT, and the dynamics of development. It also implied that the self-organizing system theory 
could potentially be able to accommodate for the complexity of smart cities.

Smart systems are made up of several interrelated parts, including systems for energy, ICT, economics, security, and institutional culture 
[16]. As smart city systems are developed, these systems, which are driven by internal institutional culture and ICT mechanisms, evolve 
from simple smart cell components to more complex entities. Figure 7(c.f., [16]) demonstrates how these open systems interact with the 
outside world to exchange information and energy to create a full self-organizing framework.
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the complexity of smart cities. 
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systems, which are driven by internal institutional culture and ICT mechanisms, evolve from 
simple smart cell components to more complex entities. Figure 7(c.f., [16])  demonstrates how 
these open systems interact with the outside world to exchange information and energy to 
create a full self-organizing framework. 

 
Figure 7 

The entire functioning and quality of service provided by an urban road network are directly 
influenced by its structural features [17]. Because fractal theory is self-similar and scale 
invariant, it can be used to examine urban road networks. To evaluate and enhance urban road 
networks, this research computes and examines nine Harbin districts' five fractal dimensions, 
as well as their relationships to area, population, road length, and building density.  
 

Figure 8(c.f., [17])  portrays the map of Harbin, a Chinese city. The main urban area of Harbin 
has a total of 12,800 roads and the combined length of these roads is 9757.934 kilometres. 

The entire functioning and quality of service provided by an urban road network are directly influenced by its structural features [17]. 
Because fractal theory is self-similar and scale invariant, it can be used to examine urban road networks. To evaluate and enhance urban 
road networks, this research computes and examines nine Harbin districts' five fractal dimensions, as well as their relationships to area, 
population, road length, and building density. 

Figure 8(c.f., [17]) portrays the map of Harbin, a Chinese city. The main urban area of Harbin has a total of 12,800 roads and the 
combined length of these roads is 9757.934 kilometres.
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Figure 8 

 

Data including the road network map, area, population, building area, road number, and 
building number were collected for 9 districts in Harbin, China, to compute the road work’s 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 
[17]. Shape files were utilised for downloading the information about the metropolitan road 
network from Open Street Map (OSM). Figure 9 illustrates how this information will be utilised 
to examine the fractal characteristics of the Harbin Road network. 

 
Figure 9. The core districts have more roads and intersections, whereas as we move away from the city centre, 
there are less roads and crossroads. By examining the data from the road network, it is possible to observe this 
spatial pattern of road distribution, which has consequences for urban and transportation development in Harbin 
[17]. 

 

In their research, [17] measured five different types of fractal dimensions using images in BMP 
file format (.bmp). The images in question had a black backdrop with white elements that 
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Data including the road network map, area, population, building area, road number, and building number were collected for 9 districts in 
Harbin, China, to compute the road work’s Df [17]. Shape files were utilised for downloading the information about the metropolitan road 
network from Open Street Map (OSM). Figure 9 illustrates how this information will be utilised to examine the fractal characteristics 
of the Harbin Road network.

Figure 9: The core districts have more roads and intersections, whereas as we move away from the city centre, there are less roads 
and crossroads. By examining the data from the road network, it is possible to observe this spatial pattern of road distribution, 
which has consequences for urban and transportation development in Harbin [17].

In their research, [17] measured five different types of fractal dimensions using images in BMP file format (.bmp). The images in 
question had a black backdrop with white elements that represented roads and boundaries on them. Figure 10 illustrates the conversion 
of nine maps into the appropriate BMP format with varied sizes (width and height) and a resolution of 500 dpi from the GIS software-
generated shape file data.
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represented roads and boundaries on them. Figure 10 illustrates the conversion of nine maps into 
the appropriate BMP format with varied sizes (width and height) and a resolution of 500 dpi from 
the GIS software-generated shape file data. 

 
Figure 10. The road maps of these districts have been digitally represented with a high level of detail and clarity, 
allowing for precise analysis and visualization of the road infrastructure in those areas [17]. 

 

The urban climate is influenced by various factors [18] and understanding them can help 
mitigate heat stress in the context of urbanization and climate change. In a study focusing on 
European cities, it was found that the Urban Heat Island (UHI) phenomenon is influenced by 
city size, fractality (complexity of urban form), and anisometry (degree of stretching). 
According to the study, UHI intensity decreases with anisometry and rises with city size and 
fractal dimension. Smaller, dispersed, and stretched cities are considered preferable for 
mitigating UHI, although trade-offs must be made considering the positive effects of large 
cities. 

The UHI was determined by the researchers [18] using land cover data and temperature data 
from remote sensing. The disparity between the mean temperature inside an urban cluster and 
the mean temperature outside is how they characterised the severity of the urban heat island 
(UHI). The study examined how the size, fractality, and anisometry of the city clusters affect 

Figure 10: The road maps of these districts have been digitally represented with a high level of detail and clarity, allowing for 
precise analysis and visualization of the road infrastructure in those areas [17].

The urban climate is influenced by various factors and understanding them can help mitigate heat stress in the context of urbanization and 
climate change [18]. In a study focusing on European cities, it was found that the Urban Heat Island (UHI) phenomenon is influenced by 
city size, fractality (complexity of urban form), and anisometry (degree of stretching). According to the study, UHI intensity decreases 
with anisometry and rises with city size and fractal dimension. Smaller, dispersed, and stretched cities are considered preferable for 
mitigating UHI, although trade-offs must be made considering the positive effects of large cities.

The UHI was determined by the researchers using land cover data and temperature data from remote sensing [18]. The disparity between 
the mean temperature inside an urban cluster and the mean temperature outside is how they characterised the severity of the urban heat 
island (UHI). The study examined how the size, fractality, and anisometry of the city clusters affect the UHI during the summer of 
2006–2013, focusing on the 5,000 largest urban clusters in Europe.

•	 Multiplying the number of cells in a city cluster by the area of each cell yields the city size SC. Due to Zipf's law, which states that 
there are many small cities and few large ones, the logarithm of city lnSC is used to reduce the skewness in the data.

•	 To measure the fractal dimension of city clusters, [18] used the box counting method, which involves counting the number of square 
boxes needed to cover the structure. Figure 11 (a - c) of the study shows three examples of city clusters with different sizes and 
levels of fractality, illustrating the concept visually. The box-counting method is used to calculate Df of city clusters, which provides 
a measure of their compactness. By analyzing the linear regressions of the log-log scale plots of box-counting results, the slopes of 
the lines estimate the fractal dimensions, indicating that cities with larger Df values are generally more compact in shape.

•	 Anisometry of a city cluster is the degree of deviation of a city from a circular shape. It is computed using the main axis to minor 
axis ratio of the city cluster's equivalent ellipse. A higher value of anisometry indicates that the city is more elongated or stretched 
in shape, as illustrated by the example of Belgrade in figure 11 (a-c) (c.f., [18]).
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Scatterplots in figure 12 (c.f., [18]) show the associations between three parameters and the 
midday UHI intensity in the setting. The UHI intensity increases with city growth, as seen in 
Figure 12(a), with an increase in UHI intensity of roughly 0.4 °C occurring for every doubling 
of city size. Moreover, there is a substantial correlation between population size and UHI 

Scatterplots in figure 12 (c.f., [18]) show the associations between three parameters and the midday UHI intensity in the setting. The 
UHI intensity increases with city growth, as seen in Figure 12(a), with an increase in UHI intensity of roughly 0.4 °C occurring for every 
doubling of city size. Moreover, there is a substantial correlation between population size and UHI intensity [18]. Quantile regressions 
also show heteroscedasticity, which suggests a stronger dispersion of UHI severity among major cities. The association between Df and 
UHI intensity is seen in figure 12(b). The findings reveal that more compact cities often have larger UHI effects, with an average UHI 
intensity rise of about 2 °C as Df increases. Additionally, in figure 12(c), it is observed that the UHI intensity decreases with increasing 
anisometry, with more circular cities exhibiting higher UHI intensities.
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dispersion of UHI severity among major cities. The association between 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 and UHI intensity 
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effects, with an average UHI intensity rise of about 2 °C as 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 increases. Additionally, in figure 
12(c), it is observed that the UHI intensity decreases with increasing anisometry, with more 
circular cities exhibiting higher UHI intensities. 

Figure 12. The UHI intensity is analysed using quantile regressions and ordinary least square regression, with the 
results visualized through linear regressions and quantile regressions. The quantile regressions provide slopes for 
different quantiles, indicating the varying impact of the factors on UHI intensity [18]. 
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Figure 12: The UHI intensity is analysed using quantile regressions and ordinary least square regression, with the results 
visualized through linear regressions and quantile regressions. The quantile regressions provide slopes for different quantiles, 
indicating the varying impact of the factors on UHI intensity [18].
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5. Conclusion and Future Work

On a very strong note, this current study adds to the existing knowledge, based on only one single paper in literature [9], where the 
undertaken research was mainly of the fractal dimensions of the very basic Shannonian entropic form. More importantly, this paper 
extends the Information Theoretic Fractal Geometry (ITFG) to the highest level, by obtaining 	  , as a potential generalization to [9]. 
It is worth noting that the first author of the current paper has published two seminal papers(see, [21,22]) to set the cornerstones of ITFG 
based on the Df theory of both Ismail’s Second and Fourth Entropies, namely    			         Potentially,        and  
are considered as ultimate generalization to numerous entropy measures within the literature. Based on these consolidated facts, the 
current paper provides another ground-breaking discovery that adds to ITFG. The study has shown the existence of negative values of         
      (Koch snowflake), which links to very interesting mathematical and physical avenues of research. More fundamentally, the 
information-theoretic impact on Sierpiniski Gasket dimension of      that corresponds to β=0.5, D=e,namely 	     was addressed. 
The influential impact of fractal dimension to advance smart cities was overviewed. Future work involves finding the fractal dimension 
of available entropies in the literature [19, 20] to draw a detailed comparison between these derived fractal dimensions, which will open 
new grounds towards a revolutionary ITFG. The next research phase includes the exploration of the threshold theorems for     and in 
terms of the triad (q,β,D). more potentially, exploring for a first-time ever the corresponding arbitrary Sierpinski Gasket for the newly 
derived      . On another applicative note, more applications of fractal dimension to smart cities, engineering and other interdisciplinary 
themes of research will be addressed [15]. 
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dispersion of UHI severity among major cities. The association between 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 and UHI intensity 
is seen in figure 12(b). The findings reveal that more compact cities often have larger UHI 
effects, with an average UHI intensity rise of about 2 °C as 𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓 increases. Additionally, in figure 
12(c), it is observed that the UHI intensity decreases with increasing anisometry, with more 
circular cities exhibiting higher UHI intensities. 

Figure 12. The UHI intensity is analysed using quantile regressions and ordinary least square regression, with the 
results visualized through linear regressions and quantile regressions. The quantile regressions provide slopes for 
different quantiles, indicating the varying impact of the factors on UHI intensity [18]. 
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𝑞𝑞𝑞𝑞 (SG) was addressed. The influential impact of fractal dimension to advance smart cities 

was overviewed. Future work involves finding the fractal dimension of available entropies in 
the literature [19, 20] to draw a detailed comparison between these derived fractal dimensions, 
which will open new grounds towards a revolutionary ITFG. The next research phase includes 
the exploration of the threshold theorems for 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞   and in terms of the triad(𝑞𝑞𝑞𝑞,𝛽𝛽𝛽𝛽,𝐷𝐷𝐷𝐷).  more 

potentially, exploring for a first-time ever the corresponding arbitrary Sierpinski Gasket for the 
newly derived 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝛽𝛽𝛽𝛽𝑞𝑞𝑞𝑞 . On another applicative note, more applications of fractal dimension to 

smart cities, engineering and other interdisciplinary themes of research will be addressed.  
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