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Abstract 
Assessing the randomness within time series becomes challenging in the case of large-scale datasets. This novel approach 
leverages the efficiency of Locality Sensitive Hashing in detecting the repeating patterns over time as well as different time series. 
By breaking each time series down into pre-defined blocks, the solution set consists of pairs of similar blocks in accordance 
with the metric the proposed method approximates. As a consequence, the estimation of the aforementioned randomness turns 
into a pattern recognition problem, insofar as the more patterns are repeated over time, the more predictable the data becomes. 
Therefore, a simple measurement of the overall randomness of the time series in the input dataset is obtained by counting the 
identified similar blocks. Following the detection of similar patterns, the mutual information exchanged across the blocks of 
every detected pair is investigated to validate the results. A case study concerning a selection of different financial market indices 
is discussed to evaluate the potential of the proposed algorithm.
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1.  Introduction
Time series is an extensive topic which covers various fields 
including behavioural sciences, finance, engineering, medicine 
and environmental monitoring. Evaluating randomness in such 
data can be challenging, particularly with large-scale datasets. 
State-of-the-art methods for analyzing time series often struggle 
to cope with the dimensions of the typical statistical registers 
which contain them. There are various approaches to testing for 
randomness, depending on the context of the data. From the point 
of view of statistical analysis, various non-parametric tests have 
been introduced to evaluate the degree of disorder in time series, 
such as runs testing [1, 2]. Symbolic dynamics and the more 
general communication theory are widely adopted to device tests 
for randomness which do not assume any probability distribution 
hypotheses [3-5]. Testing for the randomness of multiple time 
series becomes an increasingly complicated task as the number of 
time series grows as is the case of many real-world applications. 
This key-aspect is reported in where the randomness of financial 
markets is investigated. Another popular approach for evaluating 
the complexity of time series is given by the concept of entropy 
which is used as a measure of the degree of regularity of the time 
series by catching if the variations over time arise from a random 
process [6-8]. High values of entropy correspond to chaotic time 
series whereas low values of entropy indicate a high degree of 
regularity. A very popular algorithm for calculating the approximate 

entropy has been proposed by Pincus [9] while a faster sample 
entropy has been proposed by Richman and Moorman [10]. In 
this direction, mutual information can be used as a measure of 
association between random variables to capture the non-linear 
dependency between time series as in the case of financial markets 
[11, 12]. Although these methods are widespread, the use of non-
parametric tests as well as entropy-based estimations simply 
provide an overall measure of the degree of disorder which is 
rather useless for detecting recurring patterns over time embedded 
into the time series. Recurring patterns in time series are data 
structures which are repeated at regular intervals within a time 
series. Patterns such as: trend, seasonality and periodicity running 
through the whole time series can provide valuable insights into 
the behaviours of the underlying phenomena over time. Relevant 
research regarding the pattern recognition topic has been carried 
out by Tanake et al. [13] who investigate the innermost structure 
of time series for identifying characteristic patterns called motifs. 
In a deep learning context, a deep convolutional neural network 
architecture is proposed by Zhang et al.[14] for multivariatetime 
series clustering. The problem of finding recurring patterns is 
approached by means of a deep belief network algorithm [15]. In 
order to detect similarities between time series another increasingly 
popular approach to get rid of this curse of dimensionality in the 
case of large-scale data is the Locality Sensitive Hashing (LSH) 
approach. This is a grounded tool that approximates the search 
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for similar entities in high-dimensional spaces by mapping data 
into integers by using suitable hash functions [16]. In virtue of 
its computational efficiency, the LSH has been addressed to the 
problem of finding similar time series by approximating the well-
known Dynamic Warping Distance [17, 18].

The patterns to be identified in this study are sequences with a 
length shorter than the length of the time series. These patterns 
called blocks are obtained by breaking the time series down into 
sequences, each of the same length in accordence with a pre-
defined time window. This is achieved by shifting each sequence 
one element at a time. The objective is to detect similarities between 
such blocks within the time series dataset which, subsequent to 
the subdivision into blocks, has become even larger in size. The 
exploration of the randomness within a a time series dataset is 
faced by identifying repeated patterns inside similar blocks as they 

reveal local behaviours to investigate. As a consequence, the use 
of the aforementioned algorthms may be ineffective necessitatting 
more suitable methods for this purpose. On the basis of the LSH, 
this study aims to explore the randomness by detecting the near-
duplicate ordered pairs of blocks by leveraging the LSH potential. 
Subsequently, the mutual information for each pair of patterns 
belonging to the solution set is calculated to evaluate the goodness 
of the solution. Finally, the count of the aforementioned pairs 
is summarized using a well-known composite index method to 
identify which time series contains the greatest number of similar 
blocks from the past.

2.  Notations and Theoretical Background
For the convenience of the reader, the notation used in the following 
is listed below.
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T length of the time series
N number of time series
L length of the time window
C overall number of blocks in the input dataset
X input dataset (C × L) of sequences
xk = {x(k−1)+1, x(k−1)+2, . . . , x(k−1)+L} kth sequence (block) xk ∈ RL of the input dataset
µk average of values in the sequence xk

h(·) generic hash function
sim(xk,xh) similarity measure between the sequences xk and xh

n number of hyperplanes in the Random Projections algorithm
Pj projection matrix (L× n) (j = 1, 2, . . . , H)
H number of i.i.d. hash functions
B number of bands of the LSH search for near-duplicates
R number of hash codes in each band
M similar block counts matrix (N ×N)
σ similarity threshold [0, 1]
π probability of being a pair of duplicates
H(·), MI(·) entropy and mutual information
MPI composite index

2.1 The LSH-family of the Random Projections

In data science Locality Sensitive Hashing (LSH) refers to a method designed for
an approximate similarity search in high-dimensional spaces where traditional search
methods become computationally expensive. There are several metrics that LSH
encompasses for finding near-duplicates by means of a suitable family of hash func-
tions h(·) which establish a relation between two input data points (xk,xh) ∈ X and
the probability of sharing the same hash code: sim(xk,xh) = Pr[h(xk) = h(xh)]. The
choice of the hash function determines the metric to approximate. Every family asso-
ciates input data to integers which are thought of as being buckets with the purpose of
hashing is to group similar data points together into the same bucket so that neighbor-
ing data fall into the same bucket with a high probability while data which are likely
to be distant in the input space belong to different buckets. In a database context,
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can be projected onto a lower-dimensional space nearly preserving 
pairwise distances. In order to carry out this task, a set of randomly 
generated hyperplanes in the input space is used to project every 
sequence onto a lower dimensional space. Each hyperplane is 
considered as a decision boundary so that neighboring data points 
are inserted into the same bucket while they are inserted into 
different buckets if they are not neighbors. To be more precise, 
by geberating a matrix P with elements {pij} ∼     (0, 1) which has 
as many rows as the dimensions of the input space and a number 
of columns equal to the pre-defined number n of hyperplanes the 
hash code of the sequence xk is given by setting every ith element 
of the vector-matrix product ⟨xk,P⟩ equal to 0 if the product of the 
sequence and the ith column of the matrix is negative and equal to 
1 otherwise. The distribution      (0, 1) denotes a standard normal 
distribution with mean 0 and standard deviation 1. The number 
of hyperplanes affects the maximum number of buckets to which 
the data points are associated: In practical applications the typical 
values that ensure hashing with a reduced number of collisions 
are n = 32 or n = 64. By multiplying every input sequence of L 
elements by a sequrnce of H randomly generated (L×n) matrices 
{P1,P2, . . . ,PH}, the input dataset is transformed into a dataset of 
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ing with a reduced number of collisions are n = 32 or n = 64. By multiplying every
input sequence of L elements by a sequrnce of H randomly generated (L×n) matrices
{P1,P2, . . . ,PH}, the input dataset is transformed into a dataset of signatures which
are sequences of H i.i.d. hash codes. As a result the input dataset is transformed into
a (L×H) signature matrix which is elaborated in the following.

2.2 Near-duplicates search

Subsequent to the creation of the signatures matrix in order to speed up the near-
duplicates search, LSH shrinks the signatures into B bands. Each band consists of R
adjacent hash codes combined together so that the relation H = BR holds. Similar
sequences are finally detected by sorting the (N ×B) banded matrix and sequentially
scanning it B times. Every pair of consecutive signatures with at least one correspond-
ing equal band inidcates a pair of near-duplicate input sequences. The probability of
being a pair of similar objects with a similarity value σ is given by:

π = 1− (1− σR)B (1)

It is widely reported in the literature that the LSH is an approximate method that can
give rise to false duplicates in the solution. The rate of the same is usually controlled
by an appropriate tuning process of the hyperparameters.

2.3 Mutual information: basic concepts

Mutual information is a well-known measure of the dependency in time series analysis.
This measure accounts for nonlinear dependencies and requires no specific theoretical
probability disibution assumption in order to be estimated. Mutual information as
well as correlation are measures of association between variables, but they capture
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signatures which are sequences of H i.i.d. hash codes. As a result 
the input dataset is transformed into a (L × H) signature matrix 
which is elaborated in the following

2.2. Near-Duplicates Search
Subsequent to the creation of the signatures matrix in order to 
speed up the nearduplicates search, LSH shrinks the signatures 
into B bands. Each band consists of R adjacent hash codes 
combined together so that the relation H = BR holds. Similar 
sequences are finally detected by sorting the (N ×B) banded matrix 
and sequentially scanning it B times. Every pair of consecutive 
signatures with at least one corresponding equal band inidcates a 
pair of near-duplicate input sequences. The probability of being a 
pair of similar objects with a similarity value σ is given by:

It is widely reported in the literature that the LSH is an approximate 
method that can give rise to false duplicates in the solution. The 
rate of the same is usually controlled by an appropriate tuning 
process of the hyperparameters.

2.3.  Mutual Information: Basic Concepts
Mutual information is a well-known measure of the dependency 
in time series analysis. This measure accounts for nonlinear 
dependencies and requires no specific theoretical probability 
disibution assumption in order to be estimated. Mutual 
information as well as correlation are measures of association 
between variables, but they capture different aspects of the 
relationship. Correlation measures the strength and direction of a 
linear relationship between two continuous variables while mutual 
information measures the amount of information exchanged 
between variables which captures any type of relationship. It is 
obvious that they are complementary measures describing different 
aspects of the association between two random variables (X,Y). 
Mutual infotmation is related to entropy H(•) as reported below:

which can be normalized by dividing it by max(H (X),H(Y)). 
Equation 2 indicates that mutual information gains as the degree of 
regularity increases, implying that observing one variable provides 
a better prediction in relation to the other. Therefore information 
sharing within time series can be investigated by estimating the 
mutual information exchanged by their similar detectec blocks. 
Randomness is higher in less probable events, i.e. high degrees of 
randomness may emerge, following the detection of a few pairs of 
similar blocks.

3 Randomness Evaluation
The proposed algorithm is developed in the steps which follow:

3.1 Similar Blocks Detection
Consider an input dataset X with N time series each one being 

T time periods long. A time window of length L < T is used to 
break every input series down into blocks x(k) = {x(k−1)+1 −µk,x(k−1)+2 
−µk,...,x(k−1)+L −µk} by shifting them one period k at a time so that 
the total number of resulting blocks C from the input dataset is 
equal to N(T − L + 1). The variable µk is the average of all values 
in the block. The thus created input dataset is transformed into the 
signatures matrix as described in Section 2.

3.2. Optimization of the Solution
The LSH-family of Random Projections approximates the 
pairwise cosine similarity between the blocks. The solution set 
is composed by all pairs with a high probability of being similar 
with a high degree of similarity. Due to the probabilistic nature 
of the LSH, the presence of false duplicates must be controlled 
by carefully selecting the parameters {H,B,R}. Their setting is 
generally a critical aspect of the nearest neighbors search insofar 
as a wrong setting could compromise the goodness of the solution. 
The parameters in the algorithm proposed here are therefore set 
to achieve an almost zero false negatives rate in opposition to a 
probable higher false positives rate. In order to lower the rate of 
false positives, the number of the pairs detected can be reduced by 
filtering out all the pairs whose cosine similarity is below a pre-
defined threshold τ from     .

3.3 Evaluating the Randomness
The evaluation of randomness is carried out by comparing all the 
blocks pertaining to the real time series in the input dataset with 
the blocks from a false time series entirely made up of random 
values (white noise) which is inserted into the input dataset. The 
basic idea is that the more the real time series move away from 
the white noise the more predictable they are, reflected in a higher 
number of pairs of similar blocks detected. Due to the high level 
of the artificial disorder inserted by creating a white noise time 
series, pairs of similar patterns between the same and the real 
time series are not expected, or if detected, they should be a few 
or exhibit low values of the exchanged mutual information. The 
number of pairs of similar patterns is high if two time series show 
similar movements over time while on the contrary the expected 
number of pairs is low if one of the two series (or both) shows 
completely random movements. This furnish a simple evaluation 
of the reliability of the proposed method. The easiest summary 
of the solution set     is represented by the collection of overall 
counts of pairs of similar blocks gathered in a square matrix M of 
order N + 1. The generic cell (i,j) represents the number of pairs 
of blocks from the past belonging to the time series i which are 
similar to those belonging to the time series j forward in time . An 
important remark is that the cosine similarity aSsumes positive as 
well as negative values which indicate movements in a concurrent 
or opposite direction respectively while mutual information is a 
positive measure in both cases. A further attempt to summarize 
the results can be achieved by averaging pwe column all the 
numbers of pairs belonging to the same time series. To be more 
precise, every row of the count matrix is ranked by using the well-
known synthesis method MPI [19]. This index is a penalized mean 
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different aspects of the relationship. Correlation measures the strength and direction
of a linear relationship between two continuous variables while mutual information
measures the amount of information exchanged between variables which captures any
type of relationship. It is obvious that they are complementary measures describing
different aspects of the association between two random variables (X,Y ). Mutual
infotmation is related to entropy H(·) as reported below:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

which can be normalized by dividing it by max(H(X),H(Y )). Equation 2 indicates
that mutual information gains as the degree of regularity increases, implying that
observing one variable provides a better prediction in relation to the other. Therefore
information sharing within time series can be investigated by estimating the mutual
information exchanged by their similar detectec blocks. Randomness is higher in less
probable events, i.e. high degrees of randomness may emerge, following the detection
of a few pairs of similar blocks.

3 Randomness evaluation

The proposed algorithm is developed in the steps which follow:

3.1 Similar blocks detection

Consider an input dataset X with N time series each one being T time periods long1.
A time window of length L < T is used to break every input series down into blocks
x(k) = {x(k−1)+1 − µk, x(k−1)+2 − µk, . . . , x(k−1)+L − µk} by shifting them one period
k at a time so that the total number of resulting blocks C from the input dataset is
equal to N(T − L+ 1). The variable µk is the average of all values in the block. The
thus created input dataset is transformed into the signatures matrix as described in
Section 2.

3.2 Optimization of the solution

The LSH-family of Random Projections approximates the pairwise cosine similarity
between the blocks. The solution set is composed by all pairs with a high probability
of being similar with a high degree of similarity. Due to the probabilistic nature of
the LSH, the presence of false duplicates must be controlled by carefully selecting
the parameters {H,B,R}. Their setting is generally a critical aspect of the nearest
neighbors search insofar as a wrong setting could compromise the goodness of the
solution. The parameters in the algorithm proposed here are therefore set to achieve
an almost zero false negatives rate in opposition to a probable higher false positives
rate. In order to lower the rate of false positives, the number of the pairs detected can
be reduced by filtering out all the pairs whose cosine similarity is below a pre-defined
threshold τ from M .

1In order to facilitate the comprehension of the algorithm, all the time series are of the same length even
though it is not a necessary requirement.
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the LSH, the presence of false duplicates must be controlled by carefully selecting
the parameters {H,B,R}. Their setting is generally a critical aspect of the nearest
neighbors search insofar as a wrong setting could compromise the goodness of the
solution. The parameters in the algorithm proposed here are therefore set to achieve
an almost zero false negatives rate in opposition to a probable higher false positives
rate. In order to lower the rate of false positives, the number of the pairs detected can
be reduced by filtering out all the pairs whose cosine similarity is below a pre-defined
threshold τ from M .

1In order to facilitate the comprehension of the algorithm, all the time series are of the same length even
though it is not a necessary requirement.
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of the values related to the statistical units for which a ranking 
is coomputed. The penalty of this row-wise mean depends on 
the variability of the values aggregated. This method requires 
standardized (per column) values obtained by transforming them 
into z-scores having mean 100 and standard deviation 10 so that 
the (standardized) values of MPI fall into the interval [90,110] 
for the 95% of cases. The aim of applying this composite index 
method is to highlight the predictable behaviour of all real time 
series with respect to white noise.

4.  Application to Financial Markets
Notwithstanding the fact that the proposed approach can be 
adopted in any field of research, a field of certain interest is finance 
in which the evaluation of the uncertainty is of considerable 
importance. As it is known from the literature, financial markets 
are not perfectly efficient implying that the exploitation of past 

information is not useless [20]. As market efficiency is closely 
related to the randomness of the same, it is worth detecting the 
repeated patterns of price movements over time [21, 22]. On the 
basis of these concepts, a dataset containing various financial 
market indices is explored as a case study by comparing the count 
of the pairs concerning real time series with those generated 
randomly (white noise).

4.1. The Input Dataset
Consider a dataset comprising daily values of N = 27 market 
indices (see Table 1). All data was collected via web scraping. The 
downloaded time series may have covered different time periods 
ranging from 2000-01-03 to 2024-02-15, resulting in varying 
lengths as indicated in Table 1. The time window used to divide all 
the series into blocks is set to L = 10 days.The presence of missing 
data has to be managed prior to starting the proposed

4.1 The input dataset

Consider a dataset comprising daily values of N = 27 market indices (see Table 1). All
data was collected via web scraping. The downloaded time series may have covered
different time periods ranging from 2000-01-03 to 2024-02-15, resulting in varying
lengths as indicated in Table 1. The time window used to divide all the series into
blocks is set to L = 10 days.
The presence of missing data has to be managed prior to starting the proposed

Table 1 World market indices in the input dataset

N Index Description T

1 AORD Ordinaries 6100
2 AXJO S1&PASX 200 6095
3 BFX BEL 20 6164
4 BSESN S&P BSE SENSEX 5948
5 BUK100P Cboe UK 100 3397
6 DJI Dow Jones Industrial Average 6069
7 FCHI CAC 40 6167
8 FTSE FTSE 100 6093
9 GDAXI DAX Performance-Index 6127
10 GSPC S&P 500 6069
11 GSPTSE S&PTSX Composite index 6060
12 HSI HANG SENG 5945
13 IMOEX.ME MOEX Russia Index 2699
14 IXIC NASDAQ Composite 6069
15 JKSE IDX Composite 5867
16 KLSE FTSE Bursa Malaysia KLCI 5916
17 KS11 KOSPI Composite Index 5949
18 N100 Euronext 100 Index 6170
19 N225 Nikkei 225 5911
20 NYA NYSE Composite (DJ) 6069
21 NZ50 S&PNZX 50 Index Gross & Gross 5204
22 RUT Russell 6069
23 STI STI Index 6035
24 STOXX50E ESTX 50 PR.EUR 4234
25 TWII TSEC weighted 5919
26 VIX CBOE Volatility Index 6069
27 WHITE.NOISE - 7385
28 XAX NYSE AMEX Composite Index 6069

method, thus, it was necessary to identify missing data in each time series. Blocks
containing at least one missing value were excluded from the analysis. No further data
preprocessing was carried out. For this study, the input dataset contains a total of
C = 161868 blocks to be investigated for similarities. Stabdard pairwise comparisons
for similar blocks would require approximately 1.31×1010 comparisons, rendering the
search computationally infeasible.
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4.2. LSH Hyperparameters Setting
In this case the setting provides that every block is signed with a 

sequence of H = 200 i.i.d. hash codes. Every hash is a n = 32 long 
integer which is a sufficient length (in bits) for hashing the blocks 
with a low number of collisions. Each signature is grouped into 
B = 50 bands of R = 4 hashes combined in bitwise XOR. Due to 
these hyperparameters the probability of detecting a pair of blocks 
with a cosine similarity equal to 0.8 equates to 1 (see Equation 
1) dropping the probability of false negatives to zero while the 
probability of false positives increases. In order to avoid this 
inflation of positives in the solution set a similarity threshold equal 
to σ = 0.85 is used. Pairs with ae cosine similarity sim such that 
|sim| < 0.85 are excluded.
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4.3. Randomness Estimation
The number of pairs in the set      , which are considered acceptable, 
is therefore equal to M = 233531. These pairs concern patterns 
of price movements in either concordant directions or in opposite 
directions with a high degree of cosine similarity. In both cases, 
the significant result is that the mutual information exchanged 

between the blocks in each pair also reaches high values, as well 
as reported in Table 2, implying that past information or other time 
series are also exploitable for analysis.
By summarizing the count matrix introduced in Section 2, the 
overall percentage of

different aspects of the relationship. Correlation measures the strength and direction
of a linear relationship between two continuous variables while mutual information
measures the amount of information exchanged between variables which captures any
type of relationship. It is obvious that they are complementary measures describing
different aspects of the association between two random variables (X,Y ). Mutual
infotmation is related to entropy H(·) as reported below:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

which can be normalized by dividing it by max(H(X),H(Y )). Equation 2 indicates
that mutual information gains as the degree of regularity increases, implying that
observing one variable provides a better prediction in relation to the other. Therefore
information sharing within time series can be investigated by estimating the mutual
information exchanged by their similar detectec blocks. Randomness is higher in less
probable events, i.e. high degrees of randomness may emerge, following the detection
of a few pairs of similar blocks.
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Consider an input dataset X with N time series each one being T time periods long1.
A time window of length L < T is used to break every input series down into blocks
x(k) = {x(k−1)+1 − µk, x(k−1)+2 − µk, . . . , x(k−1)+L − µk} by shifting them one period
k at a time so that the total number of resulting blocks C from the input dataset is
equal to N(T − L+ 1). The variable µk is the average of all values in the block. The
thus created input dataset is transformed into the signatures matrix as described in
Section 2.

3.2 Optimization of the solution

The LSH-family of Random Projections approximates the pairwise cosine similarity
between the blocks. The solution set is composed by all pairs with a high probability
of being similar with a high degree of similarity. Due to the probabilistic nature of
the LSH, the presence of false duplicates must be controlled by carefully selecting
the parameters {H,B,R}. Their setting is generally a critical aspect of the nearest
neighbors search insofar as a wrong setting could compromise the goodness of the
solution. The parameters in the algorithm proposed here are therefore set to achieve
an almost zero false negatives rate in opposition to a probable higher false positives
rate. In order to lower the rate of false positives, the number of the pairs detected can
be reduced by filtering out all the pairs whose cosine similarity is below a pre-defined
threshold τ from M .

1In order to facilitate the comprehension of the algorithm, all the time series are of the same length even
though it is not a necessary requirement.

5

4.2 LSH hyperparameters setting

In this case the setting provides that every block is signed with a sequence of H = 200
i.i.d. hash codes. Every hash is a n = 32 long integer which is a sufficient length
(in bits) for hashing the blocks with a low number of collisions. Each signature is
grouped into B = 50 bands of R = 4 hashes combined in bitwise XOR. Due to these
hyperparameters the probability of detecting a pair of blocks with a cosine similarity
equal to 0.8 equates to 1 (see Equation 1) dropping the probability of false negatives
to zero while the probability of false positives increases. In order to avoid this inflation
of positives in the solution set a similarity threshold equal to σ = 0.85 is used. Pairs
with ae cosine similarity sim such that |sim| < 0.85 are excluded.

4.3 Randomness estimation

The number of pairs in the set M, which are considered acceptable, is therefore equal
to M = 233531. These pairs concern patterns of price movements in either concordant
directions or in opposite directions with a high degree of cosine similarity. In both
cases, the significant result is that the mutual information exchanged between the
blocks in each pair also reaches high values, as well as reported in Table 2, implying
that past information or other time series are also exploitable for analysis.
By summarizing the count matrix introduced in Section 2, the overall percentage of

Table 2 Mutual information in the solution set

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8194 1.0000 1.0000 0.9985 1.0000 1.0000

1normalized values.

similar blocks concerning real-time series with respect to the total of the detected pairs
is approximately equal to 99.94%. It is important to underline that this result provides
a measure of the goodness of the solution as opposed to a measure of the randomness
of the entire input dataset. Moreover, Table 2 indicates that pairs of repeated blocks
across the time series over time are mutually informative. Hence in order to explore
the randomness within the time series dataset, the matrix M containing the number
of repeated patterns is summarized using the MPI index. The value of the index, as
well as the rank, are reported in Table 3.
The index aggregates per column the values of each row i of the count matrix to
indicate the contribution of past blocks of the time series i to all the other time series
moving forward in time. As it can be seen from Table 3, the highest value of the MPI
reveals that the highest number of blocks pertains to the BSESN - S&P BSE SENSEX
market index. On the contrary, it is evident that the lowest number of exploitable
blocks belongs to the white noise, rendering the approach an effective tool for exploring
randomness. A simple example of application of the results obtained is the evaluation
of trading strategies by using back-testing approaches widely used in finance. As a
matter of fact, pairs of similar patterns {x(k−1)+1 −µk, x(k−1)+2 −µk, . . . , x(k−1)+L −
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similar blocks concerning real-time series with respect to the 
total of the detected pairs is approximately equal to 99.94%. It 
is important to underline that this result provides a measure 
of the goodness of the solution as opposed to a measure of the 
randomness of the entire input dataset. Moreover, Table 2 indicates 
that pairs of repeated blocks across the time series over time are 
mutually informative. Hence in order to explore the randomness 
within the time series dataset, the matrix M containing the number 
of repeated patterns is summarized using the MPI index. The value 
of the index, as well as the rank, are reported in Table 3.

The index aggregates per column the values of each row i of the 

count matrix to indicate the contribution of past blocks of the time 
series i to all the other time series moving forward in time. As it 
can be seen from Table 3, the highest value of the MPI reveals 
that the highest number of blocks pertains to the BSESN - S&P 
BSE SENSEX market index. On the contrary, it is evident that the 
lowest number of exploitable blocks belongs to the white noise, 
rendering the approach an effective tool for exploring randomness. 
A simple example of application of the results obtained is the 
evaluation of trading strategies by using back-testing approaches 
widely used in finance. As a matter of fact, pairs of similar patterns 
{x(k−1)+1 −µk,x(k−1)+2 −µk,...,x(k−1)+L −

Table 3 MPI index

Market index MPI.value MPI.rank

AORD 104.0175456 4
AXJO 100.0505033 19
BFX 104.9495307 2
BSESN 107.7398143 1
BUK100P 87.3645177 26
DJI 101.6488485 13
FCHI 101.1772325 15
FTSE 100.5406199 17
GDAXI 102.4744143 9
GSPC 97.3825360 22
GSPTSE 100.4525230 18
HSI 101.8429500 12
IMOEX.ME 87.2236976 27
IXIC 101.1821435 14
JKSE 103.1989557 7
KLSE 103.3817906 6
KS11 100.7769930 16
N100 96.6143371 23
N225 101.8955299 11
NYA 99.8565148 20
NZ50 102.8206462 8
RUT 97.7420234 21
STI 103.8062985 5
STOXX50E 91.1342641 25
TWII 104.7133149 3
VIX 92.6223118 24
WHITE.NOISE 83.8343378 28
XAX 102.0155606 10

µk} of price fluctuations relative to their block averages µk imply similar patterns of
the prime differences and as a consequence the simple L-days return sign sign(rk) is
related to the sign of the differencee (x(k−1)+L−x(k−1)+1) so that a positive difference
yields a positive return and viceversa. In this case study, pairs with a positive cosine
similarity have a concordance of their return signs equal to 99.65% while pairs with a
negative cosine similarity as well as opposite return signs are 99.48%.

5 Conclusion

The proposed approach explores the randomness of a set of time series by turning the
exploration into a pattern recognition problem. The patterns to be detected are con-
tained within sub-sequences (blocks) of a pre-defined length which are shorter than the
shortest time series in the dataset so that the search for repeated patterns over time
is reduced to the detection of similar blocks. In this approach time series values are
transformed into differences between the values in the block and their average value.
In real-world applications, searching for such similar patterns can become intractable
when the input dataset is large. Hence, in this study, it has been proposed to use the
Locality Sensitive Hashing technique, which is effective for the accomplishment of this
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µk} of price fluctuations relative to their block averages µk imply 
similar patterns of the prime differences and as a consequence 
the simple L-days return sign sign(rk) is related to the sign of the 
differencee (x(k−1)+L−x(k−1)+1) so that a positive difference yields 

a positive return and viceversa. In this case study, pairs with a 
positive cosine similarity have a concordance of their return signs 
equal to 99.65% while pairs with a negative cosine similarity as 
well as opposite return signs are 99.48%.
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5. Conclusion
The proposed approach explores the randomness of a set of 
time series by turning the exploration into a pattern recognition 
problem. The patterns to be detected are contained within sub-
sequences (blocks) of a pre-defined length which are shorter than 
the shortest time series in the dataset so that the search for repeated 
patterns over time is reduced to the detection of similar blocks. In 
this approach time series values are transformed into differences 
between the values in the block and their average value. In 
real-world applications, searching for such similar patterns can 
become intractable when the input dataset is large. Hence, in this 
study, it has been proposed to use the Locality Sensitive Hashing 
technique, which is effective for the accomplishment of this task. 
The advantage of using the specific family of hashing functions 
of Random Projections is that it allows an approximate yet fast 
evaluation of the cosine similarity between the input blocks. In 
any case, the setup of the time window hyperparameter constitutes 
an important aspect. Long time windows can lead to the detection 
of a low number of repeated patterns, while, on the contrary, 
short time windows can lead to similar insignificant patterns. In 
order to test the effectiveness of the proposed approach, it was 
applied to the case of financial markets for which the evaluation 
of randomness is crucial. The case study examined concerns a 
number of time series of different financial indices which, given 
their length, constitute a valid test for the computational efficiency 
of the proposed method. The pairs of similar blocks detected 
reveal repeated patterns over time across the time series. High 
degrees of cosine similarity (in absolute value) are related to high 
degrees of the mutual information exchanged. This implies that the 
underlying random processes pertaining to these repeated patterns 
act the same even if they are related to different time periods. Due 
to this fact, the high percentage of pairs of similar blocks involving 
only true time series compared to the percentage of pairs involving 
blocks belonging to the white noise used as a reference series 
provides an empirical measure of randomness of the time series 
dataset under investigation. As it is well-known, in the case of 
financial markets, the more of these patterns are identified the less 
the market is efficient as patterns from the past can be exploited 
for analyticl purposes. Pairs of near-duplicate blocks are gathered 
into the square matrix of their counts which indicate the number 
of blocks from the past belonging to each time series similar to 
blocks forward in time belonging to the same or another time 
series in the dataset. This matrix is summarized by using a well-
known synthesis method in order to obtain the overall contribution 
that each time series gives to all the others. This approach allows 
for an effective exploration if a fake, i.e., completely random, 
series such as the white noise proposed in this study as a reference 
time series is inserted into the dataset. As expected, the case study 
results showed that the block pairs detected mostly concern the 
real-time series of the input dataset. In conclusion, the results 
obtained confirm that the proposed approach provides a valid tool 
for a fast exploration of the randomness within a set of time series.
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