
 Volume 6 | Issue 4 | 127

Citation: Getz, W. M., Salter, R. (2023). Extending Conway’s Game of Life. J Huma Soci Scie, 6(4), 127-139.

Extending Conway’s Game of Life
Research article

Wayne M Getz1* and Richard Salter2

1University of California, Berkeley

2Oberlin College, Ohio

Journal of Humanities & Social Sciences

Keywords: Cellular Arrays, Automata Theory, Simulation Models, Discrete Models, Numerus RAMPs.

*Corresponding Author
Wayne M Getz, University of California, Berkeley.

 Submitted: 01 April 2023; Accepted: 14 April 2023: Published: 19 Aplil 2023

Abstract
We introduce an n-state Game of Life (GoL) on a cellular array (cells indexed by (i, j)), where each state σ = 0, ..., n − 1
has a nominal values vσ ≥ 0. The game involves computing the sum of the state values of the eight cells that surround cell
(i, j) and using this sum to determine whether cell (i, j) stays in state σ, progress to state σ + 1, or reverts at state 0. We
illustrate examples of this game, identifying still-life, oscillator, glider, and replicator patterns, as well as the long term
behavior arising from random and regular starting configurations. Importantly, we provide two freely downloadable
application programs that can be used to explore the behavior of the three and four state GoLs discussed in this paper.

J Huma Soci Scie, 2023

ISSN: 2690-0688

Extending Conway’s Game of Life
Introduction
Conway’s “Game of Life” (GoL) was first introduced to a gen-
eral scientific audience by Martin Gardner in his October 1970
Scientific American column Mathematical Games [1]. This game
captured the imagination of mathematical, physical, and biologi-
cal scientists, as well as the scientifically curious lay public. This
game provides a startling example of how an extremely simple,
two-dimensional cellular automaton exhibits complex dynamical
systems properties. These properties include chaotic and self-or-
ganizing behaviors, phase transitions, self-replicating pattern gen-
eration, and self-organized criticality [2,3]. Notably, the game of
life itself has been shown by computer scientists to be a Universal
Turning Machine in being able to carry out, albeit in an extremely
laborious fashion, any computation that a modern general purpose
electronic computer can perform [4].

Conway’s GoL also provides a wonderful tool for capturing the
imagination of school kids, even at the elementary school lev-
el. It stimulates them to experiment with starting configurations

that produce unexpected patterns of behavior as time progresses.
Conway’s GoL has become so popular, that a Google search in
June, 2022, using the phrase “Conway’s game of life simulator”
produced 66,500 hits. The top hit was playgameoflife. This site
provides a highly versatile GoL simulation platform that is imple-
mented in the users browser.

The GoL is played out on cellular array consisting of a user-select-
ed number of rows and columns (essentially a large rectangular
checkered board where at the start of the simulation any cell may
be have one of two colors—e.g. grey and yellow, as in Fig. 1).
At the playgameoflif site, the user is able to choose among thou-
sands of named starting configurations (such ants, big glider, super
fountain, toad, and zweiback), control the speed of the simulation,
move through the simulation one step at a time, alter the starting
configuration (aka initial conditions) by clicking the mouse on in-
dividual squares and thereby changing its current color, and setting
the size of the cellular array on which the simulation plays out. It
also provides a graphical illustration of the GoL rules from cells to
switch from being dead to live and vice-versa (Fig. 1).

 Volume 6 | Issue 4 | 128J Huma Soci Scie, 2023

EXTENDED GAME OF LIFE 23

Figure 1

A graphical depiction of Conway’s Game of Life (GoL) played out on a rectangular grid of

cells (aka an array). Yellow cells are “live” (state value 1) and gray cells are “dead” (state

value 0). The focal or centered cell referred to in the text is highlighted in a more solid

shade of yellow or gray, as the case may be, than the cells in its Moore neighborhood of

eight surrounding cells. This figure has been cut out from a webpage that is part of the

playgameoflife online implementation.

Figure 1: A graphical depiction of Conway’s Game of Life (GoL) played out on a rectangular grid of cells (aka an array). Yellow cells
are “live” (state value 1) and gray cells are “dead” (state value 0). The focal or centered cell referred to in the text is highlighted in a
more solid shade of yellow or gray, as the case may be, than the cells in its Moore neighborhood of eight surrounding cells. This figure
has been cut out from a webpage that is part of the playgameoflife online implementation.

The GoL has now been around for more than 5 decades, so “all
the low hanging fruit” discoveries have been made. Obtaining new
results and insights now requires some work. In contrast, the ex-
tended versions of the GoL that we present here have “loads of
low hanging fruit.” These versions thus provide opportunities for
students to experiment, explore, learn and discover new constructs
and phenomena without the need for deep mathematical insights
into the complex systems behavior of automata. Further, we have
implemented some of these extended GoLs as Numerus® Run-
time Alterable Model Platforms (RAMP). The platforms employ a
technology that allow the user to replace or build small segments
of code called RAMs (runtime alternative modules) on the fly (i.e.,
while in the runtime environment). Our RAMPs and RAMP play-
er, Numerus Studio®, are free, simple to use, and run under Ma-
cOS, or Windows operating systems.

In the remainder of this paper, we present the rules of the game,
demonstrate the behavior of several versions of the game, and pro-
vide a guide to the use of our RAMPs in the classroom.

Rectangular Arrays and Conway’s Game of Life
Definitions
For the sake of completeness, we first provide a very brief review
of rectangular array neighborhoods and the rules of Conway’s
GoL. We first note the GoL is played on a two-dimensional rectan-
gular grid containing r rows and c columns of cells. It is typically
up to the user to choose values for r and c, with 30 to 100 being a
common range for each of these two parameters.

Apart from boundary cells in the rectangular array, each internal
cell has four neighbors on its four sides and an additional four

neighbors at its four corners. In cellular array nomenclature, the
four side-abutting neighbors are said to constitute the von Neu-
mann neighborhood of each focal cell. These four von Neumann
neighborhood cells with the addition of the four corner-abutting
neighbors is said to consitute the Moore neighborhood of each fo-
cal cell. It now remains to define the neighborhoods of boundary
cells. Boundaries can either be an edge (rectangular arrays) or a
wrap (toroidal arrays). Cells on edge boundaries have fewer neigh-
bors. For Moore neighborhoods, edge boundary corner cells have
only three rather than eight neighbors and each edge boundary
non-corner cell has five cells in its Moore neighborhood. Wrapped
boundary cells have their full complement of neighborhood cells,
because the north and south boundary cells, as well as the east and
west boundary cells are now neighbors. From a topological point
of view, linking the north and south boundaries turns our rectan-
gular array into a horizontal cylindrical array, and then linking the
two ends of this cylinder turns the array into a torus or toroidal
array (colloquially referred to as a doughnut).

Conways GoL is played out on an r × c arrays that either has edge
(rectangular array) or wrapped (toroidal array) boundaries. Each
of the cells in these two types of arrays can have one of two states:
0 (aka dead) and 1 (aka live). For purpose of visual presentation,
a color is generally associated with each state (typically white or
gray with 0) and (typically black or some vibrant color with 1). At
the start of the game, also referred to as the simulation, each cell
is assigned an initial state value. This assignment can be coded to
be random or regular (e.g., some type of stripped pattern), or by
clicking a mouse on a cell to change its state from 0 to 1 (e.g., the
gameoflife website implementation). At each new step of the sim-
ulation—aka tick of the time clock t = 0, 1, 2, 3, • • • ,—the current

 Volume 6 | Issue 4 | 129J Huma Soci Scie, 2023

state of each cell at time t is updated to its new or next state at time
t + 1 using the following rules (Fig. 1):
Rule 1. Count the number of live cells ℓ(t) at time t in the Moore
neighborhood of each
cell in the array (i.e., 0 ≤ ℓ ≤ 8)
Rule 2. If the current state (i.e., state at time t) of the cell in ques-
tion is 0 (dead) and ℓ(t) = 3, then the next state (i.e., state at time t +
1) of this cell changes to 1 (live), otherwise the next state remains 0
Rule 3. If the current state of the cell in question is 1 and 2 ≤ ℓ(t) ≤
3, then the next state of this cell remains 1, otherwise the next state
of this cell changes to 0
A quasi-biological narrative for these rules are: some nurturing by
neighbors is needed to bring lifeless cells to life, but excessive
crowding of live cells result in their death.

Emergent Properties
Extensive simulation over the past half-century and intensive
analysis of Conway’s GoL, both of which are discussed in various
chapters of Adamatzky (2010) edited volume, indicate that only a
limited set of values for ℓ, other than those laid out in Rules 2 and

3 above, define GoLs that exhibit interesting behavior [5]. Rules
2 and 3 are the ones that define Conway’s GoL and they appear
to provide the right balance between cooperative and crowding
effects to produce the following veritable zoo of spatio-temporal
structures:
Still life motifs. These are small patterns that never change (i.e.,
fixed over time).

Blinkers. These are motifs (i.e., small patterns) that switch be-
tween two configurations: i.e., they are period 2 patterns.
Oscillators. These are motifs that cycle among n > 2 sequential
patterns

Gliders. Gliders are oscillators that move. They go through a cycle
of consecutive patterns and at the start of the next cycle, the same
pattern appears but has moved either vertically, horizontally, or
diagonally with respect to the location of the pattern at the start
of the cycle (for a rendition of Gosper’s glider see the top strip of
Fig. 2)EXTENDED GAME OF LIFE 24

Figure 2

The sequence of cells at the top represents the progression of the Gosper glider over 5 times

steps. Note that over this period of time we get back to the original pentagram

configuration, but it has now moved one row to the left and one row down. Thus the glider

moves one diagonal step in the array every five time steps. The gray and yellow cellular

array below illustrates one point in the Gosper gun cycle, which launches a new glider every

30 time steps: i.e., the yellow broken arrow indicates the progression of a recently launched

glider (at start of the arrow) to the previously launched glider 30 time steps earlier (at the

end of the arrow).

Figure 2: The sequence of cells at the top represents the progression of the Gosper glider over 5 times steps. Note that over this period
of time we get back to the original pentagram configuration, but it has now moved one row to the left and one row down. Thus the glider
moves one diagonal step in the array every five time steps. The gray and yellow cellular array below illustrates one point in the Gosper
gun cycle, which launches a new glider every 30 time steps: i.e., the yellow broken arrow indicates the progression of a recently launched
glider (at start of the arrow) to the previously launched glider 30 time steps earlier (at the end of the arrow).

Gosper’s glider gun. This is a complex 30-period oscillator (n =
30) that generates a 5-cell glider every 30 times steps, where these
gliders move diagonally away from the oscillating gun (Fig. 2)
Replicators. These are patterns that after a period of time have du-
plicated themselves. This duplication continues over time, though
some of the duplicated patterns may interfere with one another as
they endeavor to occupy overlapping spaces (as discussed below
in the context of one of our 4-state extensions to the game of life)

Extensions to GoL
The particular Conway GoL presented in the previous section has

the numerical designation 3/2,3 (see Table 1 for a more general
discussion of this notation). This refers respectively to the condi-
tions for a cell to come alive (ℓ = 3) and the bounds on ℓ for a cell
to survive (i.e., 2 ≥ ℓ ≥ 3). Other configurations a such as 3,8/2,3
(i.e. a dead cell comes alive when ℓ ≥ 3 since the maximum possi-
ble value of ℓ is 3) exhibit some of the interesting properties of the
3/2,3 version [5].

GoLs can be extended beyond these 2-state dead/live formula-
tions to n-state formulations where n ≥ 3 (Table 1). The primary
reason for moving beyond 2-state formulations is didactic rather

 Volume 6 | Issue 4 | 130J Huma Soci Scie, 2023

than computational—since, as already mentioned, Conway’s GoL
has the computational power of a Universal Turning Machine [4].
Our extended formulations provide a richer set of opportunities
for student experimentation through simulation in ways that will
help develop a student’s imagination and intuition for the com-
plexities of discrete dynamical systems. Further, instead of stu-
dents having to compete with one another to discover interesting
phenomena using Conway’s already heavily explored GoL, they
can more readily fire up their imaginations with the myriad more
possibilities provided by exploring the extended GoLs presented
here. Most importantly, as well, the RAMP applications platforms
that we described in this paper can be easily used by students to
carry out these explorations.

Various approaches can be taken to extending 2-state GoLs. The
simplest of these is to formulate a 3-state GoL with states 0, 1 and
2 and rules for the transition of cells from 0 to 1, 1 to 2, and 2 back
to 0 in terms of the neighborhood sums ℓ. Obviously, a more gen-
eral approach would allow transitions from state 0 to 2, 1 to 0, and
2 to 1 as well. In the spirit of keeping a quasi-biological narrative
to our extended game, we only consider: i) progressive transitions
as the cell ages—i.e., 0 to 1 and 1 to 2 but not 2 to 1; ii) transitions
that lead to death—i.e., 1 to 0 and 2 to 0. For even greater gener-
ality, we will formulate our extension in terms of n cell states, the
first of which always has the value 0 and is regarded as the dead
or lifeless state. Thus any cell can go from state i to state i + 1 for
i = 0, • • • , n − 1 (n progressive transitions) or from state i i = 1,
• • • , n − 1 back to state 0 (n − 1 death transitions). Of course,
cellular automata “games” that have rules for transitions from one
state to any other state in the context of n state formulations can
be formulated. These, however, no longer fall under the rubrick
of “Games of Life,” if GoLs are restricted to unidirectional stage
transitions that model aging over time (albeit physiological and
not just chronological age; see) [6].

In demonstrating some of the interesting spation-temporal patterns

associated with our formulation of an n-state GoL, we will first,
consider the case n = 3 and then n = 4 (Table 1). Finally, we will
discuss how to set up a n-state GoL when only states 3 to n are
considered adults and at least one adult is needed in the neigh-
bohood of a lifeless cell to bring it to life. In this n-state game,
we will also impose the condition that progressive transitions are
mandatory—i.e, an individual in state i, i = 1, ..., n − 2 must in the
next time interval either make the transition to the next state i + 1
or die, as well as imposing the finality condition that individuals
in state n − 1 can only die in the next time interval. This provision
identifies states with a notion of “age” and implies that individuals
cannot live for more the n time periods.

The purpose of our extensions and software implementation is to
provide students with applications programs that they may use to
explore the behavior of these GoLs in their respective parameter
spaces, thereby stimulating both their quantitative and aesthetic
imaginations. As we also discuss, our 3-state GoL can be reduced
Conway’s 2-state GoL and, in similar manner, our 4-state GoL can
be reduced to 3-state or even 2-state GoLs.

Our Extended GoL Formulations
Our n-state GoL is formulated in terms of a general set of param-
eter values, thereby allowing users of our RAMP implementations
some freedom to explore the associated state values and transition
constants parameter space. The states and the symbols used to rep-
resent these values are:
Dead/lifeless cell. State 0, value v0 = 0.

Newborn cell. State 1, and we set v1 = 1 (this is not restrictive since
all values can be scaled relative to v1 without affecting the game).
Living cells. States σ, σ = 2, ..., n − 1, vσ > 0.

To set up our rules of the game, we first define the variable Vi,j(t) to
be the sum of the state values of all the cells in the Moore neigh-
borhood of cell (i, j), which thus satisfies the equation

EXTENDED GAME OF LIFE 9

Our Extended GoL Formulations

Our n-state GoL is formulated in terms of a general set of parameter values, thereby

allowing users of our RAMP implementations some freedom to explore the associated state

values and transition constants parameter space. The states and the symbols used to

represent these values are:

Dead/lifeless cell. State 0, value v0 = 0.

Newborn cell. State 1, and we set v1 = 1 (this is not restrictive since all values can be

scaled relative to v1 without affecting the game).

Living cells. States σ, σ = 2, ..., n − 1, vσ > 0.

To set up our rules of the game, we first define the variable Vi,j(t) to be the sum of the

state values of all the cells in the Moore neighborhood of cell (i, j), which thus satisfies the

equation

Vi,j(t) =



i+1
ℓ=i−1

j+1
µ=j−1

vℓ,µ(t)

 − vi,j(t) (1)

Note that since the above sum includes the value of cell (i, j) itself, we need to subtract

this self value out from the sum.

To complete the specification of our 3-state GoL, we specify the rules the control

the transition of the cells from one state to another. Here for the sake of completeness, we

formulate these rules in terms of an n-state GoL, with cases 3 and 4 obtained by setting

n = 3 and n = 4 respectively in Eq. 1 and Eqs. 2 below. For all cells i = 1, · · · , r,

j = 1, · · · , c and time steps t = 0, 1, 2, · · · these transition rules for states σ = 0, · · · , n − 1

are (also see Table 1):

Born: If vi,j(t) = 0 and p0,L ≤ Vi,j(t) ≤ p0,U then vi,j(t + 1) = v1 (2)

Progress/Die: If vi,j(t) = vσ and pσ,L ≤ Vi,j(t) ≤ pσ,U then vi,j(t + 1) = vσ+1
else 0 for σ = 1, ..., n − 2

Continue/Die: If vi,j(t) = vn−1 and pn−1,L ≤ Vi,j(t) ≤ pn−1,U then vi,j(t + 1) = vn−1 else 0

Note that since the above sum includes the value of cell (i, j) itself,
we need to subtract this self value out from the sum.
To complete the specification of our 3-state GoL, we specify the
rules the control the transition of the cells from one state to anoth-
er. Here for the sake of completeness, we formulate these rules in

terms of an n-state GoL, with cases 3 and 4 obtained by setting n
= 3 and n = 4 respectively in Eq. 1 and Eqs. 2 below. For all cells
i = 1, • • • , r,
j = 1, • • • , c and time steps t = 0, 1, 2, • • • these transition rules
for states σ = 0, • • • , n − 1 are (also see Table 1):

EXTENDED GAME OF LIFE 9

Our Extended GoL Formulations

Our n-state GoL is formulated in terms of a general set of parameter values, thereby

allowing users of our RAMP implementations some freedom to explore the associated state

values and transition constants parameter space. The states and the symbols used to

represent these values are:

Dead/lifeless cell. State 0, value v0 = 0.

Newborn cell. State 1, and we set v1 = 1 (this is not restrictive since all values can be

scaled relative to v1 without affecting the game).

Living cells. States σ, σ = 2, ..., n − 1, vσ > 0.

To set up our rules of the game, we first define the variable Vi,j(t) to be the sum of the

state values of all the cells in the Moore neighborhood of cell (i, j), which thus satisfies the

equation

Vi,j(t) =



i+1
ℓ=i−1

j+1
µ=j−1

vℓ,µ(t)

 − vi,j(t) (1)

Note that since the above sum includes the value of cell (i, j) itself, we need to subtract

this self value out from the sum.

To complete the specification of our 3-state GoL, we specify the rules the control

the transition of the cells from one state to another. Here for the sake of completeness, we

formulate these rules in terms of an n-state GoL, with cases 3 and 4 obtained by setting

n = 3 and n = 4 respectively in Eq. 1 and Eqs. 2 below. For all cells i = 1, · · · , r,

j = 1, · · · , c and time steps t = 0, 1, 2, · · · these transition rules for states σ = 0, · · · , n − 1

are (also see Table 1):

Born: If vi,j(t) = 0 and p0,L ≤ Vi,j(t) ≤ p0,U then vi,j(t + 1) = v1 (2)

Progress/Die: If vi,j(t) = vσ and pσ,L ≤ Vi,j(t) ≤ pσ,U then vi,j(t + 1) = vσ+1
else 0 for σ = 1, ..., n − 2

Continue/Die: If vi,j(t) = vn−1 and pn−1,L ≤ Vi,j(t) ≤ pn−1,U then vi,j(t + 1) = vn−1 else 0

 Volume 6 | Issue 4 | 131J Huma Soci Scie, 2023

Note that when we set n = 3, our simulation reduces the resulting
3-state GoL to a 2-state GoL if we set (parenthetical values corre-
spond to Conway’s GoL) v1 = v2 (= 1) and we capture Conway’s
GoL as a special case when we set p1,L = p2,L (= 2), and p1,U = p2,U
(=3) Also, because of the way we have written our code, once we
have set v2 = v1 in our 3-State GoL RAMP, then specification of
p2,L and p2,U is actually ignored.

Representing and colorizing extended GoLs
A short hand notation has been developed to represent 2-state GoLs
with different parameter values. We now extend this notation to
represent any n-state GoL that is played on a rectangular array and
expressed in terms of integer state values and parameter intervals
controlling progression/die events. Specifically, with reference to
the notation presented in the previous section, our n-state GoLs
can be represented by the following string of integers, commas,
lines and slashes v0, v1, • • • , vn−1 ∥ p0L, p0U/ • • • /pn−1L, pn−1U. In this
notation, Conway’s 2-state game is represented by 0, 1 ∥ 3, 3/2, 3,
which in the current short-hand notation with written as 3/2,3. In
this abbreviated notation, the string 0,1 is understood and 3,3 is
reduced to 3. Similarly, in our notation, if piL = piU then no informa-
tion is lost by placing the single value piL rather than the order pair
of values piL, piU in the string. However, we will avoid this practice
and, for clarity, and use the full string representation throughout.

As mentioned, implementations of Conway’s GoL typically asso-
ciate the colors white/black with the states dead/live, or in some
cases, gray/yellow, as seen in Figs. 1 and 2. The n-state GoL can be
visualized on a cellular array using shades of gray or, more dramat-
ically, distinct colors for each state. We use white, red, and orange
as the default colors for states 0, 1, and 2 in our 3-state GoL, with
the addition of lilac to represent state 3 in our 4-state GoL (Table
1). These color defaults can be overridden by the user in our GoL
RAMP implementations.

Initial Configurations, Motifs, and Phases
The behavior our extended GoL can roughly be thought of as
having two possible distinct phases: an initial phase heavily influ-
enced by the starting configuration (aka initial conditions) of the
simulation and a final phase that reflects the dynamical properties
of the system rather than a particular set of initial conditions. This
statement excludes those initial conditions set up to generate spe-
cific initial configurations—which we well call motifs—such as
the still-life, blinker, oscillator, glider and replicator motifs dis-
cussed above in the context of Conway’s GoL.

One way to identify this possible zoo of motifs is to keep rerunning
simulations on a toroidal array, starting from randomly configured
initial conditions and searching for the emergence of such motifs
before they get gobbled up by colliding with other motifs. Once
such putative motifs have been identified, they can be isolated and
run from set-piece initial conditions configured (as we shall illus-
trate in some of our selected examples) to identify the temporal
sequences of these motifs in the absence of surrounding elements
that may lead to their demise. These set piece simulations can be

carried out on arrays with either edge or wrap boundary conditions
(which can be selected on the RAMP).

Additionally, large scale regularized initial conditions, can lead to
the production of cyclic patterns at the scale of the full array itself
when simulations are executed on arrays with either edge or wrap
boundary conditions. Below we provide a guide to setting up such
regular arrays, along with mathematical descriptions for setting
them up, as well as setting up random and motif-specific initial
configurations. In the RAMP itself, specific RAMs are available
for implementing regular and random initial configurations with
the freedom to select parameter values that control elements of
these configurations.

Regular Initial Conditions
Regular initial conditions can be set up using modular arithmetic.
We do this by defining a variable ℓi,j = (i + j) mod r (i.e., the re-
minder we get when (i + j) is divided by r). We then set up a list of
r ordered pairs that specifies what the state of cell (i, j) (second en-
try in the order pair) will be when ℓ(i, j) = 0, ..., r − 1 (first entry in
the ordered pair). For example, in the 4-state game used to set the
initial conditions seen in Fig. 7, the lists for the four panels with r
= 6, 7, 8, and 9 respectively (going from left to right) are: {(ℓi,j =
0, state = 1), (ℓi,j = 1, state = 2), and (ℓi,j = q, state = 0) for q = 2,
.., mod r}. When the initial configuration RAM is selected for the
start of a simulation, the user will be able to specific the values of
r, as well as the states associated with each of the reminders when
(i + j) is divided by r: i.e., the regular specification is

r = r value, (state value, state value, • • • , only first r values are
read)	 (3)

Random Initial Conditions
Random initial conditions are easily set up using the computers
random number generator. For example, for each cell we can draw
a cell-specific random value zi,j ∈ [0, 1] (every value between 0
and 1 is equally likely). Then an n-state game, we specific n − 1
parameter values zν, ν = 1, • • • , n − 1 assign cell (i, j) to one of the
n states as follows

For z0 = 0 ≤ z1 ≤ z2 ≤ • • • ≤ zn−1 ≤ zn = 1, set cell (i, j) to state ν
if and only if zi,j ∈ [zν, zν+1) for ν = 0, • • • , n − 1	 (4)
In this case the expected proportions of cells that are initially in
state ν respectively is zν − zν+1, ν = 0, • • • , n − 1. Note, if zν = zν+1
then clearly the interval [zν, zν+1) contains no points.

Motif-Specific Initial Conditions
In our case, we set motif-specific initial conditions by first setting
all cells to 0 (i.e., a lifeless array) and then using our mouse to
toggle selected cells to particular states by first pressing the com-
mand button and then clicking the mouse one or more times while
pointing to the cell being set. Specifically, one click turns the cell
to state 1, two clicks to state 2, and so on upto n clicks for the final
state n, with n + 1 clicks returning to state 0.

 Volume 6 | Issue 4 | 132J Huma Soci Scie, 2023

Apart from the set-piece initial configurations—which we may set
up to illustrate particular still-life, oscillatory, glider, and replica-
tor motif sequences—simulations that start from regular or regular
initial configurations, or set piece configurations that are not part
of a particular motif sequence, have two distinct phases: a burn in
phase that steers the system towards a final phase in which: i.) all
cells are either dead, ii) the array supports a sparse set of non-inter-
fering still-life, oscillatory or glider motifs, or iii) the array-wide
pattern emerges that has regions exhibiting oscillatory behavior
where the period of oscillation for the whole pattern itself may be
so vast as not to be detectable.

These ideas will be clarified, as we present specific examples of
simulations starting from regular, random, or set-piece initial con-
figurations.

3-State GoL Examples
In this section we provide examples using all three types of initial
configurations in the context of 3-state GoLs. We begin by explor-
ing the simplest possible extension of Conway’s GoL to 3 states:
we set v2 = 2 and keep all the other parameters the same (i.e., the
GoL 0, 1, 2 ∥ 3, 3/2, 3/2, 3). In this case, all random starting posi-
tions converge on configurations typical containing two still-life
motifs, as well possibly one or more of three glider motifs (Fig.
3). The still-life motifs are two live cells side by side (vertically or
horizontally) and live cells that are diagonal neighbors. The glider
motifs are two sequences of patterns of period 5 with patterns and
one of periods 6 (Fig. 3). These are not necessarily the only gliders
associated with 0, 1, 2 ∥ 3, 3/2, 3/2, 3, but if others are to be found,
they arise much less frequently from random starting conditions
than the two 5-period gliders depicted in Fig. 3, and at least some-
what less frequently than the 6-period glider.

EXTENDED GAME OF LIFE 25

Figure 3

Still lives and gliders produced by a one state addition with a one unit increment in value

to the Conway GoL, but with the transition parameters remaining the same: i.e. the basic

3-state GoL 0, 1, 2 ∥ 3, 3/2, 3/2, 3 (newborn and live individuals in red and orange

respectively). The still lives are two adults side-by-side either vertically, horizontally, or

diagonally (two shown plus two obtained from 180 degree rotations). Three known gliders

are: two period 5 and one period 6, where the latter consists of a period 3 series followed by

its 3 mirror images.

Figure 3: Still lives and gliders produced by a one state addition with a one unit increment in value to the Conway GoL, but with the
transition parameters remaining the same: i.e. the basic 3-state GoL 0, 1, 2 ∥ 3, 3/2, 3/2, 3 (newborn and live individuals in red and
orange respectively). The still lives are two adults side-by-side either vertically, horizontally, or diagonally (two shown plus two ob-
tained from 180 degree rotations). Three known gliders are: two period 5 and one period 6, where the latter consists of a period 3 series
followed by its 3 mirror images.

By setting up a GoL in which the largest state value had been in-
creased from 1 at 2, the neighborhood values Vi,j(t) (Eq. 1) can now
be twice as large as in Conway’s 2-state GoL. Thus, it seemed rea-
sonable to explore the behavior of our 3-state GoL by increasing
the GoL birth parameters from Conway’s 3,3 to 3,4 and tweaking
the newborn progression range to 2,4, but keeping the density at
which the live state would still persist at 2,3.

Thus, we explored the behavior of the GoL 0, 1, 2 || 3, 4/2, 4/2, 3,
starting from a series of random initial conditions. In these simu-
lations, we were able to putatively identify two different gliders,
both more complex than the three gliders that we found in the GoL
0, 1, 2 || 3, 3/2, 3/2, 3 (Fig. 4). The first of these (Glider 1, Fig. 4)

is an 8-period oscillator that has an obvious diagonal progression
moving 4 squares every 8 steps. The 8 patterns associated with
this glider are all diagonally symmetric with the simplest of these
involving 2 newborn + 6 live and the most complex involving 6
newborn + 12 live. The second glider (Glider 2, Fig. 4) is quite
astonishing. It has a 46 period cycle (23 patterns followed by their
90 degree clockwise rotated mirror images) and lacks diagonal or
other symmetries. This lack of symmetry gives the visual impres-
sion that this glider oscillates back and forth along one diagonal
axis while steadily progressing along the other diagonal axis. The
simplest of the 23 patterns involves 4 newborn + 3 live while the
more complex of the 23 patterns involves 9-11 newborns and 9-12
live individuals.

 Volume 6 | Issue 4 | 133J Huma Soci Scie, 2023

EXTENDED GAME OF LIFE 26

Figure 4

Two known gliders of the basic 3-state GoL 0, 1, 2 ∥ 3, 3/2, 4/2, 3 (newborn and live

individuals in red and orange respectively). Glider 1, period 8, is a sequence of 8 diagonally

symmetric patterns that moves the starting pattern 4 squares along the diagonal every 8

steps. Glider 2, period 46, is a sequence of 23 patterns followed by 23 of their mirror

images rotate clockwise by 90 degrees, and moves the starting pattern 5 squares along the

diagonal every 46 times steps.

Figure 4: Two known gliders of the basic 3-state GoL 0, 1, 2 || 3, 3/2, 4/2, 3 (newborn and live individuals in red and orange respec-
tively). Glider 1, period 8, is a sequence of 8 diagonally symmetric patterns that moves the starting pattern 4 squares along the diagonal
every 8 steps. Glider 2, period 46, is a sequence of 23 patterns followed by 23 of their mirror images rotate clockwise by 90 degrees, and
moves the starting pattern 5 squares along the diagonal every 46 times steps.

We next considered the behavior of the GoL used to produce the
gliders in Fig. 4, except we increased the live persistence condi-
tions from 2,3 to 3,4. Simulations of this GoL on a toroidal 100 ×
100 array from random starting conditions converged on a seem-
ingly chaotically changing pattern of newborn and live cells with
comparable numbers of both, oscillating in a band between 800-
900 cells (i.e., a little over 80% of the cells at any step beyond the
initial burn-in phase were dead). This band indicated no periodic
behavior, though we note that being a finite state system, our to-
roidal array has 310, 000 (1012) states (ten thousand cells, each of
which can be in one of three states), so at some point one of the

states must reoccur. Being deterministic, when a state reoccurs,
then all the succeeding states are repeat and hence an oscillato-
ry situation has set in. However, 310, 000 is such a vast number
that the periodicity of this simulation may never be found, even if
we keep computing until our solar system ceases to exist. We did,
however, identify one putative glider from these random simula-
tions, which we then checked and found that it was in fact a glider
by simulating the system from any one of the 4 motif-specific ini-
tial conditions shown to be part of the 4 period glider sequence in
Fig. 4B.

 Volume 6 | Issue 4 | 134J Huma Soci Scie, 2023

EXTENDED GAME OF LIFE 27

Figure 5

A. From a random initial configuration, irrespective of the initial conditions, provided they

are not too sparse (i.e., the array dies before it can get going), simulations of the GoL

0, 1, 2 ∥ 3, 3/2, 4/3, 4 on a 100×100 toroidal array settles on a seemingly every changing

chaotic pattern (which will eventually repeat itself, as discussed in the text) that varies

between approximately 8-9% newborn (red) and a comparable number of live (orange)

cells (white cells are dead). B. This GoL, produces at least one type of glider, but such

gliders appear fleetingly as they emerge from the chaos and then are consumed by colliding

with other newborn and live cells. The oscillatory band of between 800-900 newborn and a

similar number of live cells approached within the following period from the given randomly

assigned starting conditions: C. approximately 150 steps, 1% of each cell type; D.

approximately 60 steps, 5% of each cell type; E. approximately 10 steps, 15% of each cell

type. The outcome remains the same even with the starting number of newborn and live

cells vary by a factor of 10 or more.

Figure 5: A. From a random initial configuration, irrespective of the initial conditions, provided they are not too sparse (i.e., the array
dies before it can get going), simulations of the GoL
0, 1, 2 || 3, 3/2, 4/3, 4 on a 100×100 toroidal array settles on a seemingly every changing chaotic pattern (which will eventually repeat
itself, as discussed in the text) that varies between approximately 8-9% newborn (red) and a comparable number of live (orange) cells
(white cells are dead). B. This GoL, produces at least one type of glider, but such gliders appear fleetingly as they emerge from the chaos
and then are consumed by colliding with other newborn and live cells. The oscillatory band of between 800-900 newborn and a similar
number of live cells approached within the following period from the given randomly assigned starting conditions: C. approximately
150 steps, 1% of each cell type; D. approximately 60 steps, 5% of each cell type; E. approximately 10 steps, 15% of each cell type. The
outcome remains the same even with the starting number of newborn and live cells vary by a factor of 10 or more.

We then moved on to exploring the behavior of a 3-state basic
GoL 0, 1, 2 || 3, 4/3, 4/2, 5 that, compared with our previous 0, 1,
2 || 3, 4/2, 4/2, 3 GoL, had tighter conditions for the generation of
newborns but an increased neighborhood value range at which live
cells would persist. We simulated this GoL on a 100 × 100 bound-
ed rectangular array (i.e., edge boundary conditions), starting from
a diagonally banded initial configuration consisting of consecutive
diagonal bands of newborns (red cells) and live individuals (or-
ange cells) separated by 4 lifeless diagonals (dead cells are white)
in between (i.e., in Eq. 3 we specify r = 6, (1, 2, 0, 0, 0, 0, • • •)).
The state of the array is depicted, as labeled at times t = 0, 4, 41,
and 100 (the four smaller rectangles on the left in Fig. 6).
The simulation converges to a pattern that repeats itself every
11550 (= 2 × 3 × 5 × 5 × 7 × 11) steps. The large rectangle shows
one of the points in this 11550-period cycle. The smaller identi-

fied rectangular sections on the right contain patterns that repeat
themselves every (from top to bottom) 150-, 10-, 30-, and 66-time
steps.

The initial conditions we set up are just at the edge of being suffi-
cient for colonization to begin on two of the four boundaries, while
wiping out all live cells on the remaining two of the boundary con-
ditions and in the interior of the (t = 4, Fig. 6). These boundary
populations started expanding, keeping the diagonal symmetry
imposed from the start. For example, we see in Fig. 6 at time t
= 42 that the interior region is being invaded by a front of new-
born cells. This front leaves behind domains of live horizontally or
vertically striped cells with unsettled boundaries between domains
support individual or small groups of newborn cells (e.g., see t
= 100 rectangle in Fig. 6). Finally, the simulation settles into its

 Volume 6 | Issue 4 | 135J Huma Soci Scie, 2023

periodic behavior with different areas of the whole array exhibit-
ing regions with faster periods that are factors of the whole array
period. Interestingly, a relatively small array on the diagonal just
above the center has period 150, while a much larger area in the
lower left corner of the array has period 30. The periods of any
one of these subregions are necessarily multiples of the factors of
11550, such as 66 (2 × 3 × 11) or 30 (2 × 3 × 5). Once the simula-

tion gets going it soon settles into some pattern that has the same
basic theme of horizontal and vertical stripped domains of dead/
live cells with domain boundaries supporting oscillating patterns
of newborn cells. The diagonal symmetry of the pattern that we
see in Fig. 6 only occurs when the array is square and the initial
conditions are diagonally symmetric themselves.EXTENDED GAME OF LIFE 28

Figure 6

A simulation of the 3-state basic GoL 0, 1, 2 ∥ 3, 4/3, 4/2, 5 (Table 1) on a recangular array (i.e.,

edge boundary conditions) with r = 100 rows and c = 100 columns (newborn and live individuals

in red and orange respectively) with regular initial condition r = 6 and array specification

(1, 2, 0, 0, 0, 0) (see Eq. 3). The four smaller rectangles on the left show that state of the array at

times t = 0, 4, 42 and 100. The large rectangle to the right of these 4 represents one of the states

that is part of an oscillatory cycle, which repeats itself every 11550 (= 2 × 2 × 3 × 5 × 7 × 5 × 11)

steps. The rectangular subregions identified by blue dotted lines are extracted on the

right-hand-side with the period of the elements inside these rectangles labeled above them.

Figure 6: A simulation of the 3-state basic GoL 0, 1, 2 || 3, 4/3, 4/2, 5 (Table 1) on a recangular array (i.e., edge boundary conditions)
with r = 100 rows and c = 100 columns (newborn and live individuals in red and orange respectively) with regular initial condition r
= 6 and array specification (1, 2, 0, 0, 0, 0) (see Eq. 3). The four smaller rectangles on the left show that state of the array at times t =
0, 4, 42 and 100. The large rectangle to the right of these 4 represents one of the states that is part of an oscillatory cycle, which repeats
itself every 11550 (= 2 × 2 × 3 × 5 × 7 × 5 × 11) steps. The rectangular subregions identified by blue dotted lines are extracted on the
right-hand-side with the period of the elements inside these rectangles labeled above them.

4-State GoL Examples
The most natural way to extend the 3-state GoL to a 4 state GoL is
to add an additional state of value 4 to obtain the first of the 4-state
GoLs listed in Table 1. One can then play around with different
sets of progression values until some interesting results emerge.
Some 4-state GoLs will have parameter values that are too liberal
or too restrictive to produce interesting final phase results. How-

ever, many different parameter combinations of the 4-state GoL 0,
1, 2, 3 || p0L, p0U/p1L, p1U/p2L, p2U/p3L, p3U are likely to produce all
kinds of interesting and, often, surprising results. Here, by way of
illustration, we present a couple of examples, with the vast field of
possibilities of different parameter values, initial configurations,
and array boundary conditions left to students and researchers in-
terested in cellular automata dynamics to discover for themselves.

 Volume 6 | Issue 4 | 136J Huma Soci Scie, 2023

Table 1: State and progression parameter values for the 3, 4-state, and 6-age Games of Life presented in our simulations

EXTENDED GAME OF LIFE 22

Table 1

State and progression parameter values for the 3, 4-state, and 6-age Games of Life

presented in our simulations

State Symbol† Game of Life (GoL)†

(color) Conway∗ 3-state GoL 4-state GoL 6-state GoL
Simulation examples Fig. 2 Figs. 3-6 Fig. 7 | Fig. 8 Fig. 9

0 (dead) v0 (white) 0 0 0 | 0 0

1 (newborn) v1 (red) 1 1 1 | 1 1

2 (juvenile+) v2 (orange) 1 2 2 | 2 2

3 v3 (lilac) (· · · n/a · · ·) 3 | 17 3

4 v4 (green) (· · · n/a · · ·) n/a 4

5 v5 (orange) (· · · n/a · · ·) n/a 5

Progressions

1st p0L, p0U 3,3 See figure 5,7 | 17,35 3, 4

2nd p1L, p1U 2,3 legends 2,8 | 6,20 2, 4

3rd p2L, p2U 2,3 for details 9,12 | 0,20 2, 4

4th p3L, p3U (· · · n/a · · ·) 2,11 | 6,18 3, 4

5th p4L, p4U (· · · n/a · · ·) 3, 4

6th p5L, p5U (· · · n/a · · ·) ∞, ∞‡

†We use the notation v0, · · · , vn−1 ∥ p0L, p0U/ · · · /pn−1L, pn−1U to refer to the various GoLs. Thus

the Conway form of the 3-state GoL is written as 0, 1, 1 ∥ 3, 3/2, 3/2, 3. In much of the literature,

however, the Conway 2-state which in our notation is 0, 1 ∥ 3, 3/2, 3, is commonly abbreviated, to

3/2,3, wherein 0,1 is understood, 3,3 is reduced to 3 and the parenthesis are omitted.

∗This is our 3-state equivalent of the 2-state Conway GoL because states 1 and 2 are the same.

+In cases, it is convenient to think of these individuals as juveniles, when birth conditions are

sufficiently large that the presence of state 3 individuals are required to produce newborns (as is

the case when v3 = 17)

‡Forced death

†We use the notation v0, • • • , vn−1 ∥ p0L, p0U/ • • • /pn−1L, pn−1U to refer to the various GoLs. Thus the Conway form of the 3-state GoL is
written as 0, 1, 1 ∥ 3, 3/2, 3/2, 3. In much of the literature, however, the Conway 2-state which in our notation is 0, 1 || 3, 3/2, 3, is com-
monly abbreviated, to 3/2,3, wherein 0,1 is understood, 3,3 is reduced to 3 and the parenthesis are omitted.
∗This is our 3-state equivalent of the 2-state Conway GoL because states 1 and 2 are the same.
+In cases, it is convenient to think of these individuals as juveniles, when birth conditions are sufficiently large that the presence of state
3 individuals are required to produce newborns (as is the case when v3 = 17)
‡Forced death

Our first example pertains to the 0, 1, 2, 3 || 5, 7/2, 8/9, 12/2, 11
GoL. We simulated this GoL on a 100 × 100 toroidal array from
a one parameter set of regular initial starting conditions defined
using the variable ℓi,j = (i + j) mod r. For values of r ranging from 3
to 12, we specified that cell (i, j) starts in state 2 if ℓi,j = 0, starts in
state 3 if ℓi,j = 0, and otherwise starts in state 0 for all other values

of ℓi,j = 0. These simulations only produced results for r = 6, 7, 8
and 9 (Fig. 7). For r < 6 and r > 9 the simulations ended up in just
a few time steps with an array dead cell because conditions with
either initially too crowded (r = 3 to 5) or too sparse (r > 9) to
sustain interesting life. The simulations obtained in the remaining
4 cases are illustrated in Fig. 7.

 Volume 6 | Issue 4 | 137J Huma Soci Scie, 2023

EXTENDED GAME OF LIFE 29

Figure 7

A simulation of the 4-state basic GoL 0, 1, 2, 3 ∥ 5, 7/2, 8/9, 12/2, 11 (Table 1) on a torus with

r = 100 rows and c = 100 columns. Newborn (v1 = 1), juvenile (v2 = 2) and adult (v3 = 3)

individuals are respectively colored red, orange, and lilac. The four cases, from left to right

respectively, represent starting conditions in which a diagonal of juvenile individuals is

immediately followed by a diagonal of adults, followed by 4, 5, 6 or 7 consecutive diagonals of

dead (v0 = 0) individuals, depending on the value of r = 6, 7, 8, 9 chosen to generate the starting

pattern using the function ℓi,j = (i + j) mod r, as described in the text regarding that setting up of

regular initial conditions. E.g., in Eq. 3 we set our values as r = selected value,

(2, 3, 0, 0, 0, 0, 0, · · ·).

Figure 7: A simulation of the 4-state basic GoL 0, 1, 2, 3 || 5, 7/2, 8/9, 12/2, 11 (Table 1) on a torus with r = 100 rows and c = 100
columns. Newborn (v1 = 1), juvenile (v2 = 2) and adult (v3 = 3) individuals are respectively colored red, orange, and lilac. The four
cases, from left to right respectively, represent starting conditions in which a diagonal of juvenile individuals is immediately followed by
a diagonal of adults, followed by 4, 5, 6 or 7 consecutive diagonals of
dead (v0 = 0) individuals, depending on the value of r = 6, 7, 8, 9 chosen to generate the starting pattern using the function ℓi,j = (i +
j) mod r, as described in the text regarding that setting up of regular initial conditions. E.g., in Eq. 3 we set our values as r =
selected value, (2, 3, 0, 0, 0, 0, 0, • • •).

Our second examples are inspired by the biological consideration
of regarding the zero state as a lifeless/dead cell with v0 = 0, the
first non-zero state as newborn with v1 = 1, the second non-zero
state as juvenile with v2 = 2, and the third non-zero state as adult
with its value v3 to be selected. If the third non-zero state is an adult
and we require at least one adult for a lifeless cell to come to life,
then a lifeless cell surrounded by 8 juveniles—which implies V =
16 for the cell in question (Eq. 1)—implies that we should set v2 ≥
17 to avoid the event of 8 juveniles raising one newborn without an
adult present. If we set v3 = 17, then we are interested in the GoL
0, 1, 2, 17 || p0L, p0U/p1L, p1U/p2L, p2U/p3L, p3U.

We could, of course, consider the situation in which each adult
requires at least one helper to raise a newborn, in which case, we
would need to set v3 = 18. We will leave this latter case to the
reader to explore.

In the former case, we explored the GoL 0, 1, 2, 17 || 17, 35/6,
20/0, 20/6, 18. In particular, we undertook a search for oscilla-
tors by simulating this GoL from a relatively sparse random initial
conditions (93% dead, 4% newborn, 1% juvenile, 1% adult). For
this game we found both a glider and a replicator, as illustrated in
Fig. 8.EXTENDED GAME OF LIFE 30

Figure 8

Associated with the 4-state GoL 0, 1, 2, 17 ∥ 17, 35/6, 20/0, 20/6, 18 (newborn, juvenile, and

adult individuals in red, orange, and lilac respectively) is A. A motif that replicates itself in

mirror image form after 6 steps, and shows a four-fold increase after 24 steps. B. The

replication process, however, is not a simple doubling every so many steps because

replication motifs interfere with one another along the axis perpendicular to the symmetry

axis of the motif, with internal pairs of motifs along this axis appearing and disappearing

over time as the replication process expands in both directions along the said perpendicular

axis. C. We also discovered a simple period 3 glider that moves along a diagonal one square

in every 3-step cycle.

Figure 8: Associated with the 4-state GoL 0, 1, 2, 17 || 17, 35/6, 20/0, 20/6, 18 (newborn, juvenile, and adult individuals in red, orange,
and lilac respectively) is A. A motif that replicates itself in mirror image form after 6 steps, and shows a four-fold increase after 24 steps.
B. The replication process, however, is not a simple doubling every so many steps because replication motifs interfere with one another
along the axis perpendicular to the symmetry axis of the motif, with internal pairs of motifs along this axis appearing and disappearing
over time as the replication process expands in both directions along the said perpendicular axis. C. We also discovered a simple period
3 glider that moves along a diagonal one square in every 3-step cycle.

 Volume 6 | Issue 4 | 138J Huma Soci Scie, 2023

6-State Age-specific GoL Examples
As our final demonstration, we consider a 6-state GoL in which
all individuals die after being in state 6 for one step. We could, of
course, had the same final state condition for one of our 4-state
GoLs, and only include this illustration for emphasizing the open
endedness of our formulation. We do not, however, provide a
RAMP to implement 6-state GoLs, but instead leave it to the read-
er to build their own versions, perhaps using Numerus Designer®

to do so.

The simplest case of a 6-state GoL with forced termination of the
last state is: 0, 1, 2, 3, 4, 5 || p0L, p0U/p1L, p1U/p2L, p2U/p3L, p3U/p4L,
p5U/p5L, p5U/ ∞, ∞

(We note the final limits could just as well be 41,41 instead of ∞, ∞
becasue 40 is the largest value that V can be for the neighborhood
of any cell—see Eq. 1). The particular case of this class of GoLs
that we explore is one in which all individuals die, no matter their
state, whenever neighborhood values V exceeds 4. In addition, we

set the lower bounds for births at 3 and for transition of newborns
(state 1) to state 2 and state 2 cells to state 3 is Finally, the lower
bounds for state 3 to state 4 and state 4 to 5 where set at 0. Thus,
resulting GoL we explored is: 0, 1, 2, 3, 4, 5 || 3, 4/2, 4/2, 4/3, 4/3,
4/∞, ∞ (Table 1).

This GoL exhibits an exceedingly rich behavior that we can only
touch on here (Fig. 9). Beyond the various motifs that it may pro-
duce (which we have not yet tried to identify)—still lives, oscil-
lators, gliders, and replicators—its final phase behavior has inter-
esting properties when starting from certain motifs that have a two
or four-way symmetry (Fig. 9B). If the conditions are right for
the number of cells to grow (Fig. 9B) from this initial motif (i.e.,
not peter out to nothing or morph into a small number of still-life,
oscillator, or glider motifs) to an array-filling dynamic state that
is an almost ever changing complex pattern (i.e., the period of the
pattern is so vast that we are unlikely to ever see it repeated), then
several centers of symmetry emerge, as depicted in Fig. 9D.EXTENDED GAME OF LIFE 31

Figure 9

A simulation on a 200 × 300 toroidal cellular array of the 6-state GoL

0, 1, 2, 3, 4, 5 ∥ 3, 4/2, 4/2, 4/3, 4/3, 4/∞, ∞ using the color palette show in A. The

simulation began with the initial motif B. This motif increases over time to completely fill

the array by time t = 1000, where we see in graphs C that the number of cells in the five

non-zero state 1-5 have leveled off to oscillate around a set of average numbers of cells.

These percentages of the number of cells in each state approximately average 13.5% (state

1), 4.7%, 0.14%, 0.05% and 0.04% cells respectively for the rest of the simulation, which

we terminated around t = 13, 500. The pattern in array D (area we have marked to be

within the broken white border) is the one we captured at the end of the simulation, but it

also varies over time though retaining fixed centers of symmetry throughout the rest of the

simulation. In this array we have labeled 4 regional symmetry centers that persist beyond

the initial simulation phase. The thin black lines correspond to the regions of the array we

have patched together to depict our toroidal surface as a rectangle in such as way to make

most visually obvious the extents of the regional areas of symmetry.

Figure 9: A simulation on a 200 × 300 toroidal cellular array of the 6-state GoL
0, 1, 2, 3, 4, 5 || 3, 4/2, 4/2, 4/3, 4/3, 4/∞, ∞ using the color palette show in A. The simulation began with the initial motif B. This motif
increases over time to completely fill the array by time t = 1000, where we see in graphs C that the number of cells in the five non-zero
state 1-5 have leveled off to oscillate around a set of average numbers of cells.
These percentages of the number of cells in each state approximately average 13.5% (state 1), 4.7%, 0.14%, 0.05% and 0.04% cells
respectively for the rest of the simulation, which we terminated around t = 13, 500. The pattern in array D (area we have marked to be
within the broken white border) is the one we captured at the end of the simulation, but it also varies over time though retaining fixed
centers of symmetry throughout the rest of the simulation. In this array we have labeled 4 regional symmetry centers that persist beyond
the initial simulation phase. The thin black lines correspond to the regions of the array we have patched together to depict our toroidal
surface as a rectangle in such as way to make most visually obvious the extents of the regional areas of symmetry.

 Volume 6 | Issue 4 | 139J Huma Soci Scie, 2023

RAMP Implementation
The three and four state GoLs presented here and other variations
that fit within the constraints imposed by Eqs. 1 and 2 for the case
n ≤ 4 can be implemented using our Numerus RAMPS, down-
loadable at our Numerus® website along with our Numerus Studio
applications program to implement these RAMPs. Also, a pdf file
can be downloaded at Numerus Studio that contains a description
of how to use the current set of RAMPs downloadable at this web.

Finally, as already mentioned, many different ways of extending
Conway’s GoL exist. In particular, the constraint that cells can
only progress from state i to i + 1, i = 0, ..., n − 2 (as implied by
Eq. 2) can be changed and, for example, transitions of state I to
other states j = 0, ..., n − 1 can be determined according to par-
ticular ranges of neighborhood values V. RAMPs to implement
such GoLs, including the 6-state GoL discussed in this paper, can
be built using our Numerus Designer Applications program down-
loadable at the Numerus Inc Website.

Discussion
In this paper, we have introduced the reader to Conway’s Game
of Life (GoL), and to a class of extensions that, in the context
of the use of our accompanying RAMPs, greatly facilitate the ex-
ploration of properties of cellular automata by curious students
with no particular computational or mathematical training. Users
of our RAMPs are explicitly exposed to the ideas of numerical
simulations and cellular automota, while getting implicit exposure
to concepts in complex systems theory. They are also getting the
opportunity, through exposure to the RAMs (runtime alterable
modules) that our part of our RAMP (runtime alterable model plat-
form) construction, to alter small pieces of JAVA code.

The simulations and resulting patterns that we illustrate, suggest
a number of interesting mathematical questions that can either be
addressed through simulation or theoretical analyses. For example,
on a toroidal cellular array of size r × c, how many gliders associ-
ated with a particular GoL (e.g., see Figs. 3-5 can coexist without
interfering with one another. Also, questions arise regarding the
number of symmetry centers and the dimensions of the symmetry
rectangles they support in GoLs of the type considered in Fig. 9.

As we have seen in our illustrative examples, the final phase of
various simulations produces patterns that can be characterized by
a stationary distribution of the number of cells of each type over
time and, depending on whether or not the starting pattern was
regular, with associated symmetries. An additional way to charac-
terize the final phase is to record the state of each of the individual
cells in the array during the final phase and record its periodicity
(fixed values have periodicity of 1). If we then look at all the cells

in a local rectangle that we may identify, much as we have done in
Fig. 6, then the period of the pattern that emerges in that rectangle
will be the lowest common multiple of the periods of all the cells
in the identified rectangle.

Finally, we emphasize that many different ways of extending Con-
way’s GoL exist.
In particular, the constraint that cells can only progress from state
i to i + 1,
i = 0, ..., n − 2 (as implied by Eq. 2) can be changed and, for exam-
ple, transitions of state i to other states j = 0, ..., n − 1 can be de-
termined according to particular ranges of neighborhood values V.
RAMPs to implement such GoLs can be built using our Numerus
Designer App that can be obtained at our Numerus website.

Concluding Remarks
The illustrations we have presented here, are the equivalent of
opening a vast box of “goodies” and only picking a few of them
at random to whet our appetite for generating all kinds of spatial
patterns. Many of the remaining goodies may be similar to those
presented here, but it is likely that many others will hold quite
some surprises for the users of our RAMPs who discover them, or
anyone else who sees them for the first time. We can only hope that
our RAMP helps stimulate an aesthetic appreciation for the won-
der and beauty of patterns produced by what at the outset seems
just a simple and dull set of rules that embody the mathematical
description of cellular automata.

Guide to using the RAMPs
A guide to using the Numerus RAMPs presented in this paper can
be found at the Numerus Studio web page.

References
1.	 Gardner, M. (1970). Mathematical games. Scientific ameri-

can, 222(6), 132-140.
2.	 Alstrøm, P., & Leão, J. (1994). Self-organized criticality in the

‘‘game of Life’’. Physical Review E, 49(4), R2507.
3.	 Caballero, L., Hodge, B., & Hernandez, S. (2016). Conway's

“Game of Life” and the Epigenetic Principle. Frontiers in cel-
lular and infection microbiology, 6, 57.

4.	 Berlekamp, E. R., Conway, J. H., & Guy, R. K. (2004). Win-
ning ways for your mathematical plays, 4. AK Peters/CRC
Press.

5.	 Adamatzky, A. (Ed.). (2010). Game of life cellular automata
(Vol. 1). London: Springer.

6.	 Birt, A., Feldman, R. M., Cairns, D. M., Coulson, R. N.,
Tchakerian, M., Xi, W., & Guldin, J. M. (2009). Stage‐struc-
tured matrix models for organisms with non‐geometric devel-
opment times. Ecology, 90(1), 57-68.

https://opastpublishers.com/

Copyright: ©2023 Wayne M Getz, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

http://people.maths.ox.ac.uk/griffit4/Math_Alive/6/handout1.pdf
http://people.maths.ox.ac.uk/griffit4/Math_Alive/6/handout1.pdf
https://doi.org/10.3389/fcimb.2016.00057
https://doi.org/10.3389/fcimb.2016.00057
https://doi.org/10.3389/fcimb.2016.00057

