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Abstract
A QSAR study was performed on a series of naphthalene cyclohexane amines derivate with experimentally 
determine constant of inhibition (Ki) in order to indentify a potent human urokinase inhibitor. A QSAR model was 
build using artificial neural networks (ANN). Model was used for screening of compounds with potent urokinase 
inhibitory properties and to compute Ki of resulted screening compounds. Compound with best Ki was chosen for 
discussion. An induced fit docking (protein - ligand) and a protein –protein docking were used in results discussion. 
A isoquinoline –diol base derivate (Famotidione) resulted to have urokinase inhibitory properties.
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Introduction
Urokinase is a serine protease present in humans’ urine, blood 
and in extracellular matrix of many tissues. Urokinase is a 411 
residue protein with three domains: the serine protease domain, 
the kringle domain and growth factor domain. It is synthesizing in 
zymogen form and activated by proteolytic cleavage between Lys 
158 and Ile 159. Urokinase catalyzed the reaction of transforming 
plasminogen into plasmin. Urokinase has endogen inhibitors, most 
important being the serpins plasminogen activator inhibitor1 (PAI 1) 
and plasminogen activator inhibitor 2(PAI2) which are irreversible 
inhibitors [1,2]. Urokinase, Streptokinase and plasminogen activator 
respectively are alternatives to surgery for recanalizing thrombosed 
vessels or vascular prostheses. Anaphylactoid reactions are identical 
to anaphylactic reactions in their clinical presentation, but the former 
occurs without participation of immunoglobulin E antibodies or an 
inciting allergen. It is believed that urokinase directly stimulates 
mast cells and basophils to release the chemical mediators of 
inflammation.

The symptoms observed during this type of reaction result from 
release of histamine and other substances (e.g., leukotrienes, 
prostaglandins, kinins, and serotonin) from mast cells and basophils. 
Histamine then binds to H1 and H2 receptors on cells of the 
cardiovascular system, extra vascular smooth muscle (e.g., bronchial 
tree), and exocrine glands (e.g., lacrimal, bronchial, salivary, and 
gastric secretory cells) [3]. Histamine and serotonin stimulate the 
peripheral microvasculature causing vasodilation and vascular 
permeability, which can lead to hypotension, tachycardia, and 
shock. In the lungs bronchial smooth muscle spasm, mucosal edema, 
and mucus plugging can cause severe respiratory compromise. 

Prophylaxis is realized using acetaminophen orally, intravenous 
diphenhydramine hydrochloride - a H1 inhibitor .The possibility of 
using H2 inhibitors was also suggested based on clinical observation 
[4]. In this respect a potent urokinase inhibitor is to be found.

Methods
In order to developed a QSAR model of urokinase inhibitors, with 
further used in virtual screening of novel urokinase inhibitors, a 
data set of compounds with experimentally determine constant of 
inhibition (Ki) on urokinase was chosen [5]. Data were curatedin 
order to have a correspondent distinct value of Ki for a distinct 
molecule. Also the 3D structures were energetically minimized, 
partial charges corrected; naming issues resolved. Furthermore 
three molecules containing Br were removed from the data set due 
to failure in computing partial charges. Data set was divided into a 
training set used to build the model and a test set used to externally 
validate the model. Data were split using a randomized algorithm 
in a training set (21 compounds) used to build the model and a test 
set (21 compounds) used to test the model. Target variable was set 
as inhibition constant (Ki).

A number of chemical descriptors were used: H, C, N, O,P,S atoms, 
molecular weight (MW), total number of atoms, number of heavy 
atoms, number of rotational bounds, number of hydrogen donor 
groups(HD) , number of hydrogen accepting groups (HA), number 
of rings, minimal distance between two hydrogen donor groups, 
maximal distance between two hydrogen donor groups, minimal 
distance between two hydrogen accepting groups, maximal distance 
between two hydrogen accepting groups, aromaticity (Aro). A future 
selection algorithm was used to select proper descriptors. Also 
descriptors were evaluated using tolerance (T) and variance inflation 
factor (VIF). In order to evaluate tolerance and VIF r2 of each 
descriptor in respect to all others was computed. Artificial neural 
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networks (ANN) regression was used in building the model due to 
failure of multiple linear regression method (MLR) in predicting 
the target variable (r2<0.7) [6,7]. ANN attributes were a neurons 
incl. bias –input-hidden layer-output were 11,4,1, max epoch was 
1000, general learning rate 0.3, output layer learning rate used was 
back propagation method was 0.3, initial weight range was 0.5 
respectively. Structures composing the ANN model were arrange 
based on similarity score composed on best Ki and best correlation 
with the ANN model. Ligand molecule accordingly to best Ki was 
chosen as a template and a similarity screening was performed on 
a commercially available data base [8]. QSAR model previously 
obtained was applied on the retrieved set of molecules in order to 
compute the Ki. A comparative docking study was performed on 
ligand data set on endogen urokinase inhibitors API-1 and API 2. In 
first docking study ligands were docked on urokinase crystallographic 
structure with the PDB id 1C5Y. Auto Dock 4.2  software was used 
for docking procedure [9]. Docking site was retrieved form literature 
and its precise coordinates detected computationally where: x 8.84Å, 
y 3.18Å, z 29.94Å with a radius of 15Å. Aprotein-protein docking 
study was performed with urokinase as a target and API-1 and 
API-2 as ligands.

Results and Discussion
Descriptors proposed for regression model building using ANN are 
represented in Table 1. Descriptor analysis suggested that Andrews’s 
charges, minimal distance between a hydrogen donor an acceptor 
group, minimal distance between a hydrogen donor group and a 
radical group and aromaticity contribute with relevant information 
to model. Also number of S atoms although there are only three 
sulfur containing compounds is significant. Hydrogen number and 
the total number of atoms of each compound, accordingly to T and 
VIF do not contribute with significant information and were not 
used in building the model. Lastly for 42 compounds8 descriptors 
were used.

Table 1: Descriptors proposed for model building. Pearson 
correlation square coefficient (r2), tolerance (T), variance 
inflation factor (VIF) are computed

Number Descriptor r2 T VIF
1 H 0.994282 0,005718 0,005718
2 Atoms 0.994584 0,005416 0,005416
3 Rings 0.948783 0,051217 0,051217
4 Aro 0.899219 0,100781 0,100781
5 Csp3 0.98473 0,01527 0,01527
6 S 0.527008 0,472992 0,472992
7 Andrews 0.87286 0,12714 0,12714
8 HD-HA-Min 0.78283 0,21717 0,21717
9 HD-R-Min 0.822778 0,177222 0,177222

10 Wiener 0.98303 0,01697 0,01697

Table 2: Observed and predicted inhibition constants. Ki- 
observed inhibition constant, Kip –predicted inhibition constant 
(nM)
Nr Compound Ki Kip
1 O=S(=O)(C)N([CH]1)[N]C=C1[c]([cH]2)

[c]3[cH][c]( [c](n)[nH])[cH][cH][c]3[cH]
[c]2c(=O)[nH]=c4[cH][cH][cH][cH][cH]4

769 -1445.21

2 [nH][c](n)[c]([cH]1)[cH][cH][c]([cH]2)[c]1[cH]
[cH][c]2OC(C)C

7280 6321.44

3 C#CCN(C)C(=O)c(cc1)cc(c12)nc(N)cc2 100000 102379

4 [nH][c ] (n ) [c ] ( [ cH]1) [cH][cH][c ] ( [ cH]2)
[c]1[cH][cH][c]2C3CC3[c]([cH][c]54)[cH][cH]
[c]5CCN(C)C4C6CCC6

42 2237.42

5 N#CCN(C)C(=O)c(cc1)cc(c12)nc(N)cc2 100000 99954.9

6 [nH][c](n)[c]([cH]1)[cH][cH][c]([cH]2)[c]1[cH]
[cH][c]2C=C[c]([cH][c]43)[cH][cH][c]4CCN(C)
C3C5CCCCC5

223 1708.24

7 [nH][c](n)[c]1[cH][cH][c]2[cH][cH][cH]
c(=[NH2])[c]2[cH]1

4500 -1655.29

8 [O][C](OC)[NH]=c([cH]1)[c]2[cH][c]([c](n)
[nH])[cH][cH][c]2[cH][c]1c(=O)[nH]=c3[cH]
[cH][cH][cH][cH]3

18 7121.53

9 COC(=O)Nc(cc1)cc(c12)ccc(n2)/C(=N/[H])N 50000 49577.9

10 O=c([nH]=c1[cH][c](OC)[cH][c]([cH]1)OC(C)C)
[c]2[cH][c]3[cH][cH][c]([c](n)[nH])[cH][c]3[cH]
[cH]2

33 -1337.16

11 [H]\N=C(\N)NC(=O)c1ccc(Cl)c(c1)S(=O)(=O)N 100000 87820

12 [nH][c](n)[c]([cH]1)[cH][cH][c]([cH]2)[c]1[c]
(C=CC3CC3)[cH][c]2C4CC4[c]([cH][cH]5)[cH]
[c]6[c]5CCN(C)C6C(C)C

9 570.307

13 [nH][c](n)[c]([cH]1)[cH][cH][c]([cH]2)[c]1[c]
(OC)[cH][c]2C3CC3[c]4[cH][c]5C(C(C)C)N(C)
CC[c]5[cH][cH]4

94 3595.16

14 O=c(n[c]1[cH][cH][cH][cH][cH]1)[c]2[cH][cH]
[c]3[cH][c]([c](n)[nH])[cH][cH][c]3[cH]2

628 275.133

15 O=c([nH]=c1[cH][cH][cH][cH][cH]1)[c]
([cH]2)[cH][c]3[cH][cH][c]([c]([nH])n)[cH]
[c]3[c]2[c]4[n][cH][cH][cH][n]4

7850 -3983.96

16 [nH][c](n)[c]1[cH][cH][c]2[cH][cH][cH]
c(=[NH2])[c]2[cH]1

450 21109.9

17 O = C ( [ N H ] = c 1 [ c H ] [ c H ] [ c H ] [ c H ] [ c H ] 1 )
[NH]=c2[cH][c]3[cH][cH][c]([c](n)[nH])[cH]
[c]3[cH][cH]2

610 1092.17

18 [nH][c](n)[c]([cH]1)[cH][cH][c]([cH]2)[c]1[cH]
[cH][c]2C3OC3[c]4[cH][cH][cH][cH][cH]4

610 -5327.77

19 c1c(N)ncc(c12)cccc2 30000 20226.4

20 [nH][c ] (n ) [c ] ( [ cH]1) [cH][cH][c ] ( [ cH]2)
[c]1[cH][cH][c]2C3CC3[c]([cH][c]54)[cH][cH]
[c]5CCN(C)C4[c]6[cH][cH][cH][n][cH]6

1250 -4520.08

21 [nH][c](n)[c]([cH]1)[cH][cH][c]([cH]2)[c]1[c]
(C=CCOC)[cH][c]2C3CC3[c]4[cH][c]5C(C(C)
C)N(C)CC[c]5[cH][cH]4

21 2300.85

Obtained model equation was y= 53.4084 + 0.956756*Ki Observed 
Pearson correlation square (r2) was 0.9614 and cross validated square 
CC (q2) was0.960921 respectively. Correlation between Ki used 
in the model training and Ki prediction of training set is shown in 
figure 1 and Table 2
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Figure 1: Scatter plot of inhibition constant (Ki) observed versus Ki 
predicted by the ANN model Scatter plot display a regression where 
the majority of values is located at boundary of regression line. 
Moderate data is interpreted by relatively reduce size of compound 
set. Similarity ranking retrieved compound with molecular formula 
C21H22N5O3 (Ki=0.9) that is represented in figure below.

Figure 2: Ligand 9hexahydro-naphtalen-methanol. This compound 
was used as a template for a shape screening using in a 3D chemical 
compound data base. Structures retrieved were purin-tione, 
isoquinoline-carboxilate, isoquinoli-benzamida, sulfanoylpropan-
imidamide (Famotidine), benzodiazepine, nitrobenzamide, 
pyrrolidine-carboxamide, enamide, metoxy-benzamide, isoquinoline 
andhexanamide respectively, listed in the table below an dranked 
accordingly to shape similarity and conformational energy. Also 
in Table 3 drugs like properties are estimated using Lipinski’s rule 
of five.

Table 3: Compounds resulted after a shape screening classified 
after conformational energy and shape ranking. In the third column 
Lipinski’s rule of five is calculated for all compounds assessing the 
lead like properties: from left to right molecular mass in Daltons, 
number of H donor groups, and number of H accepting groups, 
number of rotable bounds.

Molecule Conformational  
energy 

(kcal/ mol)

Shape 
ranking

1 n1c(N)[nH]c(=S)c(c12) 
ncn2[C@@H]3O[C@@H]
(CO)[C@H](O)[C@H]3O

23.949 0.427

2 COC(=O)[C@@H]([C@@H] 
(O)CC1)[C@H]([C@@H]12) 
C[C@H]3c4c(CCN3C2) 
c5c([nH]4)cccc5

205.160 0.426

3 c1cc(O)c(O2)c3c1C[C@@H] 
(N(CC4)CC5CC5)[C@]6(O) 
CC[C@H]([C@H]2[C@@]346)
NC(=O)c7ccccc7

167.780 0.419

4 O=S(=O)(N)/N=C(\N) 
CCSCc1nc(sc1)N=C(N)N

310.354 0.417

5 c1c(O)c(O)c(Cl)c(c12)
CC[NH2+] C[C@@H]2c3ccccc3

104.847 0.416

6 c1cc(O)c(O2)c3c1C[C@@H] 
(N(CC4)CC5CC5)[C@]6(O) 
CC[C@H]([C@H]2[C@@]346) 
NC(=O)c7cc([N+](=O)[O-])ccc7

213.184 0.414

7 C1CC[C@@H](C(=O)N) 
N1C(=O)[C@H](Cc2[nH]cnc2) 
NC(=O)[C@@H]3CCC(=O)C3

959.662 0.414

8 CCCCC[C@@H](O)\
C=C\[C@@H]([C@H](O) 
C[C@@H]1O)[C@H]1C/C=C/ 
CCCC(=O)N

112.731 0.408

9 COc1cccc(c1)C(=O)N[C@@H] 
(CC2)[C@H]3Oc(c(O) 
cc4)c5c4C[C@@H] 
([C@@]2([C@@]356)O)N(CC6) 
CC7CC7

247.853 0.404

10 CC(=O)O[C@@H](CC1) 
[C@@H]2Oc(c(cc3)OC(=O)C) 
c4c3C[C@H]([C@H]1[C@]245) 
N(C)CC5

3740.653
0.400

11 c1ccccc1C[C@@H](N)C(=O) 
N[C@H](Cc2ccccc2)C(=O) 
N[C@H](CCCC)C(=O) 
N[C@@H](C(=O)N)CCC
N=C(N)N

217.546 217.546

Figure 3: Combo cluster column plot representing drug like 
properties accordingly to Lipinski’s rule. For molecular mass values 
see supplemental materials.

Inhibitory constants calculated for compounds in table 2 using the 
ANN model are shown in figure 4

Figure 4: Cluster column plot representing Ki predicted for compounds 
resulted after screening, using QSAR model.
Compound 9 (figure 2) docked with urokinase is shown below 
(figure 5)
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Figure 5
a.Ligand with best Ki docked with urokinase. Urokinase represented 
as space filling colored in green, compound 9 in space filling colored 
orange. Binding site cavity represented as space filling solid, colored 
by potential charges: red –pozitive charges, blue - negative charges.

b.Ligand interaction with Aa at binding pocket are shown hydrogen 
bounds are formed between NH2 groups- His 57, Ser 190, Asp 189, 
Gly 219, OH groups –Gly 193, Gly 219 and O – Gly219.

c.Ligand 9 at binding site in various conformations, urokinase 
showed as gree ribbons, compound 9 poses represented as stiks 
gold orange.

Accuracy of docking is shown in figure 5c. All poses are located at 
the same binding site, relatively in same position. Energy of each 
pose is represented in figure 6. All 9 poses were considered to their 
low favorable complex energies.

Figure 6: Cluster column plotof complex total energies between 
urokinase and ligand 9poses. 
Ligand 3 resulted from the shape screening and predicted by ANN 
model with a Ki of73281.7 nM was docked with urokinase. Results 
are shown in figure 7

Figure 7
a.Ligand3 (with best Ki Predicted) docked with urokinase. Urokinase 
represented as space filling colored in green, compound 3 in space 
filling colored orange.

b.Ligand interaction with Aa at binding pocket are shown hydrogen 
bounds are formed between NH2 group- Lys 224

5 possible poses were retained from ligand 3 after docking with 
urokinase. Complex energies observed were almost half of those 
of compound 9 (figure 8)

Figure 8: Complex total energies between urokinase and ligand3 
poses. 
In order to compare complex energies and to correlate found values 
with Ki a protein-protein docking was performed between urokinase 
and his endogenous inhibitor API-1.

Figure 9: API -1 docked with Urokinase. Back and front view 
rotated around y axis. Space filling: APA1 represented in orange 
and Urokinase in green, NAG 952,953,954, ACE 900 represented 
as atom color- C grey, O red, N blue. 

Docking energies were retained for 50 energetically achievable 
poses (poses with negative values for total energy). Finest energy 
observed after docking was 54.55kcal/mol. All energies are shown 
in figure 10.
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Figure 10: Total energy of PAI 1 Urokinase poses.

Discussion
The Ki of an inhibitor (equivalent to Kd) is, all by itself, an excellent 
way of stating the potency of an inhibitor and of comparing inhibitors 
to each other. Frequently, one measures the IC50 rather than the 
Ki, but that is equally useful because the IC50 is usually directly 
proportional to the Ki. The Cheng-Prus off equation expresses this 
proportionality. Clearly, the compound must be an effective inhibitor. 
But it needs to have some other properties: it needs to be able to 
travel from the point of administration to the target tissue, and it 
needs to be harmless (or nearly so) to the patient on its way to its 
target. So compounds that are inadequately bio available - that is, 
having insufficient ability to get to the target tissue are poor drugs 
even if they are good inhibitors. Furthermore, compounds that 
are highly toxic are poor drugs. Often compounds that have been 
designed via structure-based drug design (where the structure of the 
protein and the protein-ligand complex has been used design better 
and better inhibitors) suffer from poor bioavailability and nasty 
toxicity. The bioavailability problem is often associated with poor 
solubility: good inhibitors often are most “at home” in the mostly 
hydrophobic environment of a typical enzymatic active site, and so 
they often have few polar groups on them. Increasing the number of 
polar groups on the ligand will often improve its solubility by two 
orders of magnitude or more. The effectiveness of the ligand as an 
inhibitor will typically be diminished—an inhibitor with Ki of 10 
nM might be changed to one with Ki=50 nMbut this is often seen as 
an acceptable compromise. Increases in solubility will offer lessen 
toxicity as well, because the compound is less likely to accumulate 
as an insoluble mass. But reducing the toxicity of a drug is not 
necessarily an easy task. 

Some molecules retrieved from screening accordingly to Lipinski 
rule of five have drug like properties/.#4 is known as Famotidine 
and #11as d-Phe-d-Phe-d-Nle-d-Arg-NH2 is a well-known peptide 
sequence with kappa opioid agonist effect respectively [10]. 
Famotidin interaction with urokinase was predicted successfully 
value of Ki found suggesting its pharmacological action and the 
necessity of its IV administration in urokinase-related anaphylactoid 
reaction. Having a relatively low affinity for Urokinase (86.339 nM) 
a higher concentration of this compound is required in the blood 
stream for Famotidin to achieve therapeutic plasma concentrations. 
Founding’s are in consonance with evidence found in the literature 
[11].

Conclusion
ANN was superior in predicting bioactivity compared to multiple 
linear regressions (MLR). A model with an r2 of 0.9614 resulted using 
a library of 42 compounds. The ANN model was used successfully 
in similarity ranking of the data library. Shape screening retrieved 

compounds with drug like properties. ANN model predicted in a 
realistically domain the Ki retrieving no errors and no bias values, 
all the Ki’s predicted being in the activity range
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